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Abstract: Satellite precipitation estimates (SPE), characterized by high spatial-temporal resolution,
have been increasingly applied to hydrological modeling. However, the errors and bias inherent in
SPE are broadly recognized. Yet, it remains unclear to what extent input uncertainty in hydrological
models driven by SPE contributes to the total prediction uncertainty, resulting from difficulties in
uncertainty partitioning. This study comprehensively quantified the input uncertainty contribution
of three precipitation inputs (Tropical Rainfall Measurement Mission (TRMM) near-real-time
3B42RTv7 product, TRMM post-real-time 3B42v7 product and gauge-based precipitation) in
rainfall-runoff simulation, using two hydrological models, the lumped daily Ge´nie Rural (GR)
and distributed Coupled Routing and Excess STorage (CREST) models. For this purpose, the variance
decomposition method was applied to disaggregate the total streamflow modeling uncertainty into
seven components (uncertainties in model input, parameter, structure and their three first-order
interaction effects, and residual error). The results showed that the total uncertainty in GR was lowest,
moderate and highest when forced by gauge precipitation, 3B42v7 and 3B42RTv7, respectively.
While the total uncertainty in CREST driven by 3B42v7 was lowest among the three input data
sources. These results highlighted the superiority of post-real-time 3B42v7 in hydrological modeling
as compared to real-time 3B42RTv7. All the input uncertainties in CREST driven by 3B42v7, 3B42RTv7
and gauge-based precipitation were lower than those in GR correspondingly. In addition, the input
uncertainty was lowest in 3B42v7-driven CREST model while highest in gauge precipitation-driven
GR model among the six combination schemes (two models combined with three precipitation inputs
abovementioned). The distributed CREST model was capable of making better use of the spatial
distribution advantage of SPE especially for the TRMM post-real-time 3B42v7 product. This study
provided new insights into the SPE’s hydrological utility in the context of uncertainty, being significant
for improving the suitability and adequacy of SPE to hydrological application.

Keywords: uncertainty analysis; GR model; CREST model; hydrological effect of satellite precipitation;
TMPA

1. Introduction

Precipitation is one of most critical input variables for accurate hydrological simulation [1,2].
Studies on the precipitation input impacts on the performance of hydrological models are fewer,
compared to the attention paid to sophisticated rainfall-runoff modeling approaches [3]. Concretely,
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for example, traditional attention towards hydrological model uncertainty was mostly paid on
parameter uncertainty and/or structure uncertainty inherent in models per se. Recently, input
data uncertainty related to the external forcing has been regarded as a source of systematic bias
in rainfall-runoff process with its increasingly pervasive influence on hydrological models [4–6].

Satellite precipitation estimates (SPE) are promising alternatives to precipitation measurement in
hydrological utility, particularly over the gauge-sparse or ungauged regions [7–11]. Although SPE are
capable of reproducing spatial-temporal precipitation at high resolutions, the accuracy in supporting
reliable hydrological modeling is limited [12,13]. This is primarily because of the indirect observation
and noisy retrieval of such high-resolution satellite precipitation [14] and resampling errors from
coarse to fine resolution in hydrological utility [15]. Taking the Tropical Rainfall Measurement Mission
(TRMM) Multi-satellite Precipitation Analysis (TMPA) products as an example, Maggioni et al. [16]
analyzed TRMM Version-7 near-real-time (hereafter referred as 3B42RTv7) and post-real-time (referred
as 3B42v7) products over the United States. It was concluded that the random error is the main
error component of TRMM precipitation which is larger than systematic error, and both of these
errors strongly depended on satellite rain rates. Yong et al. [17] reported that the error components
of the TRMM estimates showed strong seasonal and regional differences over mainland China.
Maggioni et al. [18] further stated that the uncertainty of 3B42RTv7 was higher during the warm season
characterized by convective storms, relative to the cold season with organized stratiform precipitation.
Therefore, SPE with random errors and biases could induce input uncertainty in streamflow and flood
simulation, resulting in unreliable decision making or guidance in engineering and policy.

Several attempts have been made to identify the input uncertainty induced by SPE in hydrological
modeling. Knoche et al. [12] jointly analyzed the modeling uncertainty which resulted from various
satellite-based forcing data and hydrological models. Shah and Mishra [19] estimated the streamflow
monitoring uncertainty (characterized by standard deviation) originating from the biased SPE-induced
initial conditions. Despite these single-source uncertainty analyses, however, the input uncertainty
in hydrological models driven by SPE and its interaction with other uncertainty sources, such as
parameter and model structure uncertainty, still remain unclear, mainly due to difficulties in uncertainty
component partitioning.

One way to obtain input uncertainty in multi-source uncertainty context is to drive a hydrologic
model with multiple rainfall input series or hypothetical forcing data chains [20,21]. Hierarchical
Bayesian framework was introduced to quantify uncertainty in rainfall using latent variables
(e.g., rainfall multipliers), and then various later studies in surface hydrology have investigated
the role of input data in prediction uncertainty on this base [22]. Within this framework, Kavetski et
al. [23] established the Bayesian total error analysis (BATEA) method to explicitly account for input
uncertainty in hydrological modeling. Ajami et al. [24] developed an integrated Bayesian uncertainty
estimator (IBUNE) to represent input, parameter and model structure uncertainties. Nevertheless,
this Bayesian paradigm accounts for input uncertainty in a stochastically optimal process, which may
depend on conditioning values.

More recently, variance-based methods circumvent the above downside of Bayesian through
a holistic consideration of completely partitioning multi-source uncertainties [6]. Related work has
aimed at identifying the respective contributions of input, parameter and structure uncertainties
to the total uncertainty, which can be conductive to detect main contributors of multiple potential
uncertainties and to indicate model deficiencies. More importantly, it has the potential to explicitly
reveal the insight of the interaction effect of individual uncertainty sources, as the interactions may
account for a non-negligible part of the total uncertainty but they are hard to diagnose [6]. To
statistically achieve a robust disaggregating technique using a variance-based method, the practical
challenges remain in the configuration of model setup to ensure available comparability of the different
terms, and the definition of decomposed factors to facilitate well-posed inference. For example,
Addor et al. [25] decomposed the uncertainty arising from different sources of emission scenarios,
climate models, their post-processing, hydrological models, and natural variability in the ensemble of
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streamflow projections using analyses of variance. The choice of emission scenarios (input forcing)
played a large role by the end of the 21st century. Mockler et al. [6] introduced a similar approach to
identify rainfall and parameter uncertainties in streamflow predictions and concluded that rainfall
input was the leading source of total uncertainty. These studies quantified the input uncertainty
in hydrological modeling under a more holistic conceptual framework of uncertainty, compared
to the Bayesian framework. In circumstances where the initial SPE products could be biased and
associated input uncertainties have not been quantified well, it is more desirable to infer the level of
input uncertainty and the relative importance to total prediction uncertainty in hydrological modeling.
Hence, studies are needed to better understand the impacts of SPE input uncertainty on hydrological
prediction. However, the variance decomposition method has rarely been introduced into identifying
the multi-source uncertainties involved in SPE-induced input uncertainty and its interaction effect
with others in hydrological models.

The aims of this paper are twofold: (1) Exploring how the time sequential magnitude and
relative contribution of precipitation (two SPE products vs. gauge reference) input uncertainty and its
interactions with other uncertainties (i.e., the parameter and model structure uncertainty) in streamflow
simulations can be quantified using a variance-based method, and (2) identifying what impact three
precipitation input scenarios combined with two hydrological models exerted on the input uncertainty.
As for the two models, the suite of daily GR (Ge´nie Rural) hydrological modeling tools developed
by the Hydrology Research Group of Irstea institute in France including GR4J, GR5J and GR6J and
the Coupled Routing and Excess STorage (CREST) hydrologic model were applied as lumped and
distributed models respectively. Specifically, the remaining part of this paper is organized as follows.
Section 2 below describes the study area and data used. Section 3 presents a parsimonious framework
of the model configuration coupling multiple precipitation forcing with parameter sets and model
structures. Section 4 provides and discusses the results. Section 5 concludes the study.

2. Study Area and Data

2.1. Ganjiang River Basin

The Ganjiang River is the seventh largest tributary of the Yangtze River, located between
24◦22.8′–28◦48′ N and 113◦33.6′–116◦43.2′ E in the Jiangxi province of southeast China. In the
81,020 km2 draining area, the terrain is complex with mountains (43.9%) in the headwater area,
low hills (<200 m, 31.5%) in the central part of the basin and alluvial plains (24.6%) in the lower
reach, where the elevation (11–1950 m) roughly decreases from south to north. The area has a typical
subtropical monsoon climate with an annual mean air temperature of approximately 18.75 ◦C and
annual mean rainfall of 1400 to 1600 mm. Over 62.29% of the total rainfall is concentrated in the period
from April to August. In addition to the heterogeneity of rainfall in seasons, the spatial distribution of
rainfall is also non-uniform. There is abundant rain falling in the eastern part and northwestern part of
the basin (above 1723.9 mm annually on average) and less rainfall in the central part and the lower
reach (below 1368.02 mm annually on average). Moreover, actual evapotranspiration usually exceeds
rainfall between July and October, producing drought regionally.

2.2. Precipitation Datasets

Specifically, Figure 1 shows the spatial distribution of rain gauges used for comparison as well
as the pan evaporation and discharge stations. The daily precipitation and pan evaporation across
Ganjiang River basin, and streamflow data at the Waizhou station, provided by hydrological bureau of
Jiangxi province, were collected during the period 2000–2013. Several nearby stations outside the basin
were also used to calculate the basin-wide precipitation and potential evapotranspiration (see Figure 1).
Precipitation is the main driver in rainfall-runoff modeling. The pan evaporation is used to calculate
how much effective precipitation left in the runoff generation, as the evapotranspiration process
is a critical hydrophysical process in hydrological models. The observed streamflow data provide
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a benchmark in model calibration and uncertainty analysis. To ensure the accuracy of observation
values, outlier processing, spatial consistency diagnosing and internal consistency checking served as
the quality control procedure following Ren et al. [26]. The daily ground rainfall and pan evaporation
data were interpolated into gridded datasets with 0.02◦ × 0.02◦ spatial resolution using the Inverse
Distance Weighted Interpolation method. This interpolated network data was used to drive the
distributed hydrological CREST model, and the average of all interpolated grids was taken as areal
average precipitation or pan evaporation to input the lumped GR model. The average of all interpolated
grids used here aimed to reduce the uneven density of rain gauges. The TRMM SPE data, introduced
below, also adopted the 0.02◦ × 0.02◦ grid network and average of these grids as inputs of CREST
and GR respectively. In this study, when referring to the ground-based gridded precipitation using
interpolation technique, “Gauge” precipitation was used for simplification.Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 26 
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Figure 1. Geographical location, topography, rainfall gauges, pan evaporation stations and discharge
station of the study area.

The TMPA estimates were derived first by calibrating and combining microwave precipitation
(MW), then creating infrared precipitation (IR) estimates using the calibrated MW, and lastly
merging the MW and IR estimates [27,28]. Briefly, the production of TMPA estimates depends
on two input sets of passive MW and IR sensors. The passive MW data are provided by low
earth orbit satellites, typically including the Microwave Image (TMI) on TRMM, Special Sensor
Microwave Imager (SSM/I) on Defense Meteorological Satellite Program (DMSP) satellites, and
the Advanced Microwave Sounding Unit-B (AMSU-B) on the National Oceanic and Atmospheric
Administration (NOAA) satellites. Second, the IR data are collected by the international constellation
of geosynchronous earth orbit (GEO) satellites. The 3B42 algorithm aims to produce TRMM-adjusted
high quality (HQ) MW/IR precipitation and root-mean-square precipitation-error estimates (see
https://pmm.nasa.gov/sites/default/files/document_files/3B42_3B43_doc_V7_180426.pdf and https:
//pmm.nasa.gov/sites/default/files/document_files/3B4XRT_doc_V7_180426.pdf for more detailed
information). The spatial extends of final precipitation cover from 50◦ south to 50◦ north latitude,
with a 3-h temporal resolution and 0.25◦ by 0.25◦ spatial resolution. Several improvements have
been made in 3B42 data, including additional microwave products, a new IR dataset, uniform
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processing of input data and a single and uniformly processed gauge analysis [27,29]. Specifically, the
TRMM Version-7 data were used in this study, which are available in two versions: Near-real-time
(3B42RTv7) and post-real-time research (3B42v7) products. The primary differences between these
two products are that (1) monthly rain gauge data were introduced to adjust the bias in 3B42v7;
and (2) calendar months in which the observation time falls during IR calibration period were
used in 3B42v7, against the trailing 30-day accumulation in 3B42RTv7 [27,28,30]. In this study,
the daily cumulative real-time product 3B42RTv7 (about 6 h after real time) and post-real-time product
3B42v7 (approximately 10–15 days after the end of each month) during 2000–2013 were explored.
All of these data can be freely downloaded from the NASA website of Precipitation Measurement
Missions: https://pmm.nasa.gov/data-access/downloads/trmm. To map the SPE into distributed
hydrological model CREST, both datasets were resampled from a coarse grid resolution to a much
finer (0.02◦ × 0.02◦) resolution using the bilinear interpolation technique.

3. Methodology

The overall research framework of this study is illustrated in Figure 2, which is composed of
hydrological modeling and statistical estimation. The statistical estimation included inter-comparison
between three precipitation datasets and the analysis of variance decomposition (ANOVA).
The selected hydrological models, modeling configuration and ANOVA process are described in
Sections 3.1–3.3, respectively.
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3.1. GR and CREST Models

To compare the hydrological impacts of different precipitation datasets on rainfall-runoff process,
a lumped (GR) and a distributed (CREST) hydrological models forced by three sources of precipitation
were performed in basin-averaged and grid-based cases, respectively. GR responds to the areal-average
precipitation time series, taking the whole basin as a unit and only considering the vertical flow
movement with simple computation cost. While CREST is able to reflect the rainfall-runoff process
with heterogeneous hydraulic properties in each grid unit of the basin and considering both vertical
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and horizontal flow movements between adjacent cells. Thus, higher cost of computation is expected
for CREST than GR.

The GR is a family of conceptual lumped hydrological models designed for flow simulation
at various time steps [31]. This modeling tool was developed with the intention to have warranted
complexity and limited data requirements. In the present study, the daily GR models with 4, 5 and
6 parameters were applied, i.e., GR4J, GR5J and GR6J (Table 1). GR5J, as a modification version of
GR4J, considered groundwater exchange capacity via parameter X5, while GR6J introduced one more
parameter X6 associated with low-flow simulation relative to GR5J (Table 1). The daily lumped GR4J,
GR5J and GR6J models were selected because of implementation under similar conceptual scheme with
only differences in parameter numbers. The models are available in a flexible R-package called airGR.
Sensitivity analysis of parameters in daily GR models was conducted in previous studies [32,33]. Taking
GR6J as example, parameters of X2 and X5 are much more sensitive than others, while parameters of
X1 and X6 are relatively insensitive (Table 1).

Table 1. Summary of parameter information for the Génie Rural (GR) and Coupled Routing and Excess
STorage (CREST) models.

Symbol Description Numerical
Range Unit

GR

X1 Production store capacity 100–1400 mm

X2 Intercatchment exchange
coefficient −4–4 mm/d

X3 Routing store capacity 0–500 mm

X4 Unit hydrograph time
constant 0–10 d

X5 Intercatchment exchange
threshold −4–4 –

X6 Coefficient for emptying
exponential store 0–20 mm

CREST

Ksat The soil saturate hydraulic
conductivity 10–3000 mm/d

WM The mean water capacity 80–200 mm

B The exponent of the variable
infiltration curve 0.05–1.5 –

IM Impervious area ratio 0–0.2 –

KE
The factor to convert the
potential evapotranspiration
to local actual

0.1–1.5 –

coeM Overland runoff velocity
coefficient 1.0–150 –

expM Overland flow speed
exponent 0.1–2.0 –

coeR
Multiplier used to convert
overland flow speed to
channel flow speed

1.0–3.0 –

coeS
Multiplier used to convert
overland flow speed to
interflow speed

0.001–1.0 –

KS Overland reservoir
discharge parameter 0–1.0 –

KI Interflow reservoir
discharge parameter 0–1.0 –

The distributed Coupled Routing and Excess STorage (CREST) hydrologic model is a hybrid
modeling strategy that was recently jointly developed by the University of Oklahoma and the NASA
SERVIR Project Team [34–36]. CREST simulates the flux and storage of water and energy at various
grid resolutions which were user-defined, thereby enabling multi-scale applications. CREST modeling
considers soil moisture storage capacity (relying on variable infiltration curves) and runoff generation
process (applying multi-linear reservoirs). Briefly, the model mainly incorporates modules of (1) three
soil layers across the vertical profile reflecting the storage capacity of surface runoff and infiltrating
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water, (2) routing of surface water with cell-to-cell finite element method and a kinematic wave
assumption and (3) coupling module connecting the runoff generation and routing process via feedback
mechanisms. The last module allows for a realistic scalability of the hydrologic variables, which is
particularly important for simulations at fine spatial resolution. The model accounts for most important
parameters of the water balance component i.e., the infiltration and runoff generation processes. As for
the sensitivity analysis of parameters in the CREST model, the manual trial and error approach was
carried out, indicating that parameters of KE and expM are relatively sensitive (Table 1).

As for the calibration of the two models, different strategies were applied. Given the small number
(from four to six) of model parameters and relatively simple model structure for the daily GR model,
a simple calibration algorithm built in the airGR package was used, due to its ability of identifying
parameter values yielding satisfactory results [37]. In calibration of the CREST model, a more powerful
SCE-UA algorithm developed by Duan et al. [38] was used, due to the complexity of the distributed
model and more parameters (10 or 11) contained. In addition, the first year of the study period during
2000–2013 was taken as a “warm-up” period. The next ten years, i.e., 2001–2010, were the calibration
period. The remaining three years, i.e., 2011–2013, were used as the validation period. The main
purpose of the calibration process in the present study was to find an optimal parameter set for each
model to provide a “benchmark” for the perturbing range of the varying parameters.

3.2. Configuration of the Modeling

To quantify the input uncertainty in streamflow modeling, the observed precipitation series
(SPE products or gauge-based precipitation) were set to a large number of hypothetical levels using
rainfall multiplier as the latent variable. For a specified precipitation dataset, rainfall multiplier
was sampled by generating normally distributed random numbers with zero mean and estimated
standard deviation.

Model parameter uncertainty is related to the parameter sensitivity, the nonindependence among
parameters as well as the number of parameters. Model parameters, dependent on specific model
structure and input data, result in uncertainty when optimizing for the suitable parameter set.
As discussed above, the model parameter uncertainty was also analyzed using random sampling based
on the optimal parameter sets obtained by calibrating the GR or CREST model. The perturbation levels
of the specified parameter set were assessed by incremental method instead of the rainfall multiplier
for hypothetical levels of precipitation input. To make a balance between modeling accuracy and
calculation cost, the number of stochastic perturbation levels of parameter sets was set to the same as
the precipitation input processing.

Structure uncertainty, resulting from the assumption of approximating the real hydrological cycle
system with simplifying mathematical hypothesis, is inherent in hydrological models. Unlike data
uncertainty and parameter uncertainty, which can be estimated by analyzing measurement and/or
sampling designs, structure error is harder to quantify. This study focuses on structural uncertainty in
the context of varying model parameter numbers rather than the fundamental constructions of the
models, so that the basic mechanics and principles can stay the same and are comparable. Therefore,
for GR, the most commonly used GR4J, GR5J, and GR6J served as three different model structures in
the lumped cases of the study. While for CREST, the versions with varying and fixed overland flow
speed exponent parameter (denoting as expM) were set to two model structures referred as CREST v1
and CREST v2 respectively in the distributed case. Another key problem is how to integrate different
uncertainties such as input and model structure into a uniform framework. To solve this problem, when
we randomly selected the perturbing range on the basis of existing precipitation datasets, the ensemble
output span of streamflow simulated across this range was adjusted to approximately the same with
that generated by all the different model structures driven by the basic precipitation. Similar to the
precipitation input, the perturbation range of parameters was determined on the basis of the optimal
parameter set. In this study, it was assumed that different uncertainty sources have the same meaning
in magnitude.
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In addition, all the potential first-order interaction effects between input, parameter and
model structure were considered, since the highlighted feature of variance-based decomposition
for partitioning multi-source uncertainties lies on quantifying the interaction.

3.3. Variance-Based Decomposition of Uncertainty Sources

We combined multiple model structures (three for GR and two for CREST), hypothetical
precipitation inputs and stochastic behavioral parameter sets in a factorial way. The ensemble model
chains generated by all the combinations were then used to disentangle the contribution of the
different sources of the uncertainties to the ensemble variance and to identify the eventual interactions
between single uncertainties. Similar to previous studies [39,40], the variance in ensemble outputs
is available to estimate of the uncertainty, and the ANOVA technique was applied to quantify the
respective contribution of the different sources of uncertainty to the total uncertainty. The principle of
mathematics in ANOVA is listed below.

The total uncertainty in simulated streamflow can be quantified on the basis of variance (U2) of
all the predictions in a given time. U2 is equal to the sum of the variance due to precipitation input U2

I ,
parameter set U2

P, model structure U2
S, interaction effects between input and parameter U2

IP, between
input and structure U2

IS, and between parameter and structure U2
PS, and residual error U2

v :

U2 = U2
I + U2

P + U2
S + U2

IP + U2
IS + U2

PS + U2
v , (1)

where U2 on the left side of Equation (1) is the variance across all combination schemes, which is
defined as

U2 =

NI
∑

i=1

NP
∑

j=1

NS
∑

k=1
(Yijk −Y....)

2

NI × NP × NS
, (2)

where NI, NP and NS are the numbers of hypothetical input levels, stochastic parameter sets and model
structure versions, respectively. In this study, NI = 100, NP = 100, NS = 3 for the case of GR and NI
= 50, NP = 50, NS = 2 for the case of CREST. Yijk represents the specified output of streamflow in an
individual model run; and Y.... is the mean of all Yijk, which can be derived as

Yijk = f (I, P, S), (3)

where f () is the ensemble functions depicting the rainfall-runoff process in GR or CREST for modeling
streamflow; I, P and S denote the input, parameter and structure respectively within a specific model
solution. In the ANOVA approach, the form of Yijk, which the uncertainty partitioning relies on, can be
defined as the following equation:

Yijk = µ + ∆Ii + ∆Pj + ∆Sk + ∆IPij + ∆ISik + ∆PSjk + εijk, (4)

which expresses the change in streamflow (Yijk) as the mean change (µ) modulated by three single
factors, i.e., ∆Ii, ∆Pj and ∆Sk, three first-order interaction effects, i.e., those between input and
parameter (∆IPij), between input and structure (∆ISik), and between parameter and structure (∆PSjk)
and the residual error (εijk). Mathematically, the interaction terms account for nonadditive effects,
i.e., for situations in which the separate effect of two factors cannot combine additively. In this study,
we only considered first-order interactions, i.e., interactions between two single factors, as accounting
for and interpreting higher-order interactions is too hard to physically justify.

The term ∆Ii denotes the expected difference between the outputs simulated by the ith input
and the mean µ, over all the parameter sets and structure versions for a given model (GR or CREST).
The variance of ∆Ii reflects the magnitude of input uncertainty. Similarly, remained terms on the right
side of Equation (4) can be obtained. The detailed calculation information is listed in Table 2, and in
the equations, the bar denotes averaging and the dots indicate which component has been averaged.
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Table 2. Decomposition of total uncertainty into seven components using the variance
decomposition method.

Sources of Uncertainty Difference/Variance Expression

Input from precipitation (I) Difference ∆Ii = Yi.. −Y...

Variance U2
I = 1

NI
∑
i

(
∆Ii − ∆Ii

)2

Parameter set (P) Difference ∆Pj = Y.j. −Y...

Variance U2
P = 1

NP
∑
j

(
∆Pj − ∆Pj

)2

Model structure (S) Difference ∆Sk = Y..k −Y...

Variance U2
S = 1

NS
∑
k

(
∆Sk − ∆Sk

)2

Interaction between input and
parameter (IP) Difference ∆IPij = Yij. −Yi.. −Y.j. + Y...

Variance U2
IP = 1

NI NP
∑
ij

(
∆IPij − ∆IPij

)2

Interaction between input and
structure (IS) Difference ∆ISik = Yi.k −Yi.. −Y..k + Y...

Variance U2
IS = 1

NI NS
∑
ik

(
∆ISik − ∆ISik

)2

Interaction between parameter
and structure (PS) Difference ∆PSjk = Y.jk −Y.j. −Y..k + Y...

Variance U2
PS = 1

NP NS
∑
jk

(
∆PSjk − ∆PSjk

)2

Residual error (v) Difference εijk = Yijk −Yi.. −Y.j. −Y.k. + 2Y...

Variance U2
v = 1

NI NP NS
∑
ijk

(εijk − εijk)
2

Note: A bar denotes averaging and the dots indicate which component has been averaged.

3.4. Evaluation Criteria

To detect the consistency of TRMM 3B42RTv7 and TRMM 3B42v7 products relative to Gauge
reference, three categorical statistical indices including Probability of Detection (POD), False Alarm
Ratio (FAR) and Equitable Threat Score (ETS), were calculated based on a contingency table. POD
examines the proportion of observed events that were correctly forecast, varying from zero to one.
FAR calculates the proportion of false records given the event did not occur, within the range of one
to zero. ETS measures the overall accuracy of rainfall events correctly captured by SPE with random
chance. The perfect values of POD and ETS are both one, while that of FAR is zero [7,41].

In order to quantitatively assess the model performance, first, the Nash–Sutcliffe efficiency (NSE),
correlation coefficient (r) and relative Bias (%) were applied as indicators to judge the point-based
performance accuracy in model calibration [42]; second, Containing ratio (CR), Average band (B) and
Average deviation amplitude (D) were induced in to diagnose the band-based uncertainty performance
of 95% confidence intervals (95CI) in the ensemble outputs [43]. High-quality performance of modeling
is characterized by high values of NSE (≤ 1), r (≤ 1), and CR (≤ 100%), as well as low B (≥ 0) and
D (≥ 0).

NSE = 1−

n
∑

i=1
(Yoi −Ysi)

2

n
∑

i=1
(Yoi −Yoi)

2
(5)

r =

n
∑

i=1
(Yoi −Yoi)(Ysi −Ysi)√

n
∑

i=1
(Yoi −Yoi)

2
√

n
∑

i=1
(Ysi −Ysi)

2
(6)
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Bias =


n
∑

i=1
YSi −

n
∑

i=1
YOi

n
∑

i=1
YOi

 ∗ 100 (7)

CR =

n
∑

i=1
i f (Yl

i ≤ Ysi ≤ Yu
i)

n
(8)

B =
1
n

n

∑
i=1

(Yu
i −Yl

i) (9)

D =
1
n

n

∑
i=1

∣∣∣∣12 (Yu
i + Yl

i)−Ysi

∣∣∣∣ (10)

where Yo denotes the observed streamflow contrasting with the simulated streamflow Ys (equal to the
Yijk in Equation (4)); the Yl and Yu represent the lower and upper bound values of the 95CI, respectively;
and n is the length of data series.

Each model was separately forced by 3B42RTv7, 3B42v7 and gauge-based observations. First, the
calibration of two models was conducted given a precipitation input, and the performance of daily
streamflow was presented by NSE and r indexes. Second, since the NSE and r are indices used to
assess prediction precision of single values, and thereafter the 95CI, focusing on band assessment
method, was applied. The quantitative result of 95CI was presented by CR, B and D indexes. For the
purpose of reducing calculation cost and illustrating clearly, the daily streamflow was aggregated into
monthly scale when considering the CR, B and D indexes of 95CI and various variance components.

4. Results and Discussion

4.1. Evaluating the Consistency of Two SPE Products and Gauge-Based Reference

The agreement of three precipitation products was depicted by the spatial-temporal distribution
and precipitation-intensity pattern. The spatial variations of daily average of SPE vs. Gauge
precipitation showed the central region and area around Waizhou outlet with lower rainfall and
regions in northwest, mid-east and most southwest with much higher rainfall across the Ganjiang
River basin (Figure 3). Similar patterns were reported in previous studies on evaluating the adequacy
of TRMM multi-satellite precipitation in the Ganjiang River basin [44,45]. Although the three datasets
displayed broadly the same pattern of rainfall spatial distribution, there existed a slight difference
in each of them. The estimates of daily average rainfall during 2000–2013 were 3.75–4.93 mm/d,
3.62–5.52 mm/d and 4.08–4.90 mm/d across the whole basin for gauge reference, 3B42RTv7 and
3B42v7, respectively. From the boxplot of Figure 3d, it was confirmed again that 3B42RTv7 showed
a higher median and a larger inter-quartile range than the 3B42v7 and Gauge rainfall. While the lowest
median and narrowest inter-quartile range were observed in Gauge rainfall indicating the smallest
spatial variation in it.
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POD of 3B42RTv7 and 3B42v7 are accompanied by lower FAR in those corresponding gauges (with 
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Figure 3. Spatial distributions of daily-averaged (a) interpolated gauge reference data, (b) 3B42RTv7
and (c) 3B42v7 (units in mm) with 0.25◦ × 0.25◦ spatial resolution during 14 years of study period from
January 2000 to December 2013, as well as (d) boxplot summarizing the basin-averaged precipitation
during the study period.

The difference of three categorical statistics among 60 gauge stations was displayed in Figure 4,
indicating good consistency between SPE used and Gauge reference data. The median values of POD
are 0.59 and 0.62 for 3B42RTv7 and 3B42v7, respectively, compared to the Gauge data. 3B42v7 shows
better performance of POD than 3B42RTv7 in most gauges (Figure 4a,b). Meanwhile, the higher POD
of 3B42RTv7 and 3B42v7 are accompanied by lower FAR in those corresponding gauges (with median
FAR values of 0.54 and 0.47 respectively). The ETS metric is more helpful to understand the overall
detection ability of SPE. Most of ETS in Figure 4e,f (90%) are ranging from 0.22 to 0.39, from 0.23 to
0.41 for 3B42RTv7 and 3B42v7, respectively.
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Figure 4. Spatial distributions of (a,b) Probability of Detection (POD), (c,d) False Alarm Ratio (FAR), and
(e,f) Equitable Threat Score (ETS) for 3B42RTv7 (the first column) and 3B42v7 (the second column) at a
daily scale over the Ganjiang River basin for the 14-year study period (January 2000 to December 2013).

The space-averaged daily precipitation series keeps good consistency between the SPE and
ground-based precipitation. The values of pairwise correlation, r, between three datasets were relatively
high (greater than 0.88). In general, the performance of 3B42RTv7 and 3B42v7 products suggested by
the Probability Density Function (PDF) of daily precipitation in Figure 5 was acceptable, compared to
the gauge-based precipitation. The primary differences between the PDFs of SPE and gauge-based
reference arose from the lower ends of precipitation intensity bins, where 3B42RTv7 and 3B42v7
overestimated the case of precipitation in 0–0.1 mm/d and 0.1–1 mm/d while underestimated that
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in 1–2 mm/d and 2–4 mm/d. As for moderate and heavy precipitation (>6.0 mm/d), the SPE,
i.e., 3B42RTv7 and 3B42v7 datasets, showed closed PDFs relative to the gauge precipitation.Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 26 
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right corner descripted the PDF of daily precipitation more than 6.0 mm.

4.2. Hydrologic Evaluation of SPE

For rainfall-runoff models, bias in precipitation input can propagate into streamflow simulation
and prediction, resulting in input uncertainty as well as uncertainties interactive with input through
the hydrological processes [11]. In order to understand the impact of different precipitation
datasets on hydrological effect, streamflow simulation by two hydrological models was carried out
during 2000–2013.

For the gauge precipitation-forced GR model, GR6J obtained the highest NSE (0.83), followed
by GR4J and GR5J (0.82 and 0.81). For the SPE-forced GR model, the calibrated GR6J also had the
highest NSE among three model structures (with values of 0.67 and 0.77 for 3B42RTv7 and 3B42v7,
respectively) (Table 3). As for the case of CREST, the NSE values derived from the model structure
with varying expM parameter, i.e., CREST v1, were higher than those obtained from CREST v2 for
all the three precipitation inputs. This result is reasonable as models with relatively more parameters
generally have better fitness ability in the calibration. Furthermore, the simulated streamflow using
both GR and CREST has relatively lower NSE and r values when driven by the SPE inputs, compared
to the gauge-based input. However, for both models, 3B42v7 forced models (with NSE and r ranging
from 0.72 to 0.77 and 0.85 to 0.88 respectively) performed significantly better than those forced by
3B42RTv7 (with NSE and r ranging from 0.49 to 0.68 and 0.75 to 0.82) (Table 3). As for the relative
Bias, GR4J has least relative Bias among three GR structures for all three precipitation inputs, while the
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values of Bias of CREST v1 and v2 are comparable. All the Bias values are negative except for that of
GR4J driven by gauge data.

Table 3. Optimal criteria in model calibration.

Gauge 3B42RTv7 3B42v7

NSE r Bias (%) NSE r Bias (%) NSE r Bias (%)

GR4J 0.82 0.91 0.66 0.61 0.78 −0.13 0.75 0.87 −2.16
GR5J 0.81 0.91 −6.58 0.66 0.82 −6.04 0.76 0.88 −7.03
GR6J 0.83 0.91 −6.53 0.67 0.82 −6.84 0.77 0.88 −7.30

CREST v1 0.86 0.93 −2.49 0.68 0.83 −3.83 0.74 0.86 −1.57
CREST v2 0.86 0.93 −2.49 0.49 0.75 −3.83 0.72 0.85 −1.98

For each of the two hydrological models and each of the three input scenarios, the 95CIs of
ensemble outputs of simulated streamflow over all model structures, hypothetical precipitation levels
and stochastic parameter sets were presented, providing a direct way to depict the interval information
for outputs and the reliability of the modeling (Table 4 and Figure 6). Much narrower 95CIs were
observed for the outputs derived from CREST driving by all the three precipitation inputs (Figure 6d–f),
compared to the GR model (Figure 6a–c). It is clear that the band in 95CI around extreme values of
the simulated streamflow over the study period was significantly wider than in other area. As for the
quantitative indexes of the 95CI, 3B42v7-forced GR obtained best values of CR (63.46%), B (24.76 mm)
and D (12.05 mm) among three inputs of GR model, while the 3B42RTv7-forced GR had the worst
values of CR (58.97%), B (38.47 mm) and D (20.28 mm), and gauge rainfall-forced GR was with median
performance. The CR, B and D indexes of CREST driven by the 3B42RTv7 also performed worst
among three inputs, while CREST with Gauge precipitation input obtained best indexes, followed by
the post-real-time satellite product 3B42v7. On the other hand, the distributed CREST model forced
by three inputs generally obtained better CR, B and D indexes, relative to the lumped GR model.
In summary, among six schemes combing two models with three precipitation inputs, CREST with
Gauge precipitation performed best towards CR (81.41%), B (16.91 mm) and D (6.94 mm), followed by
the CREST with 3B42v7.

Table 4. Statistical indexes for interval estimation.

GR CREST

CR (%) B (mm) D (mm) CR (%) B (mm) D (mm)

Gauge 58.97 38.47 20.28 81.41 16.91 6.94
3B42RTv7 71.79 52.42 20.49 47.44 20.87 15.84

3B42v7 63.46 24.76 12.05 77.56 20.63 8.53

Note: The optimal CR value is 100, the optimal B and D values are 0.
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4.3. Variance-Based Uncertainty Component Analysis

4.3.1. Inter-comparison of Uncertainties in Precipitation Input with Other Sources

The fractional variance of seven uncertainty components partitioned based on variance
decomposition method was presented for six combination schemes (over two models and three
input scenarios of precipitation) (Figure 7). Generally, it can be observed that structure uncertainty
dominated the total uncertainty in GR for all the three inputs (Figure 7a,c,e), while input uncertainty
was the leading source of the total uncertainty in CREST (Figure 7b,d,f).The averaged fractional
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variance showed that the structure uncertainty contributed 38.59%, 53.22% and 60.81% to the total
uncertainty in GR forced by Gauge precipitation, 3B42RTv7 and 3B42v7 respectively, whereas the
contribution of structure uncertainty to the total uncertainty in CREST forced by these three inputs
was below 27.04% (Figure 8). In contrast to the significant contribution of structure uncertainty in the
GR model, the input uncertainty contributed 35.62%, 23.35% and 30.34% to the total uncertainty in
CREST forced by Gauge precipitation, 3B42RTv7 and 3B42v7 respectively. The contributions of input
uncertainty in CREST for three inputs were significantly greater, relative to GR with values smaller
than 26.04%. In addition, the contribution of uncertainty stemming from parameter was relatively
stable with values ranging from 19.41% to 27.10% among six combinations, except for the GR model
driven by 3B42v7 (4.04%) (Figure 8). The uncertainty components from residual error are negligible in
GR, in contrast to the significant impact on CREST.
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schemes of two models and three precipitation input scenarios. The first three subplots represent the
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subplots represent the combinations of CREST with these three inputs.
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The overall interaction effects had a significant contribution to the total uncertainty in all the six
combination schemes with varying situations for each of the three interactions (Figure 8). For example,
the interaction between structure and parameter, i.e., structure-parameter uncertainty, was more
considerable in GR with all three inputs (ranging from 7.62% to 20.79%) than that in CREST (ranging
from 3.52% to 7.43%). However, similar to the case of residual error, the input-parameter uncertainty
is also approximate to zero in the GR model results, against an apparent influence to the CREST
model with values ranging from 9.19% to 19.48%. As it is expected, the interaction between structure
and input uncertainty in both the GR and CREST model was ignorable, whose contribution to total
uncertainty was below 1.49%.
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The inter-comparison of seven uncertainty components separated above in magnitude was
conducted for two hydrological models combined with three inputs (Figure 9). Except for the
input-parameter and residual error uncertainty, the other five components were overall significantly
larger in GR model than those in CREST model for three input scenarios of precipitation. On the other
hand, most uncertainty components derived from 3B42v7-driven models were smallest among three
precipitation inputs for both the GR and CREST models.
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In summary, the structure uncertainty in the result of GR had a dominantly larger percentage
and magnitude compared to CREST, indicating the advantage of the distributed model CREST in
model structure. Theoretically, this result is understandable since the distributed model can depict
the real natural system in mathematical mechanisms and physical processes with more complexity.
In addition, both the GR and CREST models forced by 3B42v7 performed better than those forced by
gauge-based dataset towards seven uncertainty components in most cases, while the performance of
both models forced by 3B42RTv7 was inferior to those by gauge-based dataset. This result suggested
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that the post-real-time TRMM product 3B42v7 was superior to the real-time TRMM product 3B42RTv7
towards uncertainty component evaluation.

4.3.2. Inter-comparison of Input Uncertainties among Six Schemes

Subsequently, average input uncertainties in streamflow simulation over six schemes (two models
combined with three input scenarios) against three sources of precipitation on a monthly scale were
provided in Figure 10. The three precipitation sources and two types of models exerted varying
influences on input uncertainty in modeling. In general, input uncertainties in CREST with all three
precipitation scenarios were much lower compared to those in GR. For both GR and CREST, the input
uncertainty in result derived from 3B42v7 was much lower, compared to 3B42RTv7 and gauge-based
precipitation. Input uncertainty in GR with gauge precipitation was highest in magnitude among six
schemes, followed by those in GR with 3B42RTv7 and 3B42v7. It is obvious that monthly-averaged
input uncertainties for all the six schemes increased from January to June, and decreased from June to
December. Like the corresponding precipitation series, the input uncertainty series reached a peak
in June.
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Further, the correlations between input uncertainties separated from ensemble variance of
streamflow simulation above and (a) corresponding precipitation datasets and (b) observed streamflow
series were explored individually. As illustrated in Figure 11, the polynomial correlation was more
realistic to depict the relationship of input uncertainty and precipitation or observed streamflow than
the linear correlation. Overall, the fitness between input uncertainty and observed streamflow has
better performance in terms of R2 (coefficient of determination), compared to input uncertainty and
precipitation. In both cases of (a) and (b), R2 values of the fitted relationship were relatively high
with values ranging from 0.71 to 0.87 for the precipitation (a) and from 0.71 to 0.89 for the observed
streamflow (b). This demonstrated the applicability of the nonlinear relationship between input
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uncertainty and precipitation or streamflow, in which the magnitude of input uncertainty increased
much faster than the precipitation or streamflow itself.
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4.4. Discussion

Among six combination schemes discussed above, the scheme with good optimization results in
model calibration may not have the same good performance in 95CI in the ensemble outputs. As an
example, the NSE, r and Bias derived from the GR model forced by gauge precipitation were very
satisfying, contrasting with low CR value as well as the high B and D values which indicated inferior
95CI. This phenomenon was also captured in previous studies. For example, in the result of Tian
et al. [46] on applying the Xinanjiang model to the Jinhua River and Qu River, the average width
of 90% confidence interval induced by varying parameters increased when the NSE became better.
In addition, a similar result was found in Zeng et al. [47]. This suggested that although point estimate
(e.g., NSE and r) can provide a way to quantify modeling precision, it cannot represent the modeling
reliability in the sense of uncertain cases. Therefore, in addition to point estimate, the interval estimate
is indispensable to quantify the reliability. In this sense, a trade-off between these two aspects should
be taken into consideration simultaneously when choosing an optimal alternative input from different
sources of precipitation products.
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It is significantly beneficial to analyze the suitability of SPE precipitation data indirectly through
hydrological modeling effect because the rainfall-runoff process integrates discrepancy in spatiality
of precipitation into the bias of simulated streamflow at the transection of a river. In this integration
process, the hydrological models can compensate the input data uncertainty arising from systematic
error and/or random error. Knoche et al. [12] reported that more complex hydrological models
were capable of better compensation for the error in input data. In the context of the present
study, the CREST model driven by TRMM post-real-time product 3B42v7 generated minimal input
uncertainty among all the six schemes. This is because the advantage of SPE lies on the spatially
distributed precipitation at high resolution. Unlike lumped models, the distributed models calculate
rainfall-runoff process based on a grid network, which makes better use of the spatial information
of SPE. Accordingly, in this study, the distributed CREST hydrological model can give potential
suitability and adequacy of high-quality satellite precipitation products especially for the post-real-time
product 3B42v7, relative to the lumped GR model. Moreover, Knoche et al. [12] verified strong
interdependence between input data and model structure on modeling performance. This study
similarly confirmed the interdependence of precipitation input and model structure, whereas it is
further proved that this interdependence is indirect. This is because the uncertainty component of
the structure-input interaction was extremely low (around zero) in all the six schemes, against the
significant structure-parameter and input-parameter interaction effects. Therefore, the model structure
exerted influence on parameter and subsequently the parameter imposed restriction on precipitation,
leading to the above interdependence as well as the compensation, and vice versa.

Compared to near-real-time 3B42RTv7 precipitation, the reliability and superiority of
post-real-time research product 3B42v7 over Ganjiang River basin were proved by both simulation
ability and input uncertainty induced. Both SPE products reproduced the daily rainfall regime and
streamflow regime with similar performance of gauge-based precipitation. This result is consistent
with many other studies on TRMM data. For example, as indicated by Liu [29], better performance of
research grade 3B42v7 product in rain distribution was found over land at a global scale than that of
the 3B42RTv7 product. Gao et al. [10] revealed that 3B42v7 outperformed 3B42RTv7 in streamflow
prediction precision when forcing the CREST model used to two tributaries of upper Yangtze River.
This is likely due to (1) merging multiple information sources and post-processing adjustment i.e.,
the monthly ground-based observation adjustment included in the 3B42v7 estimates, which results in
3B42v7 performing in a more robust and accuracy way than 3B42RTv7, and (2) the calendar month
used for IR calibration period in 3B42v7, rather than a 30-day trailing accumulation in 3B42RTv7.
Nevertheless, despite that the post-real-time product 3B42v7 is the valuable datum suitable for research,
the near-time product 3B42RTv7, which is slightly inferior in hydrological effect, is still useful in
practice. To improve the skill of the real-time satellite precipitation product in hydrological forecast,
the biased satellite data can be statistically calibrated via a latent variable, i.e., rainfall multiplier, to
partly correct the bias without ground observations [5,24]. Taking the distributed model CREST v1 as
example, when the rainfall multiplier correcting near-time 3B42RTv7 data was considered in parameter
calibration, the NSE of simulated streamflow increases by 3% reaching 0.72, relative to that without
rainfall multiplier used.

The framework used in the present study incorporated finite combinations of fixed model
structures, stochastically sampled hypothetical input levels and parameter sets in a factorial way,
and thus it is not completely stochastic. This leads to the results somewhat relying on the configuration
of the models. We acknowledge that the absolute magnitude of uncertainty components detected
is design-dependent, which is a potential barrier to a full utility of variance decomposition analysis.
Nevertheless, this study facilities both the comparison of relative contribution of input uncertainty
with other uncertainty sources and the impact of various precipitation datasets used in different
hydrological models on the input uncertainty, by means of specified highly representative scenarios.
In general, the framework coupling variance decomposition method with ensemble outputs of the
hydrological model is highly representative and can be used to analyze relative contributions of
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uncertainties in hydrological modeling with other models or in other study areas. Furthermore, both
processes of resampling initial coarse TRMM data and interpolating ground-based reference data to
gridded rainfall at fine scale are not exactly accurate, in which bias may arise. Further effort should be
concentrated on this part to quantify its impact on the whole assessing framework.

5. Conclusions

This study systematically analyzed the associated uncertainties originating from two popular
multi-sensor and multi-satellite precipitation estimates (i.e., TRMM Version-7 real-time product
3B42RTv7 and post-real-time research product 3B42v7) and gauge-based precipitation in hydrological
utility using two hydrological models (the GR and CREST models). To quantify the relative contribution
of input uncertainty and its interactions with parameter uncertainty and model structure uncertainty
in streamflow modeling driven by the three precipitation datasets one by one as input, the variance
decomposition method was applied to disaggregate the total uncertainty to seven components of
potential sources. The total and fractional variances of seven uncertainty components partitioned were
presented for six combination schemes (two hydrological models combined with three input scenarios
of precipitation above).

The primary conclusions are summarized as follows: (1) For both the GR and CREST models,
the 3B42v7-driven hydrological modeling towards the optimal simulation (NSE/r) and 95% confidence
interval performed better compared to 3B42RTv7, whereas it was slightly inferior to those derived
from gauge-based precipitation. (2) It was deduced that the total uncertainty in GR was lowest,
moderate and highest when forced by gauge precipitation, 3B42v7 and 3B42RTv7, respectively. While
the total uncertainty in CREST driven by 3B42v7 was lower relative to both 3B42RTv7 and interpolated
precipitation from gauges. This result highlighted the superiority of post-real-time 3B42v7 to real-time
3B42RTv7 in hydrological modeling. (3) Among seven uncertainty components, input uncertainty
dominated the total uncertainty in CREST for all the three precipitation inputs (contributing to 23.35%
to 35.62%). Structure uncertainty was the leading source of the total uncertainty in GR for the three
inputs (contributing to 38.59% to 60.81%). It emphasized the potential of the distributed model of
compensating for the uncertain input data. (4) All the input uncertainties in CREST driven by 3B42v7,
3B42RTv7 and gauge-based precipitation were lower than those in GR. Among six combination
schemes, the input uncertainty was lowest in the 3B42v7-driven CREST model while highest in the
gauge-based precipitation-driven GR model. This result demonstrated that the distributed CREST
model is capable of making better use of the spatial distribution advantage of SPE.

Consequently, this study reveals new insights into satellite precipitation-induced input uncertainty
and its interactions with other uncertainties in hydrological utility. The results and conclusions indeed
illustrate the promising prospect of applying satellite precipitation products towards hydrological
modeling in the sense of both modeling precision and reliability.
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