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Abstract: In recent years, the collaborative representation-based classification (CRC) method has
achieved great success in visual recognition by directly utilizing training images as dictionary bases.
However, it describes a test sample with all training samples to extract shared attributes and does not
consider the representation of the test sample with the training samples in a specific class to extract
the class-specific attributes. For remote-sensing images, both the shared attributes and class-specific
attributes are important for classification. In this paper, we propose a hybrid collaborative
representation-based classification approach. The proposed method is capable of improving the
performance of classifying remote-sensing images by embedding the class-specific collaborative
representation to conventional collaborative representation-based classification. Moreover, we extend
the proposed method to arbitrary kernel space to explore the nonlinear characteristics hidden in
remote-sensing image features to further enhance classification performance. Extensive experiments
on several benchmark remote-sensing image datasets were conducted and clearly demonstrate the
superior performance of our proposed algorithm to state-of-the-art approaches.

Keywords: collaborative representation; hybrid collaborative representation; kernel space;
remote-sensing images

1. Introduction

Remote-sensing (RS) images are widely used for land-cover classification, target identification, and
thematic mapping from local to global scales owing to its technical advantages such as multiresolution,
wide coverage, repeatable observation, and multi/hyperspectral–spectral records [1]. During the past
few decades, we have witnessed the rapid development of remote-sensing technology. Nowadays,
a volume of heterogeneous RS images, with different spatial and spectral resolutions, provide a
vivid service for a myriad Earth observation (EO) applications, from road detection and traffic
monitoring to visual tracking and weather reports, respectively. To offer a better performance of such
intelligent EO applications, RS image scene recognition has attracted widespread attention. Weifeng
Liu et al. [2,3] applied p-Laplacian regularization to scene recognition. Generally, an integrated RS
image scene-recognition system includes two components, i.e., a feature-learning approach [4] and a
corresponding classifier, and both have a vital effect on the classification result.

As a core problem in image-related applications, image feature representation exhibits the trend
of transference from handcrafted to learning-based methods. Specifically, most of the early literature
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is based on handcrafted features, such as bag-of-visual-words (BoVW) [5], part-based models [6],
and models fusing global and local descriptors [7]. However, handcrafted features are limited in
their ability to extract robust and transferable feature representation for image scene classification and
ignore many effective cues hiding in the image. Then, an unsupervised feature-learning framework [8]
was proposed by Zhang et al. for scene classification. After that, Fu et al. [9] proposed an unsupervised
feature-learning method for high-resolution-image scene classification. In this method, a set of filter
banks are learned from the unlabeled image patches, and then each image is encoded by these filter
banks, generating a final feature vector to excellently represent the image scene. An effective geospatial
object-detection framework [10] was proposed by Han et al., combining the weakly supervised learning
(WSL) and high-level feature learning. Li et al. [11] developed a new framework combining multiple
features including both linear and nonlinear features for the classification of hyperspectral scenes.
In 2006, Hinton [12] pointed out that deep neural networks could learn more profound and essential
features of objects of interest, which led to tremendous performance enhancement. After that, many
attempts have been made to utilize deep-learning methods to feature learning in remote-sensing
images. Li et al. [13] presented an unsupervised deep-learning method to learn a data-driven feature
for Urban Villages. Then, as one of the most popular deep-learning models in image processing,
convolutional neural networks (CNNs) currently dominate computer vision literature, achieving
state-of-the-art performance in almost every topic to which they are applied. However, for some
classification tasks of remote-sensing images, there are no large amounts of labeled training data. Some
efforts have been made to combine CNN with unlabeled data to tackle the problem by performing
unsupervised learning. Yu et al. [14] proposed balanced data-driven sparsity to help train CNN in an
unsupervised way. Chaib et al. [15] proposed a new feature-learning method, which combined deep
features extracted from different pretrained CNN models of the Very High Resolution image scene.

Another core problem is to construct a visual classifier. Visual-classifier design is one of the
fundamental issues in computer vision areas. Representation-residual-based classifiers have attracted
more attention in recent years due to the emerging paradigm of compressed sensing (CS) [16–18].
The first representation-based classifier, the sparse representation-based classification (SRC) method
was proposed within the framework of the nearest subspace. The SRC [19] method firstly obtained
the sparse representation of the test sample, and then measured the residual error from the training
samples of each class. After that, Zhang et al. [20] proposed the collaborative representation-based
classification (CRC) algorithm by using collaborative representation (`2 norm regularizer) instead
of sparse representation (`1 norm regularizer). Many researchers from the field of remote sensing
are attracted by the superior performance of SRC and CRC. Wu et al. [21] introduced an improved
sparse representation-based classification method, which represented the test samples with a feature
dictionary. Then, a novel sparse representation classification method [22] was proposed by Tang et al.,
which added the Local Binary Pattern(LBP) feature into the SRC model to extract the local texture of
the remote-sensing image. For CRC, Li et al. [16] reviewed several representation-based classification
approaches for hyperspectral remote-sensing imagery, including representation-based classification
with weighted regularization by measuring similarity between each atom and a testing sample, or with
dictionary partition using class-specific labeled samples and other methods. Li et al. [23] proposed
a joint collaborative representation (CR) classification method, which uses several complementary
features to represent an image, including spectral value and spectral gradient features, Gabor texture
features, and DMP features. Then, Jiang et al. [24] proposed a spatial-aware collaborative representation
(CR) for hyperspectral images classification, which utilized both the spatial and spectral features
to represent images. From the perspective of representation of a testing sample with training
samples, both shared attributes and class-specific attributes exist in remote-sensing images, and
both of them are vital in the representation of an image. However, these CRC methods used on RS
images before did not consider these two image representations at the same time. Generally, existing
nearest subspace approaches are mainly categorized into two types: shared representation-based
classification (SRC and CRC), and class-specific representation-based classification (LRC). For shared



Remote Sens. 2018, 10, 1934 3 of 20

representation-based classification, Deng et al. [25] proposed a superposed linear representation
classifier (SLRC) by representing the test image in terms of superposition of the class centroids and the
shared intraclass differences. For class-specific representation-based classification, Liu et al. [26,27]
proposed a class-specific representation algorithm that can find the intrinsic relationship between
base vectors and the original-image features. Wang et al. [28] proposed a label-constrained specific
representation approach to preserve the structural information in the feature space.

In this paper, we propose a hybrid collaborative representation-based classification approach. The
proposed method is capable of improving the performance of classifying remote-sensing images by
embedding the class-specific collaborative representation to CRC. Moreover, we extend the proposed
method to arbitrary kernel space to explore the nonlinear characteristics hidden in remote-sensing
image features to further enhance the performance of classification. The scheme of our proposed
method is listed in Figure 1. Our work foci are threefold:

• We propose a novel hybrid collaborative representation-based classification method that considers
both conventional collaborative representation and class-specific collaborative representation.

• We extend our proposed hybrid collaborative representation-based classification method to
arbitrary kernel space to find the nonlinear structures hidden in the image features.

• The proposed hybrid collaborative representation-based classification method is evaluated on
four benchmark remote-sensing image datasets and achieves state-of-the-art performance.

Figure 1. Scheme of our proposed hybrid collaborative representation algorithm. The left part is the
collaborative representation to extract the shared attributes while the right part is the class-specific
collaborative representation to extract class-specific attributes. Their combination forms our hybrid
collaborative representation algorithm.

The rest of the paper is organized as follows. Section 2 overviews several classical visual-recognition
algorithms and proposes our hybrid collaborative representation-based classification with kernels. Then,
experimental results and analysis are shown in Section 3. Discussion about the experimental results
and the proposed method is presented in Section 4. Finally, conclusions are drawn in Section 5.

2. Proposed Method

In this section, we review related work about CRC. Then, we introduce some work about
class-specific CRC (CS-CRC). Finally, we focus on introducing our proposed approach.

2.1. Overview of CRC

Zhang et al. [20] proposed the CRC. For CRC, all training samples are concatenated together as
the base vectors to form a subspace, and the test sample is described in the subspace. To be specific,
given the training samples X = [X1, X2, · · ·XC] ∈ RD×N , Xc ∈ RD×Nc represents the training samples
from the cth class, C represents the number of classes, Nc represents the number of training samples in
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the cth class (N =
C
∑

c=1
Nc), and D represents the dimensions of the samples. Supposing that y ∈ RD×1

is a test sample, the objective function of CRC is as follows:

ŝ = arg mins

{
‖y− Xs‖2

2 + λ‖s‖2
2

}
. (1)

Here, λ is the regularization parameter to control the tradeoff between fitting goodness and
collaborative term (i.e., multiple entries in X participating into representing the test samples). The
role of the regularization term is twofold. Firstly, the `2 norm makes the least-square solution stable.
Secondly, it introduces a certain amount of “sparsity” to collaborative representation ŝ and indicates
that it is the collaborative representation but not the `1-norm sparsity that makes sparsity powerful for
classification. Collaborative representation-based classification effectively utilizes all training samples
for visual recognition and the objective function of CRC has analytic solutions.

2.2. Class-Specific Collaborative Representation

For class-specific collaborative representation, the training samples in each category are considered
a subspace. A test sample is represented with the samples in the specific class. The objective function
of class-specific collaborative representation is as follows:

ŝ= arg mins

C

∑
c=1

{
‖y− Xcsc‖2

2 + γ ‖sc‖2
2

}
(2)

Here, γ is the regularization parameter to control the tradeoff between fitting goodness and
collaborative term. The CS-CRC is capable of describing the sample y in each category.

2.3. Hybrid Collaborative Representation

Theorem 1. The reconstruction error of collaborative representation is bounded by the reconstruction error of
class-specific collaborative representation.

‖y− Xs‖2
2 ≤

C

∑
c=1
‖y− Xcsc‖2

2 (3)

Proof of Theorem 1. According to Cauchy inequality,

‖y− Xs‖2
2 =

∥∥∥ 1
C (Cy− CXs)

∥∥∥2

2

=
∥∥∥ 1

C
{(

y− X1s1)+ · · ·+ (y− Xcsc) + · · ·+
(
y− XCsC)}∥∥∥2

2

≤ ‖y−X1s1‖2
2+···+‖y−Xcsc‖2

2+···+‖y−XCsC‖2
2

C2

(
12+ · · ·+12)

= 1
C

C
∑

c=1
‖y− Xcsc‖2

2

≤
C
∑

c=1
‖y− Xcsc‖2

2

(4)

Shared collaborative representation is advantageous to reduce the reconstruction error (as shown
in Theorem 1), while class-specific collaborative representation is conducive to capturing discriminant
information. We propose a hybrid collaborative representation algorithm to combine these two
approaches. The objective function is as follows:

ŝ= arg mins

{
‖y− Xs‖2

2 + λ ‖s‖2
2 + τ

C

∑
c=1

{
‖y− Xcsc‖2

2 + γ ‖sc‖2
2

}}
(5)
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In Equation (5), the first two terms are the conventional collaborative representation and the latter
two terms are the class-specific collaborative representation. Conventional collaborative representation
guarantees residual error and robustness, while the class-specific collaborative representation obtains
distinctiveness via different classes. Equation (5) can be further arranged as follows:

ŝ= arg mins

{
‖y− Xs‖2

2 + β ‖s‖2
2 + τ

C

∑
c=1

{
‖y− Xcsc‖2

2

}}
(6)

Here, β = λ + τ × γ. The latter form of Equation (6) arose in the estimation of latent-variable
graphical models [29].

2.4. Hybrid Collaborative Representation with Kernels

Superior performance of visual recognition is often achieved in Reproducing Kernel Hilbert
Space because a nonlinear structure often exists in image features. Our proposed hybrid collaborative
representation algorithm is easily extended to arbitrary kernel space. Suppose there exists a kernel
function κ(x, y) = φT(x)φ(y). Here, φ : RD → RK(D < K) maps the image features to the
high-dimensional feature space, φ(X) = [φ(X1), φ(X2), · · ·, φ(XC)] ∈ RK×N . The objective function of
our proposed hybrid collaborative representation algorithm with kernels is as follows:

ŝ= arg mins

{
‖φ(y)− φ(X)s‖2

2 + β ‖s‖2
2 + τ

C

∑
c=1

{
‖φ(y)− φ(Xc)sc‖2

2

}}
(7)

2.5. Optimization of the Objective Function

The objective function in Equation (7) can be rewritten as follows:

f (s) = ‖φ(y)− φ(X)s‖2
2 + β ‖s‖2

2 + τ
C

∑
c=1

{
‖φ(y)− [0, · · · , φ (Xc) , · · · , 0]s‖2

2

}
(8)

Here, let [0, · · · , φ (Xc) , · · · , 0] be φ(X̂). Equation (8) can be simplified as follows:

f (s) = ‖φ(y)− φ(X)s‖2
2 + β ‖s‖2

2 + τ
C

∑
c=1

{∥∥φ(y)− φ(X̂)s
∥∥2

2

}
=trace

{
φ(y)Tφ (y)− 2φ(y)Tφ (X) s + sTφ(X)Tφ (X) s

}
+ βtrace

{
sTs
}

+ τ
C

∑
c=1

{
trace

{
φ(y)Tφ (y)− 2φ(y)Tφ

(
X̂
)

s + sTφ
(
X̂
)T

φ
(
X̂
)

s
}}

= (1 + τC) trace {κ (y, y)} − 2 (1 + τ) trace {κ (y, X) s}

+ trace

{
sT

(
κ (X, X) + βI + τ

C

∑
c=1

κ
(
X̂, X̂

))
s

}
(9)

It is easy to obtain the optimum ŝ for Equation (9), as follows:

ŝ =

(
κ (X, X) + βI + τ

C

∑
c=1

κ
(
X̂, X̂

))−1

{(1 + τ) κ (y, X)} (10)
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2.6. Hybrid Collaborative Representation-Based Classification with Kernels

After obtaining collaborative code ŝ, hybrid collaborative representation-based classification aims
to find the minimum value of the residual error for each class:

id(y) = arg minc‖φ(y)− φ(Xc)ŝc‖2
2. (11)

where, id(y) is the label of the testing sample, and y belongs to the class that has the minimum residual
error. The procedure of the hybrid collaborative representation-based classification with kernels is
shown in Algorithm 1.

Algorithm 1 Algorithm for hybrid collaborative representation-based classification with kernels

Require: Training samples X ∈ RD×N , β, and test sample y
1: for c = 1;c ≤ C;c++ do

2: Code y with the hybrid collaborative representation algorithm with kernels.
3: Compute the residuals ec(y) = ‖φ(y)− φ(Xc)sc‖2

2
4: end for
5: id(y) = arg minc {ec}
6: return id(y)

3. Experimental Results

In this section, we show our experimental results on four remote-sensing image datasets.
To illustrate the significance of our approach, we compared our method with several state-of-the-art
methods. In the following section, we firstly introduce the experimental settings. Then, we illustrate
the experimental results on each aerial-image dataset.

3.1. Experimental Settings

We tested our method on four datasets, the RSSCN7 dataset [30], UC Merced Land Use dataset [5],
WHU-RS19 dataset [31], and AID dataset [32]. For all the datasets, we implemented traditional CNN
feature representation, where the image is directly fed into the pretrained VGG model [33] and layer
fc6 is utilized to extract a 4096-dimensional vector for each image. The final feature of each image is
`2-normalized for better performance [32]. To eliminate the randomness, we randomly (repeatable)
split the dataset into the train set and test set for 10 times, respectively. Average accuracy was recorded.

We also expanded our method into kernel space and used four different kernels: the linear
kernel (κ(x, y) = xTy), the polynomial kernel (POLY, κ(x, y) = (p + xTy)q), the Hellinger kernel
(κ(x, y) = ∑D

d=1
√

xdyd), and the radial basis function kernel (RBF, κ (x, y) = exp
(
−γ ‖x− y‖2

2

)
).

Here, we set p = 4, q = 3 and γ = 2−2.For convenience, we denote our proposed hybrid collaborative
representation algorithm with kernels as Hybrid-KCRC. The proposed Hybrid-KCRC algorithm
is compared with other classification algorithms, including nearest-neighbor classification (NN),
LIBLINEAR [34], SOFTMAX, CRC [20], CS-CRC, and SLRC-L2 [25].

3.2. Experiment on UC Merced Land Use Dataset

The UC Merced Land Use Dataset [5] was manually extracted from large images from the USGS
National Map Urban-Area Imagery collection for various urban areas around the country. The pixel
resolution of this public-domain imagery is 1 foot. The UC Merced Land Use Dataset involves
21 categories of 2100 land-use images in total. Each image measures 256× 256 pixels. There are
100 images for each of the following classes: agricultural, airplane, baseball diamond, beach, buildings,
chaparral, dense residential, forest, freeway, golfcourse, harbor, intersection, medium residential,
mobile homepark, overpass, parking lot, river, runway, sparse residential, storage tanks, and tennis
court. In Figure 2, we list several samples from this dataset.
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Figure 2. Samples of UC Merced Land Use dataset.

3.2.1. Parameter tuning on UC Merced Land Use Dataset

There are two parameters in the objective function of the Hybrid-KCRC algorithm that need to
be specified. β is an important parameter in the Hybrid-KCRC algorithm, which is used to adjust
the tradeoff between the reconstruction error and the collaborative representation. τ is another
important factor in the algorithm, which is used to control the tradeoff between the shared collaborative
representation and the class-specific collaborative representation. β and τ are tuned to achieve the best
accuracy. β are tuned in the range of 2−9, and 22 and τ are tuned in the range of 2−10 and 2−4. We
randomly chose 20 images as the training samples and testing samples from each category, respectively,
in this section. Figure 3 shows the classification rate with different β and τ on four kernels. For the
four kernels, linear kernel, POLY kernel, RBF kernel, and Hellinger kernel, the optimal parameter β

and τ are (2−4, 2−6), (20, 2−8), (2−7, 2−7), (20, 2−8), respectively.

(a) Parameter tuning with linear kernel (b) Parameter tuning with polynomial kernel

Figure 3. Cont.
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(c) Parameter tuning with rbf kernel (d) Parameter tuning with Hellinger kernel

Figure 3. Parameter tuning on UC Merced Land Use Dataset.

3.2.2. Comparison with Several Classical Classifier Methods on UC Merced Land Use Dataset

First, we randomly chose 20 images as the training samples and testing samples from each
category, respectively, in this section. Table 1 illustrates the effectiveness of Hybrid-CRC for classifying
images. For the four kernels, Hybrid-KCRC algorithm achieves the highest accuracy of 91.43% with
the POLY kernel and RBF kernel. This is 1.03% higher than the CRC method and 2.33% higher than
the CS-CRC method.

Table 1. Comparison with several classical classification methods on the UC Merced Land Use
Dataset (%).

Methods\Datasets UC-Merced

NN 81.88
LIBLINEAR 89.57
SOFTMAX 88.00
SLRC-L2 89.79

CRC 90.40
CS-CRC 89.10

Hybrid-KCRC (linear) 90.67
Hybrid-KCRC (POLY) 91.43
Hybrid-KCRC (RBF) 91.43

Hybrid-KCRC (Hellinger) 90.90

Second, we increased the number of training samples in each category to evaluate the performance
of our proposed Hybrid-KCRC method. Figure 4 shows the classification rate on the UC-Merced
dataset with 20, 40, 60, 80 training samples in each category. From Figure 4, we can draw the conclusion
that our proposed Hybrid-KCRC method achieves superior performance to the liblinear, CRC, and
CS-CRC methods.
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Figure 4. Classification rate on UC-Merced dataset with different number of training samples in
each category.

3.2.3. Confusion Matrix on UC Merced Land Use Dataset

To further illustrate the superior performance of our proposed Hybrid-KCRC method,
we evaluated the classification rate per class of our method on UC-Merced dataset using a confusion
matrix. In this section, we randomly chose 80 images per class as the training samples and 20 images
per class as the testing samples. To eliminate randomness, we also randomly (repeatable) split the
dataset into a train set and test set for 10 times, respectively. The confusion matrices are shown in
Figure 5. From Figure 5, for the Hybrid-KCRC methods, 13, 13, 12, 12 classes achieved classification
accuracy greater than or equal to 0.99 for the linear kernel, polynomial kernel, RBF kernel, and Hellinger
kernel, respectively. However, 9 and 6 classes achieved classification accuracy greater than or equal to
0.99 for CRC and CS-CRC, respectively. Compared with the CRC method, the Hybrid-KCRC methods
achieved a significant performance boost on the denseresidential class. Compared with CS-CRC
method, the Hybrid-KCRC methods achieved great performance improvement on the storagetanks
and tenniscourt classes. It is worth noting that all methods did not perform well on denseresidental
and medimuresidential classes.
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(a) CRC (b) CS-CRC (c) Hybrid-KCRC(linear)

(d) Hybrid-KCRC(poly) (e) Hybrid-KCRC(rbf) (f) Hybrid-KCRC(Hellinger)

Figure 5. Confusion matrices on UC-Merced dataset.

3.2.4. Comparison with State-of-the-Art Approaches

For comparison, we referred to previous works in the literature [35,36] and randomly selected
80% images from each class as the training set, and the remaining 20% images as the testing set.
Several baseline methods (e.g., liblinear, CRC, CS-CRC), as well as state-of-the-art remote-sensing
image-classification methods were utilized as benchmarks.

Table 2 shows the overall accuracy of the classification rate with various remote-sensing
image-classification methods. First, we compared our proposed Hybrid-KCRC method with the
liblinear, CRC, and CS-CRC methods. By comparing our proposed Hybrid-KCRC with the three
baseline methods mentioned above, we found that Hybrid-KCRC achieved superior performance to
the three baseline methods. It is remarkable that our proposed Hybrid-KCRC is the improvement
of the CRC and CS-CRC methods. Second, we compared our Hybrid-KCRC with state-of-the-art
remote-sensing image-classification results. It is clear that our proposed Hybrid-KCRC achieved the
top performance. It should be noted that the feature utilized by CNN-W + VLAD with SVM, CNN-R +
VLAD with SVM, CaffeNet + VLAD is more effective than the feature extracted directly from CNN
(e.g., CaffeNet method with 93.42% versus CaffeNet + VLAD method with 95.39%).

Table 2. Experiment on UC-Merced dataset (%).

Methods Year Accuracy

SPMK [37] 2006 74%
LDA-SVM [38] 2013 80.33%
SIFT + SC [39] 2013 81.67%

Saliency + SC [8] 2014 82.72%

CaffeNet [40] (without fine-tuning) 2015 93.42%
CaffeNet [41] + VLAD 2015 95.39%

DCGANs [42] (without augmentation) 2017 85.36%
MAGANs [42] (without augmentation) 2017 87.69%

WDM [36] 2017 95.71%
UCFFN [35] 2018 87.83%

CNN-W + VLAD with SVM [43] 2018 95.61%
CNN-R + VLAD with SVM [43] 2018 95.85%
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Table 2. Cont.

Methods Year Accuracy

VGG19 + liblinear 95.05%
VGG19 + CRC 94.67%

VGG19 + CS-CRC 95.26%

VGG19 + Hybrid-KCRC (linear) 96.17%
VGG19 + Hybrid-KCRC (POLY) 96.29%
VGG19 + Hybrid-KCRC (RBF) 96.26%

VGG19 + Hybrid-KCRC (Hellinger) 96.33%

3.3. Experiment on the RSSCN7 Dataset

The RSSCN7 dataset was collected from Google Earth 3, which contains 2800 aerial-scene images
divided into seven classes, i.e., grassland, forest, farmland, industry, parking lot, residential, and river
and lake region. There are 400 images in each class. All images had the same size of 400× 400 pixels.
Figure 6 shows several sample images from the dataset.

Figure 6. Samples of RSSCN7 dataset.

3.3.1. Comparison with Several Classical Classifier Methods on the RSSCN7 Dataset

First, we randomly selected 100 images as the training samples and 100 images as the testing
samples from each category. For the four kernels, linear kernel, POLY kernel, RBF kernel, and
Hellinger kernel, optimal parameters β and τ were (2−4, 2−7), (21, 2−6), (2−6, 2−6), (21, 2−6), respectively.
Recognition accuracy is shown in Table 3.

Table 3. Comparison with several classical classification methods on the RSSCN7 dataset (%).

Methods\Datasets RSSCN7

NN 76.44
LIBLINEAR 84.84
SOFTMAX 82.14
SLRC-L2 81.99

CRC 85.77
CS-CRC 84.23

Hybrid-KCRC (linear) 86.39
Hybrid-KCRC (POLY) 87.34
Hybrid-KCRC (RBF) 87.29

Hybrid-KCRC (Hellinger) 86.71
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From Table 3, we can see that the Hybrid-KCRC algorithm outperformed other conventional
methods, achieving accuracy of 86.39%, 87.34%, 86.71%, 87.29% for the linear kernel, POLY kernel, RBF
kernel, and Hellinger kernel, respectively. For the four kernels, the Hybrid-KCRC algorithm achieved
the highest accuracy, 87.34%, with the POLY kernel. This is 1.57% higher than the CRC method, and
3.11% higher than the CS-CRC method.

Second, we increased the number of training samples in each category to evaluate the performance
of our proposed Hybrid-KCRC method. Figure 7 shows the classification rate on the RSSCN7 dataset
with 100, 200, and 300 training samples in each category. From Figure 7, we find that our proposed
Hybrid-KCRC algorithm achieved superior performance to the baseline methods. The experiment
on the CS-CRC method with 200 training samples also achieved a lower classification rate than with
300 training samples. The reason might be that too many training samples make the CRC overfitted.
Moreover, both the hybrid-KCRC (poly) and hybrid-KCRC (rbf) achieved top accuracy.

Figure 7. Classification rate on the RSSCN7 dataset with a different number of training samples in
each category.

3.3.2. Confusion Matrix on the RSSCN7 Dataset

To further illustrate the superior performance of our proposed Hybrid-KCRC method,
we evaluated the classification rate per class of our method on the RSSCN7 dataset using a confusion
matrix. In this section, we randomly chose 200 images per class as the training samples and 100 images
per class as the testing samples. To eliminate randomness, we also randomly (repeatable) split the
dataset into a train set and test set for 10 times, respectively. The confusion matrices are shown in
Figure 8. From Figure 8, compared with the CS-CRC method and CRC method, the Hybrid-KCRC
methods achieved better performance in most categories.
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(a) CRC (b) CS-CRC (c) Hybrid-KCRC(linear)

(d) Hybrid-KCRC(poly) (e) Hybrid-KCRC(rbf) (f) Hybrid-KCRC(Hellinger)

Figure 8. Confusion matrices on the RSSCN7 dataset.

3.4. Experiment on the WHU-RS19 Dataset

The WHU-RS19 dataset was collected from Google Earth imagery, which is composed of a total
number of 1005 aerial images that belong to 19 classes. Figure 9 shows several samples belonging to
this dataset.

Figure 9. Samples of the WHU-RS19 dataset.

We randomly selected 20 and 20 samples per class for training and testing, respectively. For the
four kernels, linear kernel, POLY kernel, RBF kernel, and Hellinger kernel, optimal parameters β and τ

were (2−2, 2−6), (22, 2−6), (2−6, 2−8), (21, 2−4), respectively. Recognition accuracy is shown in Table 4.
From Table 4, we can see that the Hybrid-KCRC algorithm outperformed other conventional

methods, achieving accuracy of 94.76%, 95.34%, 95.34%, 95.39% for the linear kernel, POLY kernel, RBF
kernel, and Hellinger kernel, respectively. For the four kernels, the Hybrid-KCRC algorithm achieved
the highest accuracy of 95.39% with the Hellinger kernel. This is 0.81% higher than the CRC method
and 1.44% higher than the CS-CRC method.
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Table 4. Comparison with several classical classification methods on the WHU-RS19 dataset (%).

Methods\Datasets WHU-RS19

NN 87.74
LIBLINEAR 94.42
SOFTMAX 93.29
SLRC-L2 94.18

CRC 94.58
CS-CRC 93.95

Hybrid-KCRC (linear) 94.76
Hybrid-KCRC (POLY) 95.34
Hybrid-KCRC (RBF) 95.34

Hybrid-KCRC (Hellinger) 95.39

Then, we changed the number of training samples in each category to illustrate the performance
of our proposed method. Figure 10 shows the classification accuracy on the WHU-RS19 dataset with
10, 20, and 30 training samples in each category. We can clearly see from Figure 10 that our proposed
Hybrid-KCRC algorithm achieved superior performance to classical methods.

Figure 10. Classification rate on the WHU-RS19 dataset with a different number of training samples in
each category.

3.5. Experiment on the AID Dataset

The AID dataset is a new large-scale aerial-image dataset that collects sample images from Google
Earth imagery. The AID dataset is the most challenging dataset for the scene classification of aerial
images. The dataset is made up of the following 30 aerial-scene types: airport, bare land, baseball
field, beach, bridge, center, church, commercial, dense residential, desert, farmland, forest, industrial,
meadow, medium residential, mountain, park, parking, playground, pond, port, railway station, resort,
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river, school, sparse residential, square, stadium, storage tanks, and viaduct. The size of each aerial
image is fixed to 600× 600 pixels to cover a scene with various resolutions. There are 10,000 images
labeled into 30 categories. In Figure 11, we show several images of this dataset.

Figure 11. Samples of the AID dataset.

We randomly selected 20 and 20 samples per class for training and testing, respectively. For the
four kernels, linear kernel, POLY kernel, RBF kernel, and Hellinger kernel, optimal parameters β and τ

were (2−4, 2−7), (20, 2−8), (2−7, 2−9), (23, 2−6), respectively. Recognition accuracy is shown in Table 5.

Table 5. Comparison with several classical classification methods on the AID dataset (%).

Methods\Datasets AID

NN 65.32
LIBLINEAR 79.93
SOFTMAX 76.13
SLRC-L2 79.27

CRC 80.73
CS-CRC 77.92

Hybrid-KCRC (linear) 81.07
Hybrid-KCRC (POLY) 82.07
Hybrid-KCRC (RBF) 82.05

Hybrid-KCRC (Hellinger) 81.28

From Table 5, we can see that the Hybrid-KCRC algorithm outperformed other conventional
methods, achieving an accuracy of 81.07%, 82.07%, 82.05%, 81.28% for the linear kernel, POLY kernel,
RBF kernel, and Hellinger kernel, respectively. For the four kernels, the Hybrid-KCRC algorithm
achieved the highest accuracy of 82.07% with the POLY kernel. This is 1.34% higher than the CRC
method and 4.15% higher than the CS-CRC method. We also used different numbers of training
samples in each category to evaluate the performance of the Hybrid-KCRC method. The classification
rate on the AID dataset using 20, 40, 60, 80 training samples in each category is shown in Figure 12.
From Figure 12, we find that our proposed Hybrid-KCRC algorithm was better than several classical
classification methods.
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Figure 12. Classification rate on the AID dataset with a different number of training samples in
each category.

4. Discussion

• For RS image classification, both shared attributes and class-specific attributes are vital to the
representation of testing samples with training samples. So, based on CRC, we propose a hybrid
collaborative representation-based classification method that can decrease the reconstruction error
and improve the classification rate. Through comparison with several state-of-the-art methods for
RS image classification, we can see that our proposed method is capable of efficiently promoting
the performance of classifying remote-sensing images.

• Because of the existence of a nonlinear structure in image features, we extended our method
into Reproducing Kernel Hilbert Space to further improve the performance of our method
with kernel functions. From the experimental results of comparing with several classical
classification methods, we can see that the classification rates of the Hybrid-KCRC method
on these four datasets are all higher than that with the NN, LIBLINEAR, SOFTMAX, SLRC-L2 ,
CRC and CS-CRC methods. Obviously, our proposed Hybrid-KCRC method achieved superior
performance to these methods.

• We took the UC-Merced dataset as an example and evaluated the performance of our proposed
Hybrid-KCRC method per class with a confusion matrix. From the confusion matrix, we can see
that the Hybrid-KCRC method is better than other methods in most categories.

• It is true that there are several pretrained models to extract features and the performance of the
resnet model outperforms the performance of the vgg model. In our paper, however, we paid more
attention to the design of the classifier and not feature extraction. We only extracted the features of
remote-sensing images to complete the classification task. The vgg is also very popular candidate
models for extracting CNN activations of images. That are the reasons why we chose vgg. As a
matter of fact, our method could be further improved by using other, better feature-extraction
pretrained models. To demonstrate this, we also extracted CNN features with the pretrained
Resnet model [44], and layer pool5 was utilized. The feature was a 2048-dimensional vector for
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each image. The final feature of each image was `2-normalized. The experimental results are
shown in Table 6. For fair comparison on each dataset, we fixed the ratio of the number of training
sets of the UC-Merced dataset, the WHU-RS19 dataset, the RSSCN7 dataset, and the AID dataset
to 80%, 50%, 60% and 50%, respectively. From Table 6, we can see that the features extracted via
the pretrained resnet model performed better than the features extracted via the pretrained vgg
model. Our proposed Hybrid-KCRC methods also achieved superior performance to classical
methods, such as SVM and CRC.

• Figures about classification rates with a different number of training samples clearly illustrate that
RBF and polynomial kernel functions suit RS images better. Notably, classification rate increased
by 1% with the Hybrid-KCRC method from linear kernel to polynomial kernel for the AID dataset.
For the RBF kernel function, the metric was different from the linear kernel. The distance between
two points x and y from the linear kernel space would be closer in the RBF kernel space if x and y
were close, with the contrary conclusion if x and y were far away. This makes representation more
discriminative and achieves higher classification accuracy. For the polynomial kernel, the linear
kernel can be a special case of the polynomial kernel (p = 0, q = 1). Note that kernel function
κ(x, y) can be approximated by φT(x)φ(y) [45] to save time for the learning algorithm. We will
adopt the approximation of kernel κ(x, y) to save time in future works.

• In the literature [23], the author proposed a joint collaborative representation (CR) classification
method that uses several complementary features to represent images, including spectral values
and spectral gradient features, Gabor texture features, and DMP features. This multifeature fusion
can also be implemented via our proposed method. In the literature [24], the author proposed
a spatial-aware CR for hyperspectral image classification that utilized both spatial and spectral
features to represent an image. The penalty term can also be added into the objective function of
our proposed method.

Table 6. Comparison with different CNN pretrained models (%).

Models\Datasets UC-Merced (0.8) RSSCN7 (0.5) WHU-RS19 (0.6) AID (0.5)

CaffeNet + SVM [32] 95.02 96.24 88.25 89.53
VGG16 + SVM [32] 95.21 96.05 87.18 89.64

GoogleNet + SVM [32] 94.31 94.71 85.84 86.39

VGG19 + SVM 94.67 95.42 85.99 90.35
VGG19 + CRC 95.05 95.63 86.97 89.58

VGG19 + Hybrid-KCRC (linear) 96.17 95.68 88.16 89.93
VGG19 + Hybrid-KCRC (POLY) 96.29 96.42 89.21 91.75
VGG19 + Hybrid-KCRC (RBF) 96.26 96.5 89.17 91.82

VGG19 + Hybrid-KCRC (Hellinger) 96.33 95.82 88.47 90.35

Resnet + SVM 96.90 97.74 91.5 92.97
Resnet + CRC 97.00 98.03 92.47 92.85

Resnet + Hybrid-KCRC (linear) 97.29 98.05 92.89 92.87
Resnet + Hybrid-KCRC (POLY) 97.40 98.16 93.11 93.98
Resnet + Hybrid-KCRC (RBF) 97.43 98.13 93.07 94.00

Resnet + Hybrid-KCRC (Hellinger) 97.36 98.37 92.87 93.15

5. Conclusions

In this paper, we proposed a hybrid collaborative representation-based algorithm via embedding
class-specific collaborative representation into conventional collaborative representation-based
classification to improve the performance of classifying remote-sensing images. The proposed
method is capable of balancing class-specific collaborative representation and shared collaborative
representation. Moreover, we extended the proposed method to arbitrary kernel space to explore the
nonlinear characteristics hidden in remote-sensing image features to further enhance classification
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performance. Extensive experiments on four benchmark remote-sensing image datasets have
demonstrated the superiority of our proposed hybrid collaborative representation algorithm.
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