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Abstract: A new method to invert X-band radar images for linear shoaling conditions is proposed.
The commonly used approach for this type of inverse problems is the Fourier transform. Unlike in
deep water conditions, in the shoaling region, waves are modulated both in terms of wavelength and
amplitude. However, Fourier analysis assumes spacial and temporal periodicity, and homogeneity
limiting its applicability to this region. In order to overcome these limitations, a wavelet based
technique is developed. The proposed technique treats every spatial radar image within the time
sequence individually, so no information on the dispersion relation is required. For validation
purposes, surface elevation range-time shoaling realizations based on the mild slope equation are
prepared. A radar imaging model including tilt and shadowing modulations, speckle noise, and the
radar equation is applied to these realizations to provide modeled grazing incidence radar images.
The inversion process starts with the application of the continuous wavelet transform independently
for each spacial image. The procedure continues with employing a successive range independent
modulation transfer function to the wavelet spectra in the wavenumber domain. Then, after a phase
shift correction, an inverse continuous wavelet transform is applied. The procedure is finalized by a
calibration of the retrieved maps. After the calibration, a thorough comparison between the original
and the reconstructed surface elevations is performed. It shows high efficiency of the proposed
method in treating wave number and amplitude modulated signals, as well as in addressing local
phase shifts due to tilt modulation and noise contamination. The new inversion method is proven to
have high accuracy in inhomogeneous conditions. It shows high potential to be implemented for
individual wave reconstruction using real aperture radars.
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1. Introduction

Incoherent nautical X-band radars have been increasingly used for oceanographic measurements
in the last decades. They have several advantages with respect to other measurement tools. First,
their use is not limited by daylight conditions, as the use of some optical remote sensing instruments
is. Second, radar measurement costs are generally lower than in-situ measurement ones. Finally,
nautical radars are multipurpose tools that can be used simultaneously for navigational needs and for
the determination of sea state parameters. As remote sensing tools, radar images provide significant
coverage. Their ability to probe continuously in time enables the study of both the spatial and temporal
evolution of the sea surface elevation with reasonably good resolution.

Historically, navigational radars were constructed to detect solid objects whilst the signals from
the sea surface were just attributed to the sea clutter and hence, considered to be noise. Later,
it was understood that this clutter contains useful information, and the related signals can be
interpreted to retrieve sea state parameters, such as directional wave spectra [1,2], currents [3], and
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local bathymetry [4], as well as some meteorologic conditions, such as rain intensity [5], and sea surface
winds [6].

By following a two-scale model of the radar backscatter [7,8], long energy-carrying waves become
distinguishable on the radar images due to the hydrodynamical and geometrical modulations of
the radar signal caused by the rough sea surface. Shadowing and tilt geometrical modulations are
considered to be the main imaging mechanisms for grazing incidence [9,10]. Shadowing manifests as
a partial occultation in long wave profiles. Tilt modulation arises as a result of changes in the local
effective incidence angle, whilst hydrodynamic modulation is due to an uneven distribution of the
resonating ripples density along the long wave profiles.

Due to the above mechanisms, a reconstruction procedure is required to obtain the original
surface elevation from a radar image. Surface elevation maps are commonly inverted from radar image
sequences using the technique proposed in [9]. In this paper, we refer to this work as the conventional
method of radar image inversion. Their main idea was to use a dispersion relation shell filter in
a 3D Fourier space and to subsequently apply an empirical modulation transfer function in order
to fit the spectrum of modulations to the actual wave spectrum. In addition, imaging mechanisms
shift the measured sea wave phases. For the abovementioned geometric modulations, the phase shift
between the original surface elevation and its radar image is constant and equal to π/2 [11]. In [12],
the accuracy of the method for 2D radar images was analyzed and found to be approximately 15 % of
the significant wave height for a wide range of wind sea states. In [13], a novel successive cancellation
based method was proposed to avoid leakage in the spectral domain. It was also pointed out there
that, due to the uniform sampling of the sea surface in radar images, the correspondent components in
a wave number-frequency domain cannot always strictly satisfy the dispersion relation, which results
in inaccurate wave retrieval.

As for the signal processing approach for non-stationary or non-homogeneous data, several
methods have been developed in the past few decades, such as the windowed Fourier transform and,
more recently, the wavelet transform [14]. The latter enables localization in the space or time-frequency
domain through translation and dilation of the so-called mother wavelet. It is recognized as a
powerful tool for non-homogeneous signal and image processing. Lately, it has been used for accurate
local directional spectra estimation in the transition from deep to intermediate waters (e.g., [15–18]).
However, although a number of attempts to improve the performance of the conventional method
have been done (see e.g., [19]), little attention has been paid to the validation and cross-verification of
the method in inhomogeneous nearshore environments.

The focus of this paper is to give an alternative to the existing inversion techniques in order to
account for the inhomogeneity of the wavefield nearshore, in particular, due to wave shoaling effects
and shadowing, and to validate its quality by means of stochastic simulations. Here, only linear
shoaling, which results in wavelength shortening and amplitude modulation, is considered. The new
technique can increase the quality of radar-derived surface elevations in comparison to in-situ point
measurements, both for mean parameters and for individual waves. Among the advantages of the new
method, is its ability to treat the whole image of the nearshore area as is, without the need to apply
windowing or a dispersion relation shell filter. To simplify the validation and visualization purposes,
only 1D spatial cases are presented. Additionally, considering that all of the inhomogeneous properties,
both of wavefields and radar imaging, are much stronger in range than in azimuth, it is important to
start from 1D cases and investigate them separately. It is also important to notice that the conventional
method’s performance in 1D has not been attentively investigated so far. Some considerations about
this topic, together with adaptation of the algorithm to 1D shoaling cases, are given in Appendix B.

The paper is organized as follows: Section 2 describes the realization of a wavy surface for
linear shoaling conditions, both for monochromatic waves and for a JONSWAP (JOint North Sea
WAve Project) spectra. Section 3 introduces the wavelet analysis used in the work. Section 4 briefly
describes imaging mechanisms that are important for nearshore X-band radar imaging, including tilt
and shadowing modulation, radar equations, and speckle noise, while, in Section 5, the application of
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those imaging mechanisms to simulated data is presented. The novel inversion procedure is given in
Section 6. An error analysis depending on the shadowing probability and noise levels is performed
in Section 7. The paper is finalized by some conclusions and future improvements of the proposed
inversion technique in Section 8.

2. Inhomogeneous Sea Surface Simulation

In this section, simulations of the sea surface are described, and the information regarding
bathymetry and initial conditions for every simulation is presented. First, it is necessary to discretize
the wavefield into a number of bins, set the initial amplitude values, and define the bathymetry used
in the simulation. It is also necessary to specify the discretization in space and time, ∆x and ∆t, to
define the sea surface elevation. All of the simulation parameters are summarized in Table 1. The 1D
sea surface for linear shoaling conditions can be expressed as a function of time and space in the
following manner:

ζ (x, t) = <
[

N

∑
j=1

aj (x) ei(ωjt−
∫ x

0 kj(ξ) dξ+ϕj)

]
, (1)

where ζ(x, t) is the surface elevation, aj is the amplitude of the wave component with angular
frequency ωj and wave number kj that is uniformly distributed over [0, 2π) initial random phase
ϕj. Throughout the paper, the units for the angular frequency and the wave number are fixed to rad/s
and rad/m, respectively, unless otherwise stated. The angular frequency and wave number satisfy the
dispersion relation

ω2
j = gk j(x) tanh

(
k j(x)h(x)

)
, (2)

which is used to define the wave number k j (x) as a solution of Equation (2) at every point in the spatial
domain. It is important to notice that, within the linear theory framework, the angular frequency of a
monochromatic wave remains constant in space by virtue of the wave conservation law [20].

In order to describe linear shoaling of the wave field, the one dimensional mild slope equation [21]
is used:

a′j(x)

aj(x)
=
−C′g,j(x)

2Cg,j(x)
, (3)

where Cg,j is the corresponding group velocity, which, in linear theory, is expressed as

Cg,j(x) =
1
2

Cj(x)

(
1 +

2k j(x)h(x)
sinh(2k j(x)h(x))

)
(4)

with Cj(x) = ωj/k j(x) describing the phase velocity. Equation (3) can be solved for the wave amplitude

aj(x) = aj(0)

√
Cg,j(0)
Cg,j(x)

, (5)

where aj(0) =
(

2
∫ ωj+1/2∆ω

ωj−1/2∆ω S(ω) dω
)1/2

is the initial value of the amplitude for a JONSWAP
spectrum [22] or just a fixed value of the monochromatic wave amplitude. Equation (5) is a direct
consequence of the energy flux conservation.

Wolfram Mathematica software was used to simulate the sea surface as a function of space and
time. Wave number values for certain depths were obtained using Equation (2). Integrals of the wave
number in space

∫ x
0 k j (ξ) dξ were obtained numerically. Examples of sea surface elevation realizations

both for monochromatic wave and JONSWAP spectrum are shown in Figure 1.
For shoaling waves simulations, it is convenient to define the origin of the spatial coordinates

in deep water at sea level. For radar image simulations, it is more common to work with the range
coordinates, which correspond to the distance between the radar antenna projection to the plane z = 0
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and a point of interest on the sea level. This distance is denoted as “range” in the figures below, whilst
in formulas, the standard notation of x-coordinate is employed.

Table 1. JONSWAP (JOint North Sea WAve Project) spectrum parameters used for surface modeling in
the paper.

Parameter Value

fetch (F) 500 (km)
wind speed (U) 3.2, 9.2, 15.7 (m/s)
peak period (Tp) 7, 10, 12 s

initial significant wave height (Hs0 ) 1.76, 4.53, 7.33 (m)
time step (∆t) 2 (s)

spatial step (∆x) 2 m
spectral resolution (∆ω) 0.031 (rad/s)

number of harmonics (N) 100
number of time samples (Nt) 151

number of range samples (Nx) 1001
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Figure 1. (a) Surface elevation ζ(x, t) range-time diagram for the monochromatic wave shoaling case
( f = 0.1 Hz, a0 = 1 m); (b) ζ(x, t) for the JONSWAP spectrum case ( fp = 0.14 Hz, Hs0 = 1.76 m);
(c) cross section ζ(x, 0) corresponding to panel (a), where the wave height is enhanced by factor of 3.5
(solid blue line), bathymetry profile according to Equation (A3) (dashed blue line), and corresponding
dimensionless wave number kh (solid orange line); (d) the same as (c) for the JONSWAP spectrum
case of panel (b). The values of kh (kph) correspond to intermediate-shallow water depth conditions.
The time-space crest slopes change in diagrams (a,b) after entering shallow waters, which corresponds
to changes in their celerity.

Linear Shoaling for Monochromatic Waves and Spectra

In the shoaling region, as a first approximation, the energy flux in the direction of the wave
propagation ECg is conserved with the wave energy E ∼ a2. When the wave field propagates into
intermediate waters, wavelengths start shortening, the group velocity changes, and therefore, the



Remote Sens. 2018, 10, 1919 5 of 22

wave amplitude evolves in order to conserve the energy flux (see Figure 2). It can be seen that the
monochromatic wave amplitude (Figure 2a) initially decreases as a consequence of the increase in
group velocity in intermediate waters before entering shallower waters. The significant wave height
depends on the wave amplitudes at all frequencies, which start shoaling in different depths; therefore,
the peak wave amplitude and Hs behave differently (Figure 2b).

(    )

(a)

(    )

(b)

Figure 2. (a) Evolution of the theoretical wave amplitude in space in accordance with expression (5);
(b) evolution of the significant wave height (see Equation (A2)) (JONSWAP spectrum case). Both cases
are given for the bathymetry h1(x), defined in Equation (A3) .

3. Wavelet Analysis of the Simulated Data

The continuous wavelet transform (CWT) can represent a signal, not only in frequency/wave
number but also in the time/space domain. The CWT is defined as follows [23]:

W[ f (x), ψ(x)](a, b) = a−1/2
∫
R

f (x)ψ∗
(

x− b
a

)
dx. (6)

Here, f (x) ∈ L2(R) is an initial signal, ψ is the mother wavelet, b is a coordinate shift, a is a scaling
factor (a > 0), and the asterisk denotes the complex conjugate. The mother wavelet is defined by
assuming that ψ ∈ L2(R) and that the admissibility condition is satisfied:

2π
∫
R

|ξ|−1|ψ̂(ξ)| dξ < ∞, (7)

or, equivalently,
∫
R ψ(ξ)dξ = 0. To generate doubly indexed families of wavelets from the mother

wavelet ψ, dilations and translations are added:

ψa,b(x) = a−1/2ψ

(
x− b

a

)
.

The normalization of the wavelet is chosen so that ‖ψa,b‖L2(R) = ‖ψ‖L2(R) = 1 for all a and b.

In the water wave applications, the Morlet mother wavelet ψ(x) = π−1/4
(

e−iξ0x − e−ξ2
0/2
)

e−x2/2

is usually used. The constant ξ0 is chosen so that the ratio of the highest to the second highest maximum
of ψ is approximately 1/2, i.e., ξ0 = π[2/ ln 2]1/2 ≈ 5.3364; in practice, ξ0 = 5 is often taken. In other
words, the Morlet wavelet is a complex wavelet whose real part is simply the harmonic function
cos(5x) with a Gaussian envelope.
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Traditionally, wavelet spectra are plotted as functions of the scaling factor a. For the following
analysis, a definition of the pseudo wave number is needed. So, if Kc is the central wave number of the
mother wavelet, then the pseudo-wave number is defined as

Ka =
Kc

a · ∆x
. (8)

Here, Kc = ξ0 ≈ 5. To reduce the computational costs, the traditional definition of the CWT is slightly
changed to rewrite Equation (6) using the identity W(a, b) = F−1 {F{W(a, b)}} (F is a Fourier
transform), which results in the following:

W[ f (x), ψ(x)](a, b) =
√

a
2π

∫
R

f̂ (ω)(ψ̂)∗(aω)eiωb dω. (9)

Formula (9) is widely used in different types of software and is called the Continuous Wavelet
Transform with Fourier Transform (CWTFT) and is the one used in this paper. The results of the
CWTFT application to the original images in Figure 1 are given in Figure 3.

|W(x,k)|

(a)

|W(x,k)|

(b)

Figure 3. (a) Time-averaged CWTFT (Continuous Wavelet Transform with Fourier Transform) of
the monochromatic wave shoaling signal from Figure 1a (with Morlet mother wavelet). The color
bar represents the absolute values of the wavelet coefficient which were obtained by averaging 150
successive time samples of the spatial surface elevation; (b) the same for the JONSWAP spectrum case
from Figure 1b.

4. Basic Imaging Mechanisms—A Literature Summary

As mentioned in the introduction, geometrical modulations are considered to be dominant in
incoherent X-band radar imaging. For the grazing incidence, some additional imaging mechanisms
start to be important. For nearshore radars, the local incident angle ψ also changes from a fairly small
angle to almost π/2, adding significant inhomogeneity to the resulting image due to the radar equation
and a range-dependent shadowing effect.

The hydrodynamic modulation is weaker than the other two [7,24]; therefore, it is not considered
in this work.

4.1. The Radar Equation

The classical form of the radar equation (see, e.g., [25]) gives the received power Pr as

Pr =
PtGt Aeσ

16π2R4 , (10)
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where Pt is the transmitted power (W), Gt is the antenna gain coefficient, R is the distance (m), Ae is
the antenna effective aperture area (m2), and σ is the target cross-section (m2).

When the same antenna is used to both transmit and receive, the transmitting gain Gt and the
effective receiving aperture Ae are related by Gt = 4πAe/λ2

em, where λem is the length of the radar
electromagnetic wave. Hence, everything on the right-hand-side of the Equation (10), except for σ and
R−4, can be included as a constant.

For our purposes, Equation (10) is represented in terms of the intensity I(r) ∝ I0/R3 (here, I0 is a
reference intensity), since the pixel size is equal to R∆r∆φ and grows with R (∆r and ∆φ are the range
and the azimuthal resolution, respectively). However, for the 1D case the range dependence on the
pixel size can be disregarded.

4.2. Shadowing

Shadowing modulation is a partial occultation in long wave profiles. This is due to the fact that
the tangent electromagnetic rays cannot penetrate significantly into the area of a long wave profile
situated under the ray between the tangent point and next intersection points (Figure 4). Generally
speaking, shadowing can not be considered a purely geometrical effect, especially for the vertical
polarization of electromagnetic signals [26]. For horizontal ones, geometric shadowing is assumed to
be a rather good approximation.

There are several ways to calculate the shadowing mask for a given realization of the surface
elevation and probing geometry. For a discretized sea surface, an approach based on the comparison of
the local incidence angles is employed. For a given realization of the surface elevation ζ(x, t), the local
incidence angles are defined as β(x, t) = arctan

[
x

Hr−ζ(x, t)

]
, where Hr is the radar installation height.

Then, for a fixed time instance t′, the shadowing condition depicted in Figure 4 is applied to each
range point xi : β(xk, t′) ≤ β(xi, t′), ∀k : i < k ≤ Nx. If, for any point xk, the condition is satisfied,
the corresponding surface point ζ(xk, t′) is marked as shadowed using an indicator (shadowing mask):

χ(x, t′) =

{
1, if ζ(x, t′) is shadowed,

0, otherwise.
(11)

The shadowing probability (shadowing frequency) can be estimated empirically as

Psh(x) =
1

Nt

(
Nt

∑
i=1

χ(x, ti)

)
, (12)

where Nt is the number of successive time steps in the realization; the actual value used in the
simulation is given in Table 1. The shadowing probability may be estimated more rigorously for
a random function z = ζ(x) with a known joint probability density function of heights and slopes
w(ζ, ζx) (see Appendix A).

For an incoherent X-band radar at the grazing incidence, the shadowed area and its spatial
distribution are the only values that are directly related to the wave height field. Due to the fact
that such radars are uncalibrated—there is no direct relation between measured intensity and wave
heights—shadowing mask retrieval is one of the methods used for radar calibration either in the
framework of individual wave inversion [27] or for significant wave heights estimation [28].

4.3. Speckle Noise

Speckle noise is a granular noise that is inherently present in images and degrades their quality.
Rough surface images obtained by coherent systems such as lasers, SAR (Synthetic Aperture Radar),
or ultrasound are affected by speckle noise. Due to the finite resolution, signal forms are received as
reflections from scatterers within a resolution cell. These scattered signals sum coherently, depending
on the relative phase of each scattered waveform [29]. The noise resulting from these patterns of
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constructive and destructive interference manifests as bright and dark dots in the image; hence, they
are sometimes called “salt and pepper” patterns or speckle noise.

If the radar antenna with the biggest overall dimension D is assumed to be in the far (Fraunhofer)
zone with respect to the current resolution cell of the radar (the correspondent range is defined by
inequality r ≥ 2D2/λem), the complete spatio-temporal auto-correlation function of the backscattered
radar signal intensity can be defined as

C(ρ, τ) = 〈I(x, t) · I(x + ρ, t + τ)〉 , (13)

where ρ and τ are the range and time lag respectively, and the angular brackets denote the ensemble
averaging.

In [7] it was shown that, assuming statistical independence of the resonating ripples and the
long waves, C(ρ, τ) can be decomposed into the sum of two terms, C(ρ, τ) = C1(ρ, τ) + C2(ρ, τ),
corresponding to the slow and fast fluctuations of the backscattered signal, respectively. The slow
fluctuations describe the mild changes in the radar’s cross-section due to tilt and hydrodynamic
modulations, and the fast fluctuations appear due to speckle noise. The peculiarity of this noise is that
it has a multiplicative nature. This is due to the fact that the signal backscattered from different parts
of the long wave within the resolution cell arrives at the antenna having already been modulated by
the corresponding orbital velocities.

By denoting the effective signal as I, the speckle-noise affected signal can be modeled as

Isn = (I + c) · (1 + G), (14)

where G is a realization of the 2D Gaussian noise. A positive offset value c is added to account for
the speckle, not only in the signal but also in shadowed areas, which originally have zero intensity
(c = 0.2 was used in this paper). This offset can be used as an additional parameter to control the
signal-to-noise ratio.

5. Simulation of the Sea Clutter Images and Their Wavelet Analysis

The creation of modeled radar images from original surface elevation maps requires several steps.
First, a shadowing mask is applied to define the shadowing modulation: Ish(x, t) = ζ(x, t) · κ(x, t).
The function κ = 1− χ is an indicator of the illuminated (not shadowed) area with χ, as defined in
Equation (11). Second, the tilt modulation should be introduced. For this purpose, the surface elevation
slope ζx is required. It can be defined either analytically or with finite differences from Equation (1).
The joint tilt and shadowing modulation are calculated as follows:

Itilt+sh =

{
(~n · ~u), if (~n · ~u) > 0 and κ = 1,

0, otherwise.
(15)

Here, ~u is the unitary vector starting at point ζ(x, t) and pointing to the radar (see Figure 4), (·) is the
scalar product in a 2D Euclidean space, and~n is the external unitary normal vector to the surface point
ζ(x, t). It is calculated as~n = ~ρx × ~ρz/|~ρx × ~ρz|, where only the first two components of the resulting
vector are considered, ~ρx = (1, ζx, 0), and ~ρz = (0, 0, 1).

Third, the speckle noise model presented by Equation (14) is applied using a realization of the
random 2D Gaussian noise with zero mean and dispersion nl (0 ≤ nl < 1). For convenience, the noise
level is given as a percentage.

It is important to note that all imaging mechanisms are range dependent as they use the local
incident angle in their definitions. In coastal probing, this angle changes significantly within the radar
footprint. To ensure the requirement of working in the far zone in the modeled sea clutter image,
a constant range offset of R0 = 200 m is added. Finally, the range trend due to the radar equation is
added using Equation (10).
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Figure 4. Probing geometry scheme including the illustration of shadowing and tilt modulation as
a scalar product of the unitary external normal vector~n and the unitary vector pointing to the radar
antenna ~u.

To start working with simulated images constructed using the above procedure or a real X-band
radar image, the time-averaged range trend first needs to be subtracted using the radar equation.
In real radars, the backscattered signal is further amplified, usually with a logarithmic amplifier. This
amplification trend should also be treated before applying the inversion procedure. Implementation
examples of the described technique for a monochromatic wave and for a JONSWAP spectrum together
with their corresponding wavelet spectra are given in Figure 5.

I(x,t)

(a)

I(x,t)

(b)

|W(x,k)|

(c)

|W(x,k)|

(d)

Figure 5. (a) Range-time diagram of the detrended radar image intensity for the monochromatic
wave case given in Figure 1a (noise level nl = 10%, radar height Hr = 50 m); (b) the same as panel
(a) for the JONSWAP spectrum case given in Figure 1b. The intensities are presented in relative values.
Negative values in the intensities appear as a result of image range detrending after the radar equation
application. (c,d) Corresponding averaged wavelet spectra of the radar images (a,b) respectively.
The red dashed lines mark the low-pass (LP) filter boundary. For the monochromatic wave case in the
wavelet spectrum (c), the second harmonic manifestation due to the imaging mechanisms is evident in
the stripe 1300 ≤ x ≤ 2200 m.
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6. Inversion of the Simulated Radar Images into Surface Elevations (Wavelet Analysis)

In this section, a wavelet method for radar image inversion to surface elevation maps is introduced.
One of the strengths of the proposed approach is that the procedure is applied to each time instant
independently. This allows to the inversion to be performed without information on the dispersion
relation. Normally, filters are applied to account for the dispersion relation information. In case of
shoaling over a sloping bottom, the dispersion relation can only be defined locally as a function of
depth. Here, since it is not possible to account for dispersion relation information in a global image,
a higher harmonic filtration is performed in the wave number domain only by means of a special
low-pass (LP) filter. In order to avoid the limitations of the conventional method while working with
spatially inhomogeneous data, the CWTFT is used as a basis for a new radar image processing method.

The new image inversion method consists of the following procedure (also see the block diagram
in Figure 6):

1. Estimation of the CWTFT coefficients of a radar image W[I(x, ti), ψ(x)](x, k) at a fixed time
instance ti and calculation of the correspondent pseudo-wave numbers.

2. Application of the empirical Modulation-Transfer Function (MTF) in a wave number-coordinate
domain MTF(x, k) = |k|−β. The empirical power β is set to 0.9 for all applications.
The wavelet-based technique allows the β to vary with the range; nevertheless, a range
independent MTF is employed as a first approximation. The details of the MTF’s choice are
discussed in Appendix C.

3. Use of combined high-pass (HP) and LP filters F to reduce noise and influence of higher harmonics.
The corresponding filter in the wave number-coordinate domain is defined as F(x, k) =

X
(
{(x, k)|k0 < k < lkp(x), xmin ≤ x ≤ xmax}

)
, where X denotes a characteristic function of a

set of points, k0 is constant in space (0.001 m−1 used in this paper), kp(x) is the line of maximum
energy in a wavelet spectral domain as a function of space, and l is an empirical constant. Here,
the value l = 3 is used for both monochromatic wave and spectrum cases. The filtered wavelet
spectrum is further defined as WF[I(x, ti), ψ(x)](x, k) = W[I(x, ti), ψ(x)](x, k) · F(x, k).

4. Phase shift correction: As geometrical mechanisms are used, a phase shift equal to π/2 is applied
to every complex spectral wavelet component.

5. Calculation of the inverse CWTFT and calibration: Denoting the ICWTFT as ζ̆, the calibrated
surface elevation is defined as ζ̃ = ζ̆σall [ζ]/σall [ζ̆], where σall is the time averaged standard
deviation of a 2D array denoted as A in the range defined in Equation (16).

σall [A] =
1

Nt

Nt

∑
i=1

 1
Nx − 1

Nx

∑
j=1

∣∣∣∣∣A(xj, ti)−
1

Nx

Nx

∑
j=1

A(xj, ti)

∣∣∣∣∣
2
1/2

. (16)

In order to analyze the obtained results, the absolute error of the reconstruction ∆a(x, t) =

|ζ(x, t)− ζ̃(x, t)| is calculated. Together with Equation (16), some other statistics are useful for the
error analysis. To estimate the error on specific time sections, its standard deviation and mean value
are introduced by Equations (17) and (19) respectively. To estimate the overall mean value of the error,
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expression (18) is used, whilst, for a time averaged absolute value as a function of range, Equation (20)
is employed.

σt0
sec[A] =

 1
Nx−1

Nx
∑

j=1

∣∣∣∣∣A(xj, t0)− 1
Nx

Nx
∑

j=1
A(xj, t0)

∣∣∣∣∣
2
1/2

, (17)

Mall [A] = 1
Nx Nt

Nt
∑

i=1

Nx
∑

j=1
A(xj, ti), (18)

Mt0
sec[A] = 1

Nx

Nx
∑

i=1
A(xi, t0), (19)

Mt[A](x) = 1
Nt

Nt
∑

i=1
A(x, ti). (20)

The cross-correlation coefficient is defined by the following equation

Ct0
sec[A, B] =

1

(Nx − 1)σt0
sec[B]σ

t0
sec[A]

Nx

∑
i=1

∣∣∣A(xi, t0)−Mt0
sec[A]

∣∣∣ ∣∣∣B(xi, t0)−Mt0
sec[B]

∣∣∣ . (21)

Time sequence of 1D radar images

CWT is applied to each 1D image separately resulting in wavelet 
spectrum W(x,k) 

Application of the empirical range independent modulation 
transfer function

L
o

o
p

 i
n

 t
im

e

Combined high-pass and low pass filtration to reduce noise
and effects of higher harmonics 

Phase shift correction. For tilt modulation, the phase correction is 
equal to 

Inverse CWT application results in 1D relative surface elevation

Calibration

Figure 6. Block diagram of the new wavelet-based reconstruction algorithm.

In Equations (16)–(21), letters A and B denote 2D arrays of equal sizes, for which the corresponding
statistics are calculated. In the cases mentioned hereafter, A and B are substituted with specific
notations of the array they are applied to (e.g., ζ, ζ̆, ζ̃, ∆, or ∆a). For brevity, the correlation coefficient
notation Cζ, ζ̃ might be used instead of Ct0

sec[ζ, ζ̃] when it is clear which cross-section is taken.
In Figure 7 the range–time diagram of the original reconstructed map difference ∆ = ζ(x, t)−

ζ̃(x, t) for the monochromatic wave and the JONSWAP spectrum together with Mt[∆a](x) values
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and the corresponding shadowing probability (refer to the Equation (12)) are given both for the
conventional method and for the new one.

From the difference maps, it is clear that the new method shows much better performance in the
reconstruction of the surface elevation. Some local extreme values of the corresponding differences for
the new method appear only in strongly shadowed troughs.

Since the Fourier transform based CWT is used, the first and last 200 m in the reconstructed
image are not taken into account in the estimation of the error statistics (summarized in Table 2) in
order to disregard edge effects. A comparison between the original and reconstructed instantaneous
surface elevation profiles is presented in Figure 8. The corresponding statistical parameters are given
in the last three columns of Table 2, showing a high correlation between the original and reconstructed
signals on the section with a comparatively small mean error and dispersion. Unlike the conventional
method, the results of the present method demonstrate a very high correlation between the original and
reconstructed surface elevations. The speckle noise, which is clearly seen, especially in the shadowed
troughs on the cross-section of the corresponding radar images (orange curves in Figure 8a,c), is filtered
out in the resulting image due to the use of the corresponding LP filter in the wave number-coordinate
domain. The present method also grasps the individual wave heights and crest/trough locations
significantly better.

b)

d)

g)

Figure 7. Range–time diagram of the differences between the original and reconstructed images (∆) for
the monochromatic wave case (a) with the conventional method and (c) with the new CWTFT-based
method; (e) range dependence of the time-averaged absolute error Mt[∆a](x) for both methods,
and (f) corresponding shadowing probability. (b,d,g,h). The same is shown for the JONSWAP spectrum
case. The algorithm for the utilization of the conventional method in 1D case is given in Appendix B.
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Table 2. Absolute error ∆a statistics for the new CWTFT-based method for the monochromatic wave and
JONSWAP spectrum examples given in Figures 1–5, 7 and 8. Here meanPsh = Mall [χ], where χ(x, t)
is the shadowing mask (see Equation (11)), and the other columns to the right side are defined by
Equations (16)–(19) and (21) respectively.

Case Hr (m) Mean Psh(%) Mall [∆a] (m) σall [∆a] (m) Mt0
sec[∆a] (m) σt0

sec[∆a] (m) Cζ,ζ̃

monochromatic wave 50 16 0.067 0.051 0.071 0.063 0.991
spectrum 50 39 0.164 0.147 0.169 0.142 0.872

a)

b)

c)

d)

Figure 8. (a) Comparison of the relative fluctuations of the initial surface elevation and the detrended
radar image cross-section for the monochromatic wave case. A π/2 phase shift, resulting in a
one-quarter local wavelength shift in physical space is evident. (b) Comparison between ζ and ζ̃

for the conventional method and the new CWTFT based method on the same section. The statistical
parameters of the comparison are summarized in Table 2 in the last three columns. (c,d) The same is
shown for the JONSWAP spectrum case.
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7. Analysis of the Results

In this section, the accuracy of the new wavelet based method is evaluated extensively with
respect to various geometric (antenna height), environmental (bathymetry and speckle-noise level),
and sea state parameters. The shadowing probability is a function of several parameters, e.g., the
incident angle and variation of the surface slopes εRMS, which are functions of the range (for details
refer to Appendix A). For simplification, the mean amount of shadowing is controlled solely using the
radar installation height Hr. In Figure 9a, the error (∆a(x, t)) mean value and its standard deviation
averaged over time and space are given using Equations (16) and (18), respectively. They are given
as functions of the radar installation height Hr both for the entire range–time map and an arbitrarily
chosen cross-section. The dependence of the cross-correlation coefficient (Equation (21)) of the original
and reconstructed surface elevations is also presented with respect to Hr. The results are averaged
over the nine bathymetry profiles given in Appendix B and three JONSWAP spectra (for simulation
parameters details, refer to Table 1).

In Figure 9a, it can be clearly seen that as the shadowing probability increases (antenna height
decreases), the accuracy of the inversion method decreases. This behavior is expected as the shadowed
patches contain no backscatter information from the surface elevation for the inversion procedure.
The calculated values relate to an averaging over the complete image with respect to Hr; nevertheless,
the argument Hr does not necessarily relate to the actual antenna height but serves as a measure of
shadowing. Parts of the image area can have a local shadowing probability which corresponds to very
high antenna installations, and other parts of the image correspond to very low antenna installations.
This implies that there is quite a high accuracy level as long as the shadowing probability is low at a
certain range.

Figure 9b shows the influence of the speckle noise level on the accuracy of the inversion procedure.
As expected, a higher noise percentage reduces the accuracy. Still, typical speckle noise contamination
values (≈10%) do not affect the inversion significantly.

(a)

Figure 9. Cont.



Remote Sens. 2018, 10, 1919 15 of 22

(b)

Figure 9. (a) Main statistical parameters of the absolute error ∆a with respect to the corresponding
shadowing probability (represented by the radar installation height Hr) are summarized as percentages
of the significant wave height. The results are additionally averaged over the nine bathymetry profiles
and three JONSWAP spectra. (b) The same is shown for the noise level dependence. The radar
installation height was 230 m (almost no shadowing conditions) for this set of experiments.

8. Conclusions

A new wavelet-based algorithm for the inversion of inhomogeneous radar images was presented.
It enables a thorough analysis of shoaling processes, including wave amplitude and length changes,
taking the whole image in space as is. The proposed method shows high efficiency in filtering speckle
noise and in treating local wave phase shifts due to tilt effects. For the grazing incidence (Hr ≈ 20 m),
the new method indicates the same level of accuracy for inhomogeneous shoaling conditions as the
conventional one in homogeneous sea states (compare [12]). Despite the fact that 1D and 2D cases
are compared, the lack of a broader accuracy analysis of the conventional method performance in
1D makes it possible to use this result as reference. As the probability of shadowing decreases (Hr

increases), the corresponding accuracy of the new method improves significantly.
The new method addresses the intrinsic limitation of conventional FFT-based methods

of accounting for the inhomogeneous conditions common to wave shoaling. In such cases,
the conventional method cannot apply the phase shift correctly which can be easily overcome by the
localized wavelet-based technique. In this paper, the effect of linear shoaling was taken into account.
This kind of process deals with a significant wave number modulation and mild amplitude changes.
In cases with strong amplitude modulations, such as in wave grouping and rogue waves, additional
investigation of the method performance is needed.

The range resolution used in this paper is finer than that provided by typical nautical radars
and ensures a sufficient sampling rate, accounting for wavelength shortening. When working with a
typical nautical radar’s range resolution of 4.5–10 m, it is important to limit the analysis to a certain
wavelength range, remembering the limitation of 10 sample points per peak wavelength. This can be
checked directly with the CWT spectrum analysis.

There are various possible extensions to the described wavelet approach. The new model could be
extended to include more advanced adaptive HP and LP filters in the pseudo-wavenumber coordinate
domain by choosing the corresponding band-pass in accordance with the spectral width to allow
more efficient filtration of the higher harmonics. Without significant changes to the algorithm, the
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wavelet method could also be extended to 2D spatial cases. Additionally, a localized (coordinate
dependent) MTF could be derived to improve the inversion performance in a global nearshore image.
It is important to stress that with minor changes to the MTF, the same model could be used for
moderate incidences, which are common for airborne and spaceborne radars. In cases where it is
impossible to obtain a temporal sequence of the same area (required for the conventional method), the
ability of the wavelet method to treat individual spatial images could make it the prominent approach
for moving platforms.
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Abbreviations

The following abbreviations are used in this manuscript:

CWT Continuous Wavelet Transform
CWTFT Continuous Wavelet Transform with Fourier Transform
ICWTFT Inverse Continuous Wavelet Transform with Fourier Transform
FFT Fast Fourier Transform
MTF Modulation Transfer Function
JONSWAP JOint North Sea WAve Project
SAR Synthetic Aperture Radar
LP Low-Pass (filter)
HP High-Pass (filter)

Appendix A. The Shadowing Probability, Accounting for Linear Shoaling Conditions

For typical probability density functions of heights and slopes of monochromatic waves or with
normal distributions, rather compact analytical expressions for shadowing probability have been
presented, e.g., in [30,31]. In the case of linear shoaling, the corresponding expressions can be modified
as follows. The probability of shadowing for a random surface with a characteristic (RMS) slope
ε2

RMS(x) =
〈
(dζ/dx)2〉 is

S(Hr, x, εRMS) =
Λ(b) + 1/2erfc(b/

√
2)

Λ(b) + 1
, (A1)

where Λg(b) =

√
2
π b−1e−b2/2−erfc(b/

√
2)

2 for locally Gaussian distributions and Λm(b) =
1√
π

(√
2/b− 1− arccos(b/

√
2)
)

for monochromatic wave distributions. In previous expressions,

b = Hr/(xεRMS), erfc(x) =
∞∫
x

e−t2
dt. The corresponding εRMS(x) can be calculated as

ε
g
RMS(x) =

√
2Hs(x)kp(x)/4π, εm

RMS(x) = a(x)k(x)/π.

Here, the significant wave height evolution can be defined as

Hs(x) = 4

 ∞∫
0

S(ω)
Cg(k(ω, h(0)), h(0))
Cg(k(ω, h(x)), h(x))

dω

1/2

. (A2)
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The peak wave number kp(x) as a function of range is obtained as the root of the dispersion
relation shown in Equation (2) with the frequency value of ωp = 2π/Tp, assuming a weak dependence
of ωp on the range, which is reasonable for linear shoaling cases. The amplitude evolution a(x) is
defined by Equation (5).

Appendix B. Utilization of the Conventional Method for the Radar Image Sequences Inversion
in 1D Case

In this paper, the conventional method is adopted and utilized for a 1D case in accordance with its
original introduction in [9] for the inversion of 2D spatial radar image sequences to surface elevation
maps. A number of simulations, including both monochromatic wave and JONSWAP spectrum cases
(with and without shoaling) were tested on a set of simulated 1D radar image sequences. Generally, the
results revealed that the conventional method produced much poorer results in 1D than in 2D cases, due
to spectral leakage effects and a finite (coarse) resolution in the spectral domain. Sometimes, even for the
simplest case of a propagating monochromatic wave, the inverse wave had a frequency deviation equal
to the frequency step ∆ω in Fourier space and necessarily resulted in a discrepancy in comparison with
the original image. For the 2D cases, this issue seemed to matter less due to availability of information
in the lateral wave number, which might compensate the frequency deviation effect. The above
confirms and expands on previous considerations on conventional methods presented in literature (e.g.,
the paper [13] mentioned in the introduction as a part of the literature review, also [32,33]).

The addition of linear shoaling revealed other limitations of the conventional method, as it did
not satisfy the assumption of signal’s spatial homogeneity and periodicity. Without the advantage of
the localization in space, which was performed in the wavelet analysis case, the conventional method’s
FFT will put the signals coming from deeper and shallower waters on the same frequency line, but
with different wave numbers, which will lead to the formation of a two-pronged signal in the spectral
domain following two dispersion relation curves—one for deep waters and another for shallow waters
(see black and red curves in the Figure A1). This requires the use of quite a wide dispersion relation
shell to fit all of the signals inside. Any type of windowing will not solve the problem due to the
fact that there regularly exists an area with a significant wave number gradient in transition from
intermediate to shallow waters (see, e.g., the area limited by 600 < x < 1000 in the range of the wavelet
spectrum for the JONSWAP spectrum case from Figure 3b), which will demonstrate the same effect
even on a comparatively small window.

Since the utilization of the conventional method in 1D (non-homogeneous) case has not previously
been described in the literature, the algorithm used in the paper is given below.

1. Estimation of the complex 2D Fourier spectrum F[I(x, t)](k, ω) of a 1D radar image sequence.
To mitigate the aliasing effect, the area of the negative frequencies ω < 0 is cut and pasted above
the Nyquist frequency.

2. Application of the dispersion relation shell filter in order to separate the signals of wave
modulations from the higher harmonics. The resulting filtered signal contains the following
set of harmonics {F[I](k, ω) :

∣∣∣ω− k ·U ∓
√

gk tanh(khmean)
∣∣∣ ≤ ∆ f /2}, where hmean is the

arithmetic average between the minimal and the maximal depth over the image area, U is the
uniform current, and ∆ f is the width of the filter.

3. Application of the empirical Modulation-Transfer Function to the spectral amplitudes MTF =

|k|−1.2 [9].
4. HP filtration, which passes all the components higher than a certain limiting wave number kth

and corresponding frequency ωth. According to [34] it is plausible to take ωth = 0.19 rad/s.
The corresponding kth is calculated using the dispersion relation accounting for the minimal water
depth (hmin).

5. Phase shift correction: As geometrical mechanisms are used, a phase shift equal to π/2 should be
applied to every complex spectral component. The constant phase shift is applicable only in case of
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homogenous and periodic signals. In cases of linear shoaling, when the phase of the original signal
is defined as in Equation (1), this step does not give the desired result and hence becomes optional.

6. Calculation of the inverse FFT, taking the real part of the resulting array and calibration.
The calibration is conducted using the same approach as described in the new method.

The results of the conventional method application to the inhomogeneous radar images, both for
the monochromatic wave and the JONSWAP spectrum case, and their comparison with the new method
are given in Figures 7a,b,e,g and 8b,d. For the monochromatic and the JONSWAP spectrum cases, the
same dispersion relation filter parameters were applied. For simplicity, the wave–current interactions
were neglected, as they do not affect the new method (it works in the wave number-coordinate
wavelet domain and does not rely on the dispersion relation filter). For the conventional method,
the consideration of the current adds just one step to fit into the wavenumber-frequency domain.

Figure A1. Example of the 2D (k−ω) Fourier spectrum for the utilization of the conventional method
in 1D case after stages 1 and 2 were applied to the radar image of the JONSWAP spectrum case from
Figure 5b. The wind wave signal is inscribed in the broad dispersion relation filter (∆ f /2 = U0 =

0.15 rad/s) based on the mean depth hmean = 35 m. It is clear that the signal from the waves forms
a two-pronged pattern following two dispersion relations, one for deeper waters (hmin = 60 m),
another for shallower waters (hmax = 10 m). The manifestation of higher harmonics and group line is
also evident.

Appendix C. Modulation-Transfer Function Discussion

The choice of the MTF is a crucial aspect of any radar image inversion technique, and a debatable
one. Historically, several approaches have been used. The MTF was first introduced and evaluated
in [9]. The power β was found there to be 1.2 by fitting the measured spectra to the omnidirectional
spectra of radar images derived using a dispersion relation shell filter in the wave number-frequency
domain. In that paper, for different sea state conditions arbitrarily selected from 3 days of measurement
(1.9 < Hs < 4.3 m), the power of MTF varied from 0.97 to 1.37, and its mean value, 1.2, was selected.
This value is commonly used in conventional methods. In [19], a piecewise constant model for the
MTF power was proposed in order to attain the best fit with the power law of the weak turbulence
theory, whereas in [35], a similar fitting was done in the spectral domain under logarithmic coordinates
using a parabolic model of the MTF (the original MTF corresponds to the linear model in logarithmic
coordinates). These three examples show that, currently, there is no universal agreement on either
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the value of the power β or on the shape of the MTF to be used. It should also be noted that all the
MTFs are fitted in the spectral domain due to the fact that in point measurements there is no option to
compare the results of the original and reconstructed time series directly at all spatial points.

The same power-shaped MTF model used in [9] is used in the new proposed wavelet based
method with a fundamental difference. Whilst the conventional method operates in the wave
number-frequency domain, the wavelet based one works in a pseudo-wave number coordinate domain;
hence, the pseudo-wavenumber is the one employed in the MTF. In a set of numerical experiments
with different sea-state and bathymetry conditions with a fixed probing geometry, the power β varied
in a range from 0.5 to 1.5 with a step of 0.1. Using the minimization of the mean error and variance
between the original and reconstructed profiles as criteria resulted in a value β of 0.9. This value of β

was then used as a constant for all numerical simulations shown in this paper.
Another important aspect of the MTF, which is less discussed in the literature, is the phase

shift correction. It was shown in [11] that, for a purely monochromatic wave and tilt modulation,
the corresponding MTF is an imaginary value, providing a π/2 phase shift in the spectral domain.
The complication starts when the signal is wave number modulated (e.g., in the shoaling conditions
regarded in this paper). In fact, in such cases, the conventional method is unable to correctly apply the
corresponding phase shift, while the localized wavelet based technique easily does this (see Figures 7
and 8). This seems to be one of the main reason why the conventional method fails to analyze the
shoaling wave image globally.

Appendix D. Bathymetry Profiles

The nine bathymetry profiles used in the numerical simulations are presented below.

h1(x) =


10 200 ≤ x ≤ 700,

60 1700 < x ≤ 2200,
x

20 − 25 700 < x ≤ 1700;

(A3)

h2(x) =


10 200 ≤ x ≤ 550,

60 1800 < x ≤ 2200,
x

25 − 12 550 < x ≤ 1800;

(A4)

h3(x) =


10 200 ≤ x ≤ 333,

60 2000 < x ≤ 2200,
10(5x+2)

1667 333 < x ≤ 2000;

(A5)

h4(x) =


30 200 ≤ x ≤ 450,

60 1950 < x ≤ 2200,
x

50 + 21 450 < x ≤ 1950;

(A6)

h5(x) =


45 200 ≤ x ≤ 450,

60 1950 < x ≤ 2200,
x+4050

100 450 < x ≤ 1950;

(A7)
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h6(x) =


10 200 ≤ x ≤ 700,

60 1700 < x ≤ 2200,
3x
50 − 42 1200 < x ≤ 1700,
x

25 − 18 700 < x ≤ 1200;

(A8)

h7(x) =


10 200 ≤ x ≤ 700,

60 1700 < x ≤ 2200,
4x
25 − 212 1450 < x ≤ 1700,
x+50

75 700 < x ≤ 1450;

(A9)

h8(x) =



10 200 ≤ x ≤ 700,

60 1700 < x ≤ 1900∨ 2000 < x ≤ 2200,

820− 2x
5 1900 < x ≤ 1950,

2x
5 − 740 1950 < x ≤ 2000,
x

20 − 25 700 < x ≤ 1700;

(A10)

h9(x) =



10 200 ≤ x ≤ 700,

60 1450 < x ≤ 2200,

403.341 − 0.33334x 1100 < x ≤ 1150,

0.46666x− 516.659 1150 < x ≤ 1200,

0.066668x− 36.6686 1200 < x ≤ 1450,

0.0666675x− 36.6673 700 < x ≤ 1100.

(A11)
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