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Abstract: We propose two new ocean wind retrieval models for right circular-vertical (RV) and right
circular-horizontal (RH) polarizations respectively from the compact-polarimetry (CP) mode of the
RADARSAT Constellation Mission (RCM), which is scheduled to be launched in 2019. For compact
RV-polarization (right circular transmit and vertical receive), we build the wind retrieval model
(denoted CoVe-Pol model) by employing the geophysical model function (GMF) framework and a
sensitivity analysis. For compact RH polarization (right circular transmit and horizontal receive),
we build the wind retrieval model (denoted the CoHo-Pol model) by using a quadratic function to
describe the relationship between wind speed and RH-polarized normalized radar cross-sections
(NRCSs) along with radar incidence angles. The parameters of the two retrieval models are derived
from a database including wind vectors measured by in situ National Data Buoy Center (NDBC)
buoys and simulated RV- and RH-polarized NRCSs and incidence angles. The RV- and RH-polarized
NRCSs are generated by a RCM simulator using C-band RADARSAT-2 quad-polarized synthetic
aperture radar (SAR) images. Our results show that the two new RCM CP models, CoVe-Pol and
CoHo-POL, can provide efficient methodologies for wind retrieval.

Keywords: compact polarization (CP); RADARSAT Constellation Mission (RCM); geophysical model
function (GMF); wind retrieval; CoVe-Pol and CoHo-Pol models; right circular horizontal polarization
model; right circular vertical polarization model

1. Introduction

The Canadian RADARSAT Constellation Mission (RCM) is scheduled for launch in early 2019
and will provide Compact-Polarimetry (CP) synthetic aperture radar (SAR) data. RCM is the evolution
of the RADARSAT Program and the successor of RADARSAT-2, which is a satellite constellation
carrying three identical C-band SAR satellites. The RCM CP mode consists of a right hand circular
transmit and linear/circular receive radar signal, namely right circular-vertical (RV) polarization,
right circular-horizontal (RH) polarization, right circular-right circular (RR) polarization and right
circular-left circular (RL) polarization. The CP configuration is designed for Earth observation;
compared with conventional linear dual-polarization SAR, compact polarimetry SAR can obtain
abundant high-resolution information with wider swath [1].
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Researchers have shown that CP SAR is an efficient imaging mode for ocean surface observation
and, therefore, elucidation of algorithms and models for retrieval of ocean surface features and
marine variables like wind is critically important [2]. Compact polarization SAR is a dual-polarization
radar system which transmits circular (or 45◦) components and receives two orthogonal polarization
components (V or H) with relative phase [3,4]. Accurate information of ocean surface can be obtained
from C-band radar data. The main process of physical mechanism is the interactions between the
microwaves and related surface water waves. The major interaction is denoted as Bragg scattering
when the wavelengths of ocean surface waves are of the same order of radar wavelength. For practical
application, wind retrievals from SAR images can be accomplished by C-band geophysical model
functions (GMFs), because radar measurements are sensitive to the ocean-surface roughness which is
determined by the surface wind field [5]. The GMF is a set of functions between wind vectors and
radar backscatter signals denoted as the normalized radar cross section (NRCSs) including dependence
on the radar incidence angles.

The C-band GMF model series (CMOD4, CMOD5 and CMOD5.N [5,6]) are used for vertical-vertical
(VV) polarization data. For horizontal-horizontal (HH) polarization, there are generally two ways
to achieve ocean wind retrieval: (1) conversion of the HH backscatter to VV by a polarization
ratio (PR) which is a ratio of VV-polarized NRCS to HH-polarized NRCS [7], or (2) construction
of a new relationship between wind vectors and radar backscatters [8]. In terms of C-band linear
cross-polarization (VH and HV) ocean backscatter data, C-2PO and C-3PO models are available for
wind retrieval [9,10]. For wind retrieval from CP SAR mode, recent studies have attempted to retrieve
wind speed by converting right circular-vertical (RV) polarization data into linear dual-polarization
data, taking advantage of CMOD5 and CMOD5.N models [11,12]. However, the configurations for RV
and VV polarizations are different and the CMOD model series were originally developed for C-Band
VV-polarized scatterometers rather than SARs. In view of this situation, we propose two new models
in this paper to retrieve wind from C-band RV-pol and RH-pol measurements.

CMOD is a well-behaved parameterization to retrieve wind speed, allowing the NRCS to be
dependent on the principal parameters, such as radar incidence angle, relative wind direction and
wind speed [5]. However, as there are 28 CMOD coefficients, the process of optimizing the CMOD
model to CP data sets to generate a new GMF (for CP SAR) is not feasible using normal computing
clusters, because of the requirement to adjust such large number of CMOD coefficients to represent the
CP parameters. In order to avoid excessive computation, a sensitivity analysis of the coefficients can
play a significant role in optimizing the generation of a new GMF for RV-polarization. The sensitivity
analysis is a method to adjust the models by changing the coefficients within a specific range of
variations in order to optimize the parameterization and simplify the computation [13,14]. Moreover,
another common method to generate a practical empirical algorithm is to fit a function relating the CP
variables and the wind parameters. In this study, we utilize these two methods to construct the wind
speed retrieval models for RV- and RH-polarization data.

RADARSAT-2 is beyond its 7-year design life, as it was launched in 2007. Thus the launch of RCM
is necessary, and application of CP SAR is a new application offering the advantages of full polarimetry
SAR mode, with the possibility of better wide-swath coverage. Based on the simulated CP parameters,
this study is a preparation for possible ocean wind retrievals from RCM which will be available in
the next year. The remainder of this paper is organized as follows: Section 2 describes the database
consisting of CP SAR NRCSs simulated by the RCM simulator using quad-polarized RADARSAT-2
SAR images, and collocated wind vectors observed by NCBC buoys. A new CMOD function for
RV-polarization data is proposed based on a sensitivity analysis [13], followed by a performance
evaluation, and we present a new model for RH polarization wind speed retrieval. Results and the
validations of the two new models are shown in Section 3. Discussion and conclusions are given in
Sections 4 and 5, respectively.
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2. Materials and Methods

In this section, two wind retrieval models are developed based on the collocated data sets. For the
compact RV polarization, we employ the CMOD framework to derive a new GMF by optimizing
each coefficient. The resultant formulation is denoted the CoVe-Pol model. In this derivation,
sensitivity analysis is used to avoid unnecessarily huge calculations [13]. Through the sensitivity
analysis, the computation efficiency of the process to generate the new GMF generation is increased
by more the 1020 times and the accuracy of computed NRCS reaches 10−2. For the compact RH
polarization, we propose the CoHo-Pol wind retrieval model which we derive by using a quadratic
regression function.

2.1. Datasets

The CP parameters were simulated from RADARSAT-2 quad-polarized data using the RCM
simulator, which is provided by the Canadian Space Agency [12]. To develop two new wind retrieval
models for RV- and RH-polarization data, we build a database consisting of simulated RV- and
RH-polarized NRCSs from RADARSAT-2 fine quad-pol SAR images and collocated wind vectors
measured by in situ buoys. The RADARSAT-2 quad-pol SAR images over the selected buoys are
acquired. Then, these RADARSAT-2 images are converted to RCM CP mode SAR images by using the
CP simulator. Finally, wind speed measured by buoy and the collocated simulated NRCS are paired.
The distributions of NRCSs and wind speeds are shown in Figure 1.
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Figure 1. Simulated compact-polarimetry (CP)-polarized normalized radar cross-sections (NRCSs) vs.
in situ buoy-measured U10: (a) right circular-vertical (RV) polarization; (b) right circular-horizontal
(RH) polarization.

In this database, we have 267 RADARSAT-2 fine quad-pol SAR images, which are processed by a
RCM CP simulator to re-construct CP mode images [1]. The results of simulated CP configurations are
used as “ground truth” in this study. The RADARSAT Constellation Mission has several polarization
configurations: linear mono-polarized, dual linear-polarized (HH/HV, VV/VH, or VV/HH); dual
circular transmit-linear receive; and fully polarimetric [12]. The compact polarimetry SAR mode
provides four polarimetric datasets, which are RV, RH, right circular transmit and right circular receive
(RR) and right circular transmit and left circular receive (RL). In the medium resolution mode, the pixel
spacings in azimuth and range directions are about 100 m and the associated noise floor is about
−25 dB [15]. Data from eight National Data Buoy Center (NDBC) buoys collocated with the SAR
data are collected, at locations off the east and west coasts of Canada [16]. The buoy locations are
shown in Figure 2. At each buoy, the mean wind speed (at 10 m reference height, hereafter U10) and
direction are measured by two sensors, averaged over 8-min periods and reported hourly. The wind
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speeds observed by the buoys are converted to winds at 10 m reference height above the ocean surface
using the Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment
(TOGA COARE) bulk flux algorithm [17], and the winds can be considered as neutral winds [6,18].
The temporal separation between the SAR data and the buoy data is restricted to less than 30 min [11].
The distribution of months is shown in Figure 3. As the SAR is active microwave, the effects of weather
and seasons are both almost negligible.
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We divide the collected data randomly into two data groups (2/3 and 1/3 of the total number).
One contains 178 data which are used to generate the new models, and the other contains 89 data,
reserved for model testing.

2.2. CoVe-Pol Model for Right Circular-Vertical (RV) Polarization

Figure 4 shows the flowchart for the derivation process for the CoVe-Pol model for RV polarization
data. As with all GMF functions, an empirical functional relation is used to establish the dependency
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of the normalized backscatter on wind speed, wind direction, and the incidence angle [5]. The general
form of the CMOD function is summarized as:

σ0(θ, U10, ϕ) =

B0(c0, U10, θ)[1 + B1(c1, U10, θ) cos(ϕ) + B2(c2, U10, θ) cos(2ϕ)]1.6 (1)

where σ0 is the NRCS in linear units, ϕ is the relative wind direction, which is the angle between
local wind direction and radar look direction (both relative to north), U10 is the statistically neutral
wind referenced to 10 m height, θ is the incidence angle and B0, B1, B2 are coefficients depending on
U10, θ, the radar frequency and polarization. The dominant term, B0, sets the speed scale for a given
measurement. The upwind–crosswind asymmetry term B2 allows for a determination of the wind
direction, and B1 is used to resolve the remaining 180◦ ambiguity in the wind direction. Coefficients ci
complete the definition of the terms B0, B1, B2. Detailed expressions are shown in Appendix A.
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geophysical model function (GMF) model series (CMOD) coefficients obtained by application of
a sensitivity analysis.

2.2.1. Sensitivity Analysis

As there are 28 CMOD coefficients (c1~c28) in the empirical model formulation, the sensitivity
analysis is used to reduce the computations and to allow a determination of the coefficients. We define
the sensitivity analysis factor (SAF) of the CMOD coefficients to make the adjustment process more
efficient:

SAF =
∣∣∣(δσ0/σ0)/(δci/ci)

∣∣∣ (2)

where σ0 represents the RV-polarized backscatter value (NRCS), the independent variable, and the ci
coefficients (c1~c28) are dependent variables. In this approach, SAFs indicate the degree of influence of
each coefficient on the CMOD parameterization. From equation (2), we know that for any particular
coefficient ci, the corresponding NRCS (σ0) can have multiple values, and in each case the ratio is
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indicative of the degree of influence, SAF. If SAF cannot provide the required computational accuracy,
the corresponding coefficients ci can be ignored. For any particular coefficient, the basis for this
decision is the magnitude of the degree of influence, SAF.

Average values of the SAFs under various wind speeds range from 1 m/s to 25 m/s as shown
in Figure 5, assuming typical conditions for radar incidence angles and wind directions. Thus, it is
shown that SAF values range widely from 0 to 101, which means the influence of different coefficients,
ci, vary greatly. As shown in Figure 5, very close to 0, most SAF values are less than 1 and only a few
have values exceeding 1, for three typical radar incidence angles (25◦, 35◦ and 45◦). Thus, we only
focus on coefficients ci, where SAF values indicate greater influence (>0.1) so that the parameterization
is simplified and a huge calculation can be avoided.

In this study, we can classify the coefficients by the orders of magnitude of the corresponding
SAFs, namely 100, 10−1 and less than 10−1. Thus, when we attempt to get the accuracy of computed
NRCS values to 100 order of magnitude, we don’t need to consider the coefficients with SAF values
less than 100, because their influence is negligible. Likewise, when we focus on the 10−1 order of
magnitude, the coefficients with SAF values lower than 10−1 can be ignored. Therefore, based on the
SAFs of each coefficient, ci, we firstly tune the coefficients whose SAF values have orders of magnitude
higher than 100, without considering other coefficients. Secondly, we tune the coefficients whose
SAF values have orders of magnitude higher than 10−1, without considering other coefficients. Then,
we tune the coefficients whose SAF values have progressively higher orders of magnitude than 10−1.
The reason for this approach is that coefficients whose SAF values have orders of magnitude lower
than 10−1 have essentially no effect on computed NRCSs derived from coefficients whose SAF values
have higher orders of magnitude.
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incidence angle is 35 degree; (c) radar incidence angle is 45 degree. The colors represent different wind
directions (15◦, 30◦, 45◦, 60◦, 75◦, 90◦).

We note that although the radar incidence angles can vary as shown in Figure 5, their influence
on the coefficients ci, and on the resultant NRCSs is quite minor. Thus, we combine the average SAFs
under different radar incidence angles, as shown in Figure 6. The extent of influence for incidence
angles on the coefficients ci for the SAF orders of magnitude 100 and 10−1 are shown in Figure 6a,b,
respectively. It is apparent that the coefficients can be divided into three groups according to their
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degrees of influence. The SAF values corresponding to coefficients c1, c7, c9 are more than 1. The SAF
values corresponding to coefficients c2, c3, c10, c11, c19, c21, c27, and c28 are in the range from 0.1 to 1,
and the remaining ci values are under 0.1. It is notable that the coefficients with higher SAF magnitudes
play a part in the adjustment process of the coefficients ci, for lower orders of magnitude; but this
influence does not work, if we put things the other way around. For example, assuming a SAF value of
1.3219, the corresponding ci coefficients cannot influence the computed NRCS values above 100 order
of magnitude, but these ci coefficients do influence NRCS values below 101 magnitude such as 100 and
10−1 magnitudes, as reported in this study. Moreover, because SAF values for typical wind directions
have similar orders of magnitude, we give the average SAF values for the ci coefficients in Table 1.
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Table 1. Average SAF values of the ci coefficients.

SAF of c1 1.8081 SAF of c8 0.0630 SAF of c15 0.0200 SAF of c22 0.0171
SAF of c2 0.6366 SAF of c9 3.7931 SAF of c16 0.0276 SAF of c23 0.0024
SAF of c3 0.1145 SAF of c10 0.2767 SAF of c17 0.0158 SAF of c24 0.6617
SAF of c4 0.0308 SAF of c11 0.1012 SAF of c18 0.0332 SAF of c25 0.0895
SAF of c5 0 SAF of c12 0.0724 SAF of c19 0.1381 SAF of c26 0.0056
SAF of c6 0.0399 SAF of c13 0.0335 SAF of c20 0.0774 SAF of c27 0.9411
SAF of c7 1.3219 SAF of c14 0.0262 SAF of c21 0.1697 SAF of c28 0.1344

2.2.2. Determination of the Coefficients for CoVe-Pol Model

We divide the coefficients into three groups according to the magnitude of corresponding SAFs,
which represent the degree of influence of every coefficient ci on the computed NRCSs. Thus, we adjust
the coefficients, proceeding from higher magnitudes of their degree of influence, to lower orders
of magnitude. Through this method, the computational accuracy of the CoVe model reaches 10−2,
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and calculation of the required adjustments in the coefficients ci can be achieved using a common
computer cluster because the computation has been significantly reduced.

As a first step, we change the values of coefficients c1, c7, c9, which determine the accuracy
of computed NRCSs at SAF order of magnitude 100. Thus, the NRCSs are computed by using the
conventional GMF formulation with input of the wind speed, incidence angles and wind direction
observed by buoys. Comparing the root mean square errors (RMSEs) between the resulting CMOD
parameterization and the simulated RCM data (computed and simulated values for NRCSs), there
is an optimal set of computed NRCSs with corresponding c1, c7, c9 values that minimize the RMSE,
as defined in (3) below.

Secondly, in order to achieve the CMOD adjustment at 10−1 order of magnitude coefficients,
we change the values of coefficients c2, c3, c10, c11, c19, c21, c27, c28 and c1, c7, c9 based on the new CMOD
obtained in the first step above. The optimal values of the coefficients are obtained in the same way as
previously. For the 10−2 order of magnitude, there are 25 sensitive coefficients which must be adjusted,
making the calculation too huge to be practical. Thus, we tune the ci coefficients empirically. Thus,
a GMF with new coefficients for compact RV-polarization SAR is proposed following this adjustment
procedure, as displayed in Table A1 in the Appendix A.

The RV-polarized NRCSs computed by the new GMF are in good agreement with simulated RCM
data, shown in Figure 7a. Additional details are given in Appendix A.
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The definitions of bias, RMSE, and correlation coefficient (R) are,

RMSE =

√
1
n

n

∑
i=1

(Gi − Di) (3)

bias =
(G − D)

n
(4)

R =
Cov(G, D)√

Cov(G, D)Cov(G, D)
(5)

where G represents the computed results from the GMF, D is the wind speed from the data sets, n is
the number of measurements.
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2.3. CoHo-Pol Model for Right Circular-Horizontal (RH) Polarization

To build the compact RH polarized wind speed retrieval model, denoted CoHo-Pol, we employ
the parameterization method from Komarov et al. [8]. Thus, we use a quadratic relationship in a
regression model between buoy wind speed, as a dependent variable, and RH-polarized NRCS, along
with incidence angles as independent variables:

V = a0 + a1σ0
RH + a2θ + a3

(
σ0

RH

)2
+ a4θ2 + a5σ0

RHθ (6)

where V is the wind speed (m/s), θ is the radar incidence angle (degree), and σ0
RH is the RH-polarized

NRCS (dB). Table 2 presents the parameters for the model.

Table 2. Regression coefficients for the horizontal-horizontal (HH) model.

a0 a1 a2 a3 a4 a5

−17.8296 0.9490 1.8640 0.0447 −0.0034 0.0525

2.4. Validation

As the coefficients CoVe-Pol models and CoHo-Pol models are obtained by training the first group
of data sets, additional verification tests are performed using the part of the collected data reserved for
model testing. We test the CoVe-Pol model for the NRCS values and wind speed. Thus, we substitute
the variables (NRCSs simulated, wind speed observed by buoys, radar incidence angles and wind
directions) into the CoVe-Pol model, and we compare the simulated NRCS values with the wind speeds
observed by the buoys. To provide additional testing of the RH model, CoHo-Pol, the retrieved wind
speeds are obtained by substituting σ0

RH and θ as given by the reserved data sets into the RH model.

3. Results

For wind retrieval, we use simulated compact polarization SAR data and parameters from
buoy observations to validate the new RV-polarized GMF, CoVe-Pol. Thus, the wind speed will
be determined after we substitute values for the RV-polarized NRCS, incidence angles and wind
directions. We compare the wind speeds retrieved by the CoVe-Pol model with the wind speeds
observed by buoys in Figure 7b. The bias is 0.07 m/s, the RMSE is 2.48 m/s and the correlation
coefficient is 81.3%. Although the accuracy of CoVe-Pol model appears encouraging, additional tests
and validation are still needed in the future, when RCM data is available.

The performance of the regression model for compact RH polarization data, CoHo-Pol, is shown
in Figure 8, which indicates that the model is an effective methodology for wind retrieval from RH
polarized data. Comparing model results to wind speeds observed by buoys, the RMSE is 2.37 m/s.

The wind retrieval models for RV and RH data are presented for compact polarimetry
measurements. We test CoVe-Pol model for the NRCS values and wind speed, in Figure 9a,b. The RMSE
for σ0

RV is only 1.28 dB and for wind speed, 2.36 m/s, and the values of the correlation coefficients are
97.9% and 82.4%. These results indicate that CoVe-Pol model is a potentially good method for wind
retrieval; the computed NRCSs and retrieved winds are in good agreement with the simulated NRCSs
and the independently measured buoy winds.

Comparing the retrieved wind speeds and the buoy observations, the RMSE for winds retrieved by
the CoHo-Pol model is 2.39 m/s, and the correlation coefficient is 81.5%, which is shown in Figure 10.

Validations demonstrate that the CoVe-Pol and CoHo-Pol models are reliable and useful retrieval
models for RV and RH polarized SAR data, respectively.
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4. Discussion

Based on the almost linear relationships between NRCSs of VV and RV polarizations, the C-band
RV-polarized wind retrieval model has been simply proposed using the C-band VV-polarized
wind retrieval model [11,12]. However, there are two factors should be further discussed: (1) the
VV-polarized wind retrieval models, routinely CMODs, are developed for scatterometer but not
SAR, and (2) the relationships between the two polarized NRCSs are almost linear but not accurately.
Therefore, this study aims to improve the CP mode wind retrieval accurate by tuning each parameter
in the CMOD frame. To reduce the large computations, we employ the sensitivity analysis. Lu et al.
(2018) developed a new wind retrieval model for C-band VV-polarization [19]. In the CMOD series,
including CMOD4, CMOD5, CMOD5.N, CMOD6, CMOD7 and et al., the equations are the same but
with different parameters [20,21]. We compare the results from CoVe-Pol models here and the method
proposed by Geldsetzer et al. (2015) based on the first data group [11], which is shown in Figure 11.
It is obvious that the new model CoVe-POL present better wind retrieval results.
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Zhang et al. (2018) proposed a semi-empirical ocean surface model for RCM CP mode and the
simulated results suggest that the RV-polarization has a better potential capability for the ocean wind
retrieval than the RH-polarization [22]. This result is consistent with the wind retrieval results here.
As indicated by Zhang et al. (2018) [22], the noise floor should be a challenge for sea surface wind
retrieval. As shown in Figure 9a, the NRCSs are under-estimated by the new proposed wind retrieval
model when the values are around −25 dB. On one hand, this may be due to the errors of the model.
However, on the other hand, this should be caused by the noise floor which is designed as −25 dB in
the RCM. Therefore, the low wind retrieval from RCM RV and RH polarizations will be a challenge.
Moreover, the sea surface ice or oil spill can be detected by SAR due to covering the ocean surface and
changing the backscattering features [22]. The determination of oil spill from low wind condition is a
current issue from the existing SAR observations. As the noise floor for RADARSAT-2 is much lower
than the RCM, this would also be a problem for the sea ice or oil spill study using RCM in the future.

5. Conclusions

The estimation of ocean surface winds by SAR is an important research field of satellite remote
sensing. Because RCM will provide CP products which differ from the conventional polarimetry SAR,
the establishment of new specific models for potential wind retrieval from CP SAR parameters is an
urgent need.

In this paper, we propose two wind retrieval models for C-band RCM SAR CP model: (1) CoVe-Pol
model for RV polarization data, and (2) CoHo-Pol model for RH polarization data. The two models are
derived from collected data consisting of 267 RADARSAT-2 SAR quad-polarized images and collocated
buoy data. These two models can be applied to the real CP data when RCM will have been launched
and succeeds in providing data. The CP-polarized data sets are generated from quad-polarized SAR
data by a RCM simulator. We have divided these data randomly into two data groups: one for building
new models and the other reserved for model testing.

To develop CoVe-Pol model, we carried out a sensitivity analysis in the process of creating the new
GMF coefficients. We separate the derivation process for the coefficients into several steps. These steps
are designed according to a sequence determined by the orders of magnitude of the CMOD coefficients,
in order to reduce the required computations, so that the numerical process can be possible in terms of
available computer resources. Utilizing sensitivity analysis factors (SAFs) for the coefficients provides
an efficient methodology for building a new GMF for the RV polarization data, by adjustment of
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these coefficients. In this approach, when the new GMF is derived, the correlation coefficient between
RV-polarized computed NRCSs and simulated NRCSs reaches 97.1%, and the RMSE is only 1.29 dB.
The wind retrieval by the associated CoVe-Pol model parameterization is shown to have a good
performance based on the RV polarized SAR data. The RMSE is 2.48 m/s, and the bias is 0.07 m/s.

To produce the RH model for wind retrieval, we use a quadratic function in a regression model
to relate buoy wind speed to the RH NRCS data along with the radar incidence angles. Comparing
results with the winds measured by buoys, the RH model, denoted CoHo-Pol, is shown to behave well
in wind retrievals, with RMSE of 2.37 m/s. The model results indicate that the RH model is a useful
way to retrieve wind speed as a fast inversion methodology.

We test the two new models, CoVe-Pol and CoHo-Pol, with the reserved test data set, and show
that there is strong agreement between both the models and the data. Thus, these two new models
can potentially be applied to retrieve wind from CP C-band SAR measurements. In February 2019,
the three satellites of RCM are scheduled for launching together. Compared to what we have now with
the separated single SAR satellite (e.g., RADARSAT-2 or Sentinel-1), the three continuous observations
make the temporal studies of oceanography and/or atmosphere possible. Therefore, the ocean wind
retrieval models developed here would be important for temporal oceanography or atmosphere
dynamic research based on RCM SAR data.
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GMF geophysical model function
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NDBC National Data Buoy Center
NRCSs normalized radar cross-sections
PR polarization ratio
RCM RADARSAT Constellation Mission
RH right circular transmit and horizontal receive
RL right circular transmit and left circular receive
RMSEs root mean square errors
RR right circular transmit and right circular receive
RV right circular transmit and vertical receive
SAF sensitivity analysis factor
SAR synthetic aperture radar
TOGA COARE Tropical Ocean and Global Atmosphere Response Experiment
VH vertical-horizontal
VV vertical-vertical

http://www.ndbc.noaa.gov/


Remote Sens. 2018, 10, 1938 14 of 15

Appendix A Cove-Pol Model Formulation and Coefficients

The form of the CoVe-Pol model parameterization:

σ0(θ, U10, ϕ) =

= B0(c0, U10, θ)[1 + B1(c1, U10, θ) cos(ϕ) + B2(c2, U10, θ) cos(2ϕ)]1.6 (A1)

where B0, B1 and B2 are functions of wind speed U10 and incidence angle θ, or alternatively,χ = (θ − 40)/25.
The B0 term is defined as:

B0 = 10a0+a1U10 f (a2U10, s0) (A2)

where,

f (s, s0) =

{
(s0)

αg(s0), s < s0
g(s), s > s0

(A3)

where,
g(s) = 1/(1 + exp(−s)), and α = s0(1 − g(s0)) (A4)

The functions a0, a1, a2, γ and s0 depend on incidence angle only:

a0 = c1 + c2x + c3x2 + c4x3

a1 = c5 + c6x
a2 = c7 + c8x

(A5)

γ = c9 + c10x + c11x2

s0 = c12 + c13x (A6)

The B1 term is modeled as follows:

B1 =
c14(1 + x)− c15v(0.5 + x − tanh[4(x + c16 + c17v)])

1 + exp(0.34(v − c18))
(A7)

The B2 term was chosen as,
B2 = (−d1 + d2v2) exp(−v2) (A8)

Here v2 is given by,

v2 =

{
a + b(y − 1)n , y < y0

y , y ≥ y0
y = v+v0

v0

(A9)

where,
y0 = c19 , n = c20 (A10)

a = y0 − (y0 − 1)/n , b = 1/
[
n(y0 − 1)n−1

]
(A11)

The quantities v0, d1 and d2 are functions of incidence angle only,

v0 = c21 + c22x + c23x2

d1 = c24 + c25x + c26x2

d2 = c27 + c28x
(A12)

The coefficients are given in Table A1.

Table A1. CoVe-Pol coefficients.

c1 −0.9200 c8 0.0159 c15 0.0064 c22 −3.2592
c2 −1.1935 c9 5.4536 c16 0.3141 c23 1.2905
c3 0.0321 c10 0.2633 c17 0.0117 c24 6.0876
c4 0.3421 c11 −2.2313 c18 45.4000 c25 2.3296
c5 0 c12 0.0472 c19 2.0293 c26 0.3168
c6 0.0040 c13 −0.0689 c20 2.9350 c27 4.0550
c7 0.0882 c14 0.0043 c21 16.7318 c28 1.5237
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