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Abstract: Fractional vegetation cover (FVC) is an essential parameter for characterizing the land 

surface vegetation conditions and plays an important role in earth surface process simulations and 

global change studies. The Sentinel-2 missions carrying multi-spectral instrument (MSI) sensors 

with 13 multispectral bands are potentially useful for estimating FVC. However, the performance 

of these bands for FVC estimation is unclear. Therefore, the objective of this study was to assess the 

performance of Sentinel-2 MSI spectral band reflectances on FVC estimation. The samples, 

including the Sentinel-2 MSI canopy reflectances and corresponding FVC values, were simulated 

using the PROSPECT + SAIL radiative transfer model under different conditions, and random 

forest regression (RFR) method was then used to develop FVC estimation models and assess the 

performance of various band reflectances for FVC estimation. These models were finally evaluated 

using field survey data. The results indicate that the three most important bands of Sentinel-2 MSI 

data for FVC estimation are band 4 (Red), band 12 (SWIR2) and band 8a (NIR2). FVC estimation 

using these bands has a comparable accuracy (root mean square error (RMSE) = 0.085) with that 

using all bands (RMSE = 0.090). The results also demonstrate that band 12 had a better performance 

for FVC estimation than the green band (RMSE = 0.097). However, the newly added red-edge 

bands, with low scores in the RFR model, have little significance for improving FVC estimation 

accuracy compared with the Red, NIR2 and SWIR2 bands. 

Keywords: Sentinel-2 satellites; fractional vegetation cover; variable selection; random forest 

regression 

 

1. Introduction 

Fractional vegetation cover (FVC), defined as the fraction of green vegetation as seen from the 

nadir of the total statistical area [1–3], is an important parameter to characterize the status of land 

surface vegetation and is required as a pivotal parameter for many models applied to climate change 

monitoring, weather prediction, desertification evaluation, soil erosion monitoring, hydrological 

simulation and drought monitoring [4–6]. Therefore, accurate and timely estimation of FVC at global 
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and regional scales is of great significance to many applications such as global change, ecological 

monitoring, crop growth monitoring and disasters studies [7–10]. 

Remote sensing data have advantages of extensive coverage and repeated observation ability 

and have been widely used for FVC estimation at both global and regional scales [11]. Multi-source 

remote sensing data can be used to estimate FVC, such as synthetic aperture radar (SAR), 

hyperspectral, multi-spectral and unmanned aerial vehicle (UAV) data. SAR data have unique 

advantages in FVC estimation, as they are not affected by atmospheric conditions. For example, 

Zribi et al. used ERS2/SAR data to estimate FVC in semi-arid regions, where they proposed a model 

describing the relationship between FVC and radar backscattering coefficient. They used 

supervised classification to estimate FVC, and their FVC estimation accuracy was greater than 85% 

[12]. However, radar signals penetrate the vegetation canopy, which leads to lower FVC estimation 

accuracy. Hyperspectral data have abundant spectral information and have successfully been used 

for FVC estimation. To estimate FVC for sparse vegetation areas in arid environments, McGwire et 

al. used three vegetation indices (VIs) including normalized difference vegetation index (NDVI), 

soil-adjusted vegetation index (SAVI) and modified soil-adjusted vegetation index (MSAVI) 

derived from airborne Probe-1 hyperspectral imagery to estimate FVC based on a linear mixture 

model. Results show that MSAVI provided the best accuracy [13]. However, hyperspectral data 

access is restricted, since there are few hyperspectral sensors currently in operation. Multispectral 

data are the most commonly used for FVC estimation using remote sensing. Ding et al. compared 

six dimidiate pixel models based on different VIs and four look-up table (LUT) methods to estimate 

FVC from Landsat 8 OLI data in the grassland and agricultural fields, and results indicate that the 

accuracies of LUT methods were slightly lower than those of dimidiate pixel models [14]. UAV data 

have high spatial resolution and are often used for validation of FVC estimates. For example, Li et 

al. proposed a mean-based spectral unmixing method to estimate FVC from digital photos acquired 

by UAV, and compared this method with four commonly used methods. Results validated by 

ground survey data suggest that the proposed method could characterize the FVC robustly [15]. 

However, UAV is costly and requires professional operators, thus is not suitable for large-scale FVC 

estimation. Therefore, comparing the four types of remote sensing data, multi-spectral data seem to 

be the ideal data to estimate FVC over large area. 

For multispectral remote sensing data, red and NIR bands are usually regarded as the most 

important bands for FVC estimation because the NIR band presents high reflectance for green 

vegetation due to high internal leaf scattering, while the red band presents low reflectance due to 

chlorophyll absorption with the increase of FVC; therefore, a very obvious steep reflectance slope 

occurs between them [16]. Many VIs take advantage of this peculiarity to characterize the condition 

of land surface vegetation, such as NDVI [17] and SAVI [18]. FVC is also usually estimated from 

these VIs by empirical statistical models [19,20]. 

The red-edge (RE) spectral region is located in the sharp change of canopy reflectance between 

680 nm and 750 nm where a slope occurs [16]. The RE band reflectance has a high correlation with 

various physiological vegetation parameters, such as nitrogen content, chlorophyll content and 

biomass. It is an important indicator to describe the status of plant pigments and health [21,22]. The 

occurrence of RE shift in the vegetation reflectance reflects the changes in the biological status of 

plants [23]. For example, Ramoelo et al. used WorldView-2 satellite’s RE band reflectances to 

estimate leaf nitrogen content and above-ground biomass, and concluded that RE bands had the 

ability to improve leaf nitrogen content and biomass estimation accuracy [24]. In addition, the 

wavelength of maximum slope (also the maximum first derivative) in the RE region is called 

red-edge inflection point (REIP), which is less sensitive to spectral noise caused by soil substrate 

and atmospheric conditions when estimating chlorophyll content [25,26]. Therefore, it is of great 

significance to explore the potential of RE bands for improving FVC estimation accuracy. However, 

the effect of RE bands on FVC estimation has not attracted much attention. The primary reason may 

be that only four current operating earth resource satellites are equipped with RE bands: RapidEye, 

WorldView-2, WorldView-3 and Sentinel-2 [27–30]. 
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The blue band has low reflectance over vegetation canopy because of strong absorption of 

chlorophyll but it is vital for vegetation monitoring using remote sensing data. Some VIs take 

advantage of blue band reflectance to characterize vegetation status, such as enhanced vegetation 

index (EVI) [31]. However, the blue band is more likely to be influenced by atmospheric conditions 

due to its shorter wavelength [32]. The SWIR band is sensitive to foliar water content; due to strong 

absorption of water, the reflectance in the SWIR spectral region is low [33]. However, some of the 

operational satellite instruments are not equipped with a SWIR band, which also has potential for 

FVC estimation, such as SPOT, Chinese GF-1 and GF-2. 

The Sentinel-2 satellites (including S2A and S2B) compose the European Space Agency (ESA) 

optical high-resolution mission for the Copernicus Program. The Multi Spectral Instruments (MSI) 

equipped on the twin satellites provide data at three different spatial resolutions, high temporal 

resolution and a broad spectral coverage in 13 bands from the visible (VIS) and the near infrared 

(NIR) to the shortwave infrared (SWIR) bands (Table 1) [30]. These data are valuable for land 

cover/use classification, vegetation monitoring and cloud/snow identification. Except for the three 

60-m spatial resolution bands, the remaining 10 MSI spectral bands are all useful for vegetation 

information extraction. However, the importance of each band in FVC estimation may be different. 

Some bands may contain more information and have a greater influence on FVC estimation 

accuracy but others may contain less useful information for FVC estimation. Additionally, with the 

data dimension increasing, the computational and storage costs will be sharply increased. 

Moreover, the redundant, noisy and unreliable information in unimportant bands may hinder the 

processes of FVC estimation and decrease the FVC estimation accuracy. To reduce data redundancy, 

increase computational efficiency and improve FVC estimation accuracy, variable selection 

methods are applied to determine the optimum bands for FVC estimation. 

Table 1. Sentinel-2 bands defined by ESA. 

Bands No. Central Wavelength (nm) Band Width (nm) Spatial Resolution (m) 

1 443 20 60 

2 490 65 10 

3 560 35 10 

4 665 30 10 

5 705 15 20 

6 740 15 20 

7 785 20 20 

8 842 115 10 

8a 865 20 20 

9 945 20 60 

10 1380 30 60 

11 1610 90 20 

12 2190 180 20 

Random forests (RF) [34] is commonly used for variable selection to process high-dimensional 

remote sensing data. RF is an ensemble algorithm that consists of a number of CART for both 

classification and regression [35] and has achieved good performance in variables selection of 

remote sensing data [24,36,37]. For example, Mutanga et al. used random forest regression (RFR) to 

select NDVIs from all possible two-band combinations of WorldView-2 data to estimate high 

density biomass for wetland vegetation. They demonstrated that RFR was able to provide a small 

subset of variables and achieve reasonable prediction accuracies [38]. 

In recent studies, empirical methods, pixel unmixing methods and physical-based methods are 

three commonly used algorithms to estimate FVC using remote sensing data [39–43]. Among these 

methods, the physical-based methods allow us to simulate vegetation canopy spectral reflectance 

and estimate FVC by inverting canopy radiative transfer model (CRTM), which are able to analyze 

the spectral band importance. However, the inversion of CRTM is always ill-posed [44,45], i.e. there 

are fewer remote sensing observations than the input parameters of the CRTM, thus the equation is 
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underdetermined and various combinations of parameters may yield almost identical spectrum 

[46,47]. To constrain and simplify the inversion process, LUT and machine learning (ML) methods 

are two alternative solutions to invert CRTM indirectly. Neural network (NN) is a widely used ML 

algorithm for FVC estimation and has been successfully developed into operational algorithms for 

several sensors such as Polarization and Directionality of Earth Reflectance (POLDER) [48], 

Medium Resolution Imaging Spectrometer (MERIS) [49] and SPOT-VEGETATION [50]. Except 

from NNs, support vector regression (SVR) is another common algorithm for FVC estimation, 

especially for hyperspectral data [51,52]. Moreover, RFR algorithm has also been applied for FVC 

estimation [53,54] and is often used for band selection. Considering the issues of FVC estimation 

and optimum band selection, RFR learning based on CRTM simulations was chosen for assessing 

the Sentinel-2 band performances on FVC estimation and was used to estimate FVC in this study. 

The objective of this study was to assess the performance of the Sentinel-2 MSI band 

reflectances for estimating FVC and particularly to explore if the three RE band reflectances are 

significant for improving FVC estimation accuracy, as well as determining which bands are more 

important for FVC estimation. For this purpose, a simulation dataset that includes different band 

reflectances of the Sentinel-2 MSI and corresponding FVC values was first generated using the 

PROSAIL [55] model with input parameters that have certain ranges and special probability 

distributions (uniform or Gaussian distribution). Then, the RFR model was trained using the 

simulated dataset and importance of each band was investigated. The trained RFR model was then 

utilized to estimate FVC using Sentinel-2 band reflectances and validated by field survey FVC data. 

Next, the most important bands for FVC estimation were selected and the performance of these 

important bands on FVC estimation was validated using field survey FVC data. Finally, FVC 

estimation was accomplished using the most important bands and red, green and NIR bands, 

respectively, and a comparison study was conducted. 

2. Materials and Methods 

The flow chart of the proposed method to assess Sentinel-2 MSI reflectances for estimating 

FVC in this study is shown in Figure 1. The basic parts of the method include data pre-processing, 

model construction, variable selection and validation. 

 

Figure 1. Flow chart of this study. 
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2.1. Study Area and Field Survey 

The study area is located in Hengshui (115°10′E~116°34′E, 37°03′N~38°23′N) in the southeast of 

Hebei province, China (Figure 2). The landform is plain, with an altitude varying from 10 m to 30 m. 

The climate type of the study area is temperate continental monsoon with four obvious seasons. The 

climate condition is warm, semi-arid, and the annual average precipitation is approximately 509.7 

mm. The land cover types are mainly farmland and residential area. The dominant crops are wheat 

and maize, which account for large percentages of farmland in spring and autumn, respectively [56]. 

 
(a) (b) 

Figure 2. Geographic location of the study area: (a) standard false color image from Sentinel-2 

illustrates the geographic location of the study area; and (b) the green points represent the locations 

of sample plots in the study area. 

Field FVC measurements were collected twice for wheat and twice for maize on different 

growing periods, as listed in Table 2. The sample sites were spread over all 11 counties of Hengshui 

with sizes of 100 m × 100 m. There were two sample sites in each county and a total of 22 sites in the 

entire study area. The sample sites were located in the middle of relatively homogeneous farmland. 

Five sample points, with sizes of 30 m × 30 m, were selected for each sample sites, four on the 

corners and one in the center. Coordinates of each sample point were collected using handheld 

Global Positioning System (GPS) devices. At each sample point, five photographs were taken using 

digital cameras, and field FVC data were quantitatively acquired from these photographs. Finally, 

the average of five FVCs derived from photographs at each sample point was used to validate the 

FVC estimated from the Sentinel-2 images. Therefore, there were 110 ground truth points (GTPs) 

for maize or wheat in a survey period. There were two survey periods for maize and wheat, 

respectively, thus, in theory, 440 GTPs could be used to validate the estimated FVC. However, in 

practical applications, these points could not all be used due to continuous cloud contamination. 

Table 2. Field FVC survey in Hengshui. 

Crop Type Start Time End Time Number of Sample Sites Number of GTPs 

Wheat 20 March 2017 1 April 2017 

22 110 
Wheat 4 May 2017 6 May 2017 

Maize 5 July 2017 8 July 2017 

Maize 29 July 2017 31 July 2017 

The original photographs were stored in JPEG format with a size of 4000 × 3000 pixels. 

Twenty-five percent of photo edges were cut to eliminate the influence of the large geometric 
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distortion at the sides of the photograph, which resulted in a subset of photographs representing 

the survey points [57]. For better FVC extraction, a shadow-resistant algorithm was used to estimate 

FVC of each photograph in this study [58]. The algorithm introduced hue saturation intensity (HIS) 

color space to equalize the intensity histogram, enhancing the brightness of shaded parts in the 

photographs. Lognormal and Gaussian distribution functions were then applied to fit the 

distributions of green vegetation and background on the green red component in the L*A*B color 

space. Finally, a threshold value was automatically selected to classify green vegetation and 

background. The proportion of green vegetation was considered as the FVC of the photograph. 

2.2. Sentinel-2 MSI Data and Preprocessing 

The Sentinel-2 product available for users is Level-1C data (https://scihub.copernicus.eu), 

which refers to top-of-atmosphere reflectances in cartographic geometry in the UTM/WGS84 

projection, with a size of 100 km × 100 km. The study area is fully covered by four adjacent 

Sentienl-2 images (tile numbers 50SLG, 50SLH, 50SMG, and 50SMH). The available images were 

acquired from 26 March 2017 to 31 August 2017 and covered the entire field survey stage. However, 

due to the influence of continuous thick clouds, some images were not used for FVC estimation. 

Images used in this study are listed in Table 3. 

Table 3. The Sentinel-2 images used in this study. 

Acquisition Time Sensor Type Tile Numbers 

26 March 2017 S2A 50SLG, 50SLH 

28 April 2017 S2A 50SLG, 50SLH, 50SMG, 50SMH 

8 May 2017 S2A 50SLG, 50SLH, 50SMG, 50SMH 

27 June 2017 S2A 50SLG, 50SLH, 50SMG, 50SMH 

12 July 2017 S2A 50SLG, 50SLH, 50SMG, 50SMH 

11 August 2017 S2B 50SLG, 50SLH, 50SMG, 50SMH 

The preprocessing of Sentinel-2 images included atmospheric correction, spatial resampling 

and mosaicking. ESA recommends free open source Sentinel Application Platform (SNAP) 

toolboxes developed by ESA for scientific exploitation of Sentinel missions. The Sen2Cor algorithm 

in SNAP toolbox [59], version 2.4.0, was used for atmospheric correction. It eliminates the effects of 

the atmosphere from Level-1C and delivers the Level-2A product of bottom-of-atmosphere 

reflectance in cartographic geometry. The bands with 10-m and 20-m spatial resolution were 

processed. After atmospheric correction, bands with 10-m spatial resolution were resampled to 20 

m using bilinear interpolation method, and adjacent images with the same acquisition date were 

then stitched together. 

2.3. Generating the Learning Dataset Using the PROSAIL Model 

In this study, the PROSAIL model was used to simulate the relationship between Sentinel-2 

reflectance and the corresponding FVC. The PROSAIL model is widely used for reflectance 

modeling due to its good compromise between the process complexity, accuracy and computation 

time requirements [60]. The model is the combination of the leaf optical properties model 

PROSPECT and the scattering by arbitrarily inclined leaves (SAIL) canopy reflectance model [55]. 

The SAIL model is a canopy bidirectional reflectance distribution function model that assumes that 

the canopy is a turbid medium with randomly distributed leaves [61]. The canopy structure in the 

SAIL model is characterized by leaf area index (LAI), the average leaf angle inclination (ALA) (with 

the assumption of an ellipsoidal distribution) and the hot-spot parameter [50]. The input 

parameters of SAIL include leaf reflectance, leaf transmittance, LAI, soil reflectance (SR), ALA, solar 

zenith angle (SZA), viewing zenith angle (VZA), hot-spot parameter (Hot), and relative azimuth 

angle (RAZ). 
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To compute the FVC simulated by PROSAIL, the classical gap fraction relationships with LAI 

and ALA were used with the following formulae [62]: 
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where P0(θ) is the gap fraction, θ is the direction where the gap fraction is computed, G(θ, θ1) is the 

orthogonal projection of a unit leaf area along direction θ, and θ1 is the ALA. The parameter λ0 is 

the leaf dispersion or clumping. Because FVC was defined as seen from the nadir direction, the FVC 

was computed when θ is equal to 0. 

The PROSPECT model provides the optical properties of plant leaves from 400 nm to 2500 nm 

at the leaf level for the purpose of directional-hemispherical reflectance and transmittance 

simulation [63]. The PROSPECT model is based on the representation of the leaf as one or several 

absorbing plates with rough surfaces causing isotropic scattering [64]. This study chose the 

PROSPECT-D version of the model, whose input parameters are leaf structure parameter (N), leaf 

chlorophyll a + b concentration (Cab), equivalent water thickness (Cw), dry matter content (Cm), 

carotenoid content (Car), brown pigment content (Cbrown) and anthocyanin content (Cant). To better 

represent land surface conditions and constraining the inversion process, prior knowledge was 

added to input parameters of PROSAIL based on previous studies [65–69]. The range and specific 

distribution of the main input parameters of PROSAIL are listed in Table 4. 

Table 4. Input parameters of the PROSAIL model. 

Model Parameters Units Range (or Value) Distribution Mean Std. 

PROSPECT 

Cab μg/cm2 20–90 Gauss 45 30 

Cm g/cm2 0.003–0.011 Gauss 0.005 0.005 

Car μg/cm2 4.4 - - - 

Cw cm 0.005–0.015 Uniform - - 

Cbrown - 0–2 Gauss 0.0 0.3 

Cant μg/cm2 0 - - - 

N - 1.2–2.2 Gauss 1.5 0.3 

SAIL 

LAI - 0–7 Gauss 2.0 3.0 

ALA    30–70 Uniform - - 

SZA   35 - - - 

Hot - 0.1–0.5 Gauss 0.2 0.5 

The reflectance of soil is also an important parameter for PROSAIL model. In this study, soil 

reflectances were selected from a globally distributed soil spectral library released by the 

International Soil and Information Centre (http://data.isric.org/geonetwork/srv/chi/catalog.search# 

/metadata/1081ac75-78f7-4db3-b8cc-23b78a3aa769). The original soil reflectances, whose locations 

are distributed across 58 countries spanning Africa, Asia, Europe, North America and South 

America, contain various soil types with different properties [70]. The original soil reflectances were 

resampled from an interval of 10 nm to 1 nm by cubic spline functions to conform to the spectral 

response function of Sentinel-2. Then, the soil reflectances were resampled to correspond to 

Sentinel-2 spectra using the following formula [71]: 

   
 

N

N
1

1




   


 



 


 (3) 

where  and     are the corresponding simulated Sentinel soil reflectances and resampled soil 

reflectances, respectively. β(λ) represents the weight of the band’s spectral response function of 

Sentinel-2 MSI. 
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To remove data redundancy caused by similar soil reflectances and reduce huge computation 

in PROSAIL simulation, the spectral angle mapper [72,73] was used to assess the similarity of soil 

reflectances and further classify the original soil reflectances into several categories. Similar 

reflectances of each category were averaged as a representative soil reflectance. Considering two 

spectral vectors with n wavebands, where X = (x1, x2, …, xn) and Y = (y1, y2, …, yn), the spectral angle 

could be defined as the following: 

   

n

i i1 i 1
XY 1/ 2 1/ 2

n n2 2

i ii 1 i 1

x y
cos

x y

  

 

 
 

  
 
 



 
 (4) 

where X and Y represent two different soil spectral reflectance vectors, αXY is the spectral angle 

between the two spectral vectors X and Y, and the value range of α is between 0 and π/2. The two 

spectral vectors are completely similar when α = 0 and completely different when α = π/2; the larger α 

values indicate greater differences between the two spectral vectors [74]. In this study, if the 

spectral angle between soil reflectances and central vectors of the corresponding categories was 

smaller than 0.05, it was considered as a similar soil reflectance. The final 20 soil reflectances 

derived from original soil reflectances were used to represent the possible range of soil spectral 

reflectances (Figure 3). 

 

Figure 3. Twenty soil reflectance curves to represent the possible range of soil spectral shapes. 

The input parameters of the PROSAIL model were randomly generated using the specific 

distribution and range of each parameter every time, and the top of canopy reflectances were then 

simulated for each wavelength by the PROSAIL model and resampled to simulate the specific band 

reflectances of Sentinel-2 using Formula (3). Considering uncertainties attached to the sensor 

measurements and models, a white Gaussian noise of 1% was added to the simulated reflectances 

[50]. Because the three bands with 60-m spatial resolution were mainly dedicated to atmospheric 

correction and cloud screening, they were removed in the simulated dataset. According to the 

previous studies [71,75], and considering the computational efficiency, a medium quantity dataset 

that contained 200,000 items was simulated, of which 80% were randomly selected as the training 

dataset and the remaining 20% were used for validation. 

2.4. Random Forest Regression 

Random forests are one of the most popular machine learning methods for both classification 

and regression. RFR is an ensemble of regression trees, which are often binary decision trees 

(CART), and the average of predictions from the individual trees is the prediction result of the 

forest. The main advantages of RFR are that they do not overfit as more trees are added but always 

produce a limited value of the generalization error and are more robust to noise data. In the case 

where the dimension is comparable or larger than the sample size, RFR can still achieve satisfactory 
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performance [76]. Random forests use two aspects of the random property: each tree is grown from 

an independent bootstrap sample of the data and randomly choosing a subset of explanatory 

variables at each node of the tree as candidate variables to split on. The number of input variables 

randomly chosen at each split mtry and the number of trees in the forest ntree are the two main 

parameters of random forests [76]. In this study, mtry was set to the square root (or 1/3) of the total 

number of bands (i.e., 3 bands) and ntree was set to 500; these settings are similar to other studies 

[76,77]. 

In this study, RFR was selected for FVC estimation. The simulated Sentinel-2 MSI band 

reflectances of the training dataset were used as the inputs and the outputs were the corresponding 

FVC. The RFR was trained using the training dataset and then used to build the relationship 

between band reflectances and FVC. The validation dataset was used to validate the prediction 

accuracy and generalization. 

2.5. Variables Importance and Selection 

Generally speaking, the variable selection procedure includes two steps: (1) ranking the 

variables based on importance scores; and (2) determining a sufficient subset for prediction [77]. In 

the RF framework for regression problems, increasing Mean Squared Error (MSE) is widely used to 

evaluate the importance score of a given variable, when the observed values of this variable are 

randomly permuted in the Out-of-Bag samples (OOB), and variable importance is determined 

based on the measure [76]. The OOB for a tree is the set of observations that are not used for 

building the current tree, which accounts for 1/e   36.8% of the observations. 

After determining the importance scores of variables, all variables are ranked as a sequence 

based on them. The most critical issue comes next: determining the number of variables to be 

selected. In this study, the following strategy was proposed to solve the problem. The strategy starts 

with the most important band based on the importance scores and then progressively adds the 

most important of the remaining bands. At each iteration (n = 10), the root mean square error 

(RMSE) of the prediction model is calculated. If the band added caused significant reduction in 

RMSE, the band is important and has great influence on improving the accuracy of FVC estimation. 

In contrast, if the RMSE did not reduce the RSME or improve the FVC estimation significantly, the 

band is redundant. Conventionally, if a band has a high importance score and ranks ahead of the 

sequence of bands, it should cause an obvious reduction in RMSE, and the band with low 

importance score should not. 

The assessment of band importance score was based on the simulated data generated by 

PROSAIL model, and this process was carried out simultaneously with the FVC estimation. In this 

study, firstly, all 10 simulated band reflectances were used to establish the RFR model and assess 

the importance of different bands. Then, the most important bands were selected to reestablish the 

RFR model, and the FVC prediction result of both simulated data and real Sentinel-2 band 

reflectances were compared separately between these two models to investigate the efficiency of 

band selection. Another experiment that combined red, green and NIR band reflectances as the 

inputs, provided by some multispectral sensors with only four bands such as SPOT, Chinese GF-1 

and GF-2, was also conducted. 

3. Results 

3.1. Estimating FVC Using 10 Bands of Sentinel-2 MSI Data 

Figure 4a shows the FVC estimation results using the simulated validation data. The FVC 

estimation accuracy based on the simulated validation data shows reliable performance (RMSE = 

0.047 and R2 = 0.97). The distribution of the most scattered points is basically located around the 1:1 

line, and the closer to the 1:1 line, the greater the density. Few points are scattered a little far from 

the 1:1 line, but these points only account for a small proportion of the total number of points, and 

the point density is also small. The fitted line is almost parallel to the 1:1 line. For the specific 

Gaussian distribution of LAI and the relationship between LAI and FVC, the distribution of FVC in 
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the simulated data is shown in Figure 5. The average simulated reflectance spectra are shown in 

Figure 6. These results demonstrate that the dataset generated by PROSAIL model has a lot of 

variability and can adapt to most conditions of land surface. The validation performance based on 

the simulated data indicates that the RFR model is reliable and has good generalization ability to 

adapt to various situations. 

  
(a) (b) 

Figure 4. Validation based on simulated validation data (a) and field survey data (b) using all 

Sentinel-2 MSI band reflectances. 

Figure 4b shows the accuracy of FVC estimated from Sentinel-2 MSI band reflectances using 

the RFR model validated by the field FVC measurement. The magenta circles represent the maize 

survey points, and the blue triangles represent the wheat survey point. Due to different growth 

periods, FVC values of wheat and maize were distributed in different ranges, but, within one 

ground survey period, the FVC values vary within a small range among one class. Thus, it seems 

that they fell into different clumps. For cloud cover and satellite revisit cycle issues, a linear 

interpolation method was applied using FVC estimated from Sentinel-2 reflectances of two phases 

before and after the field survey dates to obtain FVC at the dates corresponding to the field survey. 

However, the locations of some sample points were covered by clouds on all images. As a result, 

the number of field survey FVC used to validate FVC estimates was often less than the total number 

of sample points. The RMSE using all field survey points is 0.09, which is reasonable for FVC 

estimation. The R2 of maize is 0.88, which is higher than wheat (0.61). Therefore, the validation 

result indicates that the trained RFR model is robust and can be used to estimate FVC and assess 

the importance of Sentinel-2 MSI band reflectances for FVC estimation. 
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Figure 5. The distribution of FVC in the simulated data generated by PROSAIL simulation. 

 

Figure 6. The average reflectance spectra of all 200,000 simulated Sentinel-2 MSI reflectances. 

3.2. Bands Importance Evaluation and Selection 

Figure 7a shows the boxplot of the band importance scores over 50 trials with training set 

randomly split by 80% of the total simulated data every time, and Figure 7b shows the average 

value. The result obviously shows that band 4, which refers to the red band, is the most important 

band and its important score is much higher than the other bands. This means that the red band 

reflectance contains much more useful information for FVC estimation compared to other bands. In 

terms of green plants, incident radiation is mainly assimilated by chlorophylls at red and blue 

spectral regions with central wavelengths of 0.45 μm and 0.65 μm, respectively. However, a 

reflectance peak occurs at the green spectral region with a central wavelength of 0.54 μm [78]. The 

strong reflectance peak at the green band accounts for the green color perceived by human eyes and 

distinguishes the green plant component from the background. Figure 8 shows high correlations 

with correlation coefficients greater than 0.86 among red, green, blue and RE1 band reflectances. 

Many studies had proven that in RFR model, when several highly correlated variables exist for a 

certain variable, its variable importance will decrease [76,77], while this high correlation has no 

significant influence in importance levels of the other variables. More importantly, the important 

variables cannot be confused with noise. Red band reflectance for FVC estimation is more 

important than green, blue and RE1 band reflectances, so the importance scores of later three bands 

should decrease to some extent. 
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(a) (b) 

Figure 7. Importance of Sentinel-2 bands reflectances for FVC estimation evaluated using RFR: (a) 

the boxplot of 50 trials; and (b) the average value over 50 trials. 

A striking contrast is that the score of SWIR2 band is the second highest among all bands, 

while that of SWIR1 band is relatively low. The SWIR spectral region ranges from 1.4 μm to 2.5 μm 

and is affected by leaf liquid water [79]. The SWIR2 band can be used to distinguish vegetation 

from soil. For example, Asner et al. proposed a biogeophysical approach for the unmixing of soils 

and vegetation using SWIR band between 2.1 μm and 2.5 μm spectral regions in arid and semiarid 

ecosystems [80]. It is demonstrated that band 12, with a central wavelength of 2.19 μm, has a very 

powerful potential for FVC estimation. Therefore, band 12 is much more important than band 11 

for FVC estimation because band 11 with a central wavelength of 1.61 μm is out of the spectral 

range. SWIR1 and SWIR2 band reflectances also have a high correlation with a correlation 

coefficient of 0.9 (Figure 8). The SWIR1 band with a central wavelength of 1.61 μm is helpful for 

vegetation information extraction like nitrogen content [81], but, as mentioned above, SWIR2 band 

is better than SWIR1 band for FVC estimation, thus the SWIR1 band is treated as noise by RFR 

model, which in turn is given a very low score. 

The phenomenon in which the band reflectances are highly correlated also occurs in the NIR 

spectral region, including band 6, band 7, band 8 and band 8a, whose correlation coefficients are 

greater than 0.8 (Figure 8). NIR bands are usually considered to be the important bands to 

characterize vegetation status and distinguish vegetation from other land cover types because of the 

high reflectance of vegetation in this spectral range caused by internal scattering and low 

absorption of leaves [78]. The scores of those band reflectances have some degree of decline due to 

high correlation between bands, but the NIR2 band reflectance shows the highest importance for 

FVC estimation among these four bands. 

Based on the average of band importance scores over 50 trials, Figure 9 shows the result of the 

variables selection strategy proposed in this study. The model started only with the most important 

band, the red band. When SWIR2 and NIR2 bands were added to the RFR model, the RMSE of 

validating dataset split by 20% of the total simulated data dropped to a large extent. As more and 

more bands were added to the RFR model in the order of decreasing importance scores for FVC 

estimation, the RMSE was not significantly reduced. It can be clearly seen that, after three bands 

were added to the RFR model, the RMSE appeared to be stable with small fluctuations. This 

indicates that the accuracy of FVC estimation would not be significantly improved even if more 

bands were added to the RFR model. Instead, more bands added would only add to calculation cost. 

Therefore, the red, NIR2 and SWIR2 bands were selected as the most important bands for FVC 

estimation. 
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Figure 8. The correlation coefficients between every two bands of Sentinel MSI data. 

 

Figure 9. Importance of Sentinel-2 bands for FVC estimation evaluated using RFR. 

3.3. High-Score Band Reflectances for FVC Estimation 

The high-score bands were selected to estimate FVC with simulated validation data and real 

band reflectances data using RFR model to validate whether they can achieve comparable or better 

FVC estimation accuracy, and further examine the effectiveness of band selection. The three most 

important bands selected by RFR model are red, SWIR2 and NIR2 bands. The validation result 

(RMSE = 0.049 and R2 = 0.968) using the simulated validation data is shown in Figure 10a. The 

validation accuracy using high-score bands is approximately equal to, and slightly lower than, 

using all bands, but the difference is almost negligible. The simulated data demonstrate that the 

band selection method proposed in this study is appropriate. However, compared to the simulated 

data, real data are more complex and FVC estimation is more difficult. To verify whether the 

important bands selected by RFR model using simulated data are applicable to real Sentinel-2 band 

reflectances, field survey FVC data were used to validate the reasonability of band selection. Figure 

10b shows the validation result of FVC estimated from the high-score bands of Sentinel-2 

reflectances using RFR model by field survey data. The RMSE using all field survey points is 0.085. 

The R2 of maize is 0.88, which is higher than that of wheat (0.63). The validation accuracy is also 

approximately equal to using all bands, and slightly higher, but the difference is insignificant. 

Therefore, the results demonstrate that red, SWIR2 and NIR2 bands are the most important for FVC 

estimation and the remaining bands have less significant effect on improving the accuracy of FVC 

estimation. Using the most important bands to estimate FVC can also reduce the amount of data by 

1/3 and the accuracy of the FVC estimation will not be reduced due to the data reduction. 
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Figure 10. Validation based on simulated validation data (a) and field survey data (b) using the 

Sentinel-2 MSI band reflectances that obtain the highest score. 

To further determine the reasonability of the band selection result, based on simulated 

reflectances and corresponding FVC, four spectral bands were randomly selected out of 10 over 

10,000 times, and then they were used to build RFR models and the accuracy of the model was 

validated by validation data. The distribution of RMSE is shown in Figure 11. The result shows that 

most RMSEs are greater than 0.05, which account for 95.56%. The RMSE of high-score bands is 0.048, 

smaller than 0.05, which implies that using high-score bands to estimate FVC is more effective than 

most randomly selected bands. The result shows that not all combinations of four bands can 

achieve good accuracy with small RMSE. When the randomly selected band combination contains 

high-score bands, the RMSE will be smaller, and most band combinations whose RMSEs are smaller 

than 0.05 contain all three high-score bands. The result demonstrates that the three high-score 

bands are indeed the most important bands for FVC estimation. 

 

Figure 11. The distribution of RMSE calculated from four bands RFR model over 10,000 times. 

3.4. Comparison with Red, Green and NIR Band Reflectances for FVC Estimation 

Some multi-spectral sensors were only equipped with three visible bands and a near-infrared 

band. Therefore, a comparative validation between these bands and high score bands for FVC 

estimation was conducted. The red, green and NIR2 bands of the Sentinel-2 MSI band reflectances 

were selected to estimate FVC using the RFR model. Figure 12a shows the model performance 
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based on the simulated validation data (RMSE = 0.052 and R2 = 0.962). The accuracy is lower than 

the result using three most important bands. 

  
(a) (b) 

Figure 12. Validation based on simulated validation data (a) and field survey data (b) using the Red, 

Green and NIR2 band reflectances of Sentinel-2 MSI. 

For the real Sentinel-2 band reflectances, the accuracy validated by field survey data is shown 

in Figure 12b. The FVC estimation using these three band reflectances shows a lower accuracy. The 

RMSE using all field survey points is 0.097, the R2 of maize is 0.87 and wheat is 0.57, lower than 

using the three most important bands. Only SWIR2 band was replaced by the green band as the 

input bands but there was a clear decrease in FVC estimation accuracy. The result demonstrates 

that the SWIR2 band has great significance for FVC estimation and can obviously improve FVC 

estimation accuracy. It can be seen in Figure 7 that green band gets a low score while SWIR2 band 

gets the second highest score. The result indicates that green band reflectance for FVC estimation is 

not as effective as SWIR2 band. 

4. Discussion 

This study proposed a method to assess the importance of Sentinel-2 MSI spectral band 

reflectances for estimating FVC. The RFR model was trained using the simulated Sentinel-2 

reflectances and corresponding FVC, which could give a score for each band reflectance to 

represent the importance degree for FVC estimation. Band 4, band 8a and band 12 were determined 

as the three most important bands by variable selection method based on the scores given by RFR 

model. The selected bands achieved satisfied FVC estimation accuracy by validating using both 

simulated data and field survey data compared to those using all the bands. In addition, band 12 

was found to have the potential to improve FVC estimation accuracy. 

In prior studies, several methods have been developed to improve the accuracy of FVC 

estimation, such as empirical methods, pixel unmixing models and physical based models. 

However, most studies ignore which spectral information really benefits FVC estimation. This 

study gave primary insight into which band reflectances of Sentinel-2 mainly contributed to the 

FVC estimation. 

In this study, the performance of band reflectances selection for FVC estimation was evaluated 

using field survey data. Compared to the simulated data, the accuracy of FVC estimation from real 

Sentinel-2 band reflectances validated by the field survey FVC data is lower. This phenomenon is 

normal because simulated data are a simplification of the real world, and the reflectances simulated 

by the CRTM could not fully match the real reflectances either. Because real band reflectances and 

field survey data contain uncertainties and variabilities, the accuracy of FVC estimated from the 

real reflectances is reasonable. For high-score band on FVC estimation, the results of simulated data 
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are consistent with the results of real reflectances and field survey data, that is, whether simulated 

data or real reflectances and field survey data, using the high-score band reflectances can achieve 

almost the same or better FVC estimation accuracy compared to using all bands. 

The importance scores of band reflectances are influenced by high correlations, and some band 

reflectances get low scores. However, this is helpful for eliminating band redundancy, which is one 

of the purposes of variable selection. On the other hand, the fact that these band reflectances got 

such low scores is not entirely due to correlations. These band reflectances are actually not as 

important as the band reflectances with high scores for FVC estimation. The result of band 

importance assessment demonstrates that red, SWIR2 and NIR2 band reflectances are more 

effective than RE band reflectances for FVC estimation. As for RE band transforms, such as the 

REPI and red-edge vegetation index (REVI), their potential for FVC estimation is not clear, which 

will be the future work of this study. Considering the results of band selection, these three bands 

also equipped in Landsat sensor, whether Sentinel-2 is beneficial over Landsat for FVC estimation 

remains to be further studied. 

This study chose RFR model to assess the Sentinel-2 MSI spectral band reflectances for FVC 

estimation. However, various ML algorithms can be used to assess variable importance and 

estimate FVC, such as support vector regression (SVR) [51] and classification and regression trees 

(CART) [82]. The performance of other ML algorithms remains to be further studied. The VIs are 

considered as the useful predictors for FVC estimation, such as NDVI, SAVI, transformed soil 

adjusted vegetation index (TSAVI) [83], and EVI. It is worth exploring the potential of these VIs 

calculated from Sentinel-2 MSI band reflectances for FVC estimation. 

5. Conclusions 

The combination of random forest regression and the radiative transfer model was proposed to 

assess the effects of Sentinel-2 MSI band reflectances on FVC estimation. The field survey FVC data 

were used to validate the applicability and the FVC estimation results of the established model. The 

results indicate that various bands had different effects on FVC estimation: the Red, SWIR2 and 

NIR2 bands of Sentinel-2 MSI data selected by the RFR model were the most important bands and 

achieved good performance in FVC estimation. The other bands, including the three newly added 

RE bands, had little effect on improving FVC estimation accuracy, when the three most important 

bands were used for FVC estimation. Compared with visible and near infrared bands, band 12 of 

Sentinel-2 MSI data has great potential for improving FVC estimation accuracy. Further work will 

focus on the potential of REIP and VIs calculated from Sentinel-2 MSI band reflectance for FVC 

estimation. 
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