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Abstract: Due to the advantages of wide coverage and continuity, remotely sensed data are widely
used for large-scale drought monitoring to compensate for the deficiency and discontinuity of
meteorological data. However, few studies have focused on the capability of various remotely
sensed drought indices (RSDIs) to represent the spatio–temporal variations of meteorological
droughts. In this study, five RSDIs, namely the Vegetation Condition Index (VCI), Temperature
Condition Index (TCI), Vegetation Health Index (VHI), Modified Temperature Vegetation Dryness
Index (MTVDI), and Normalized Vegetation Supply Water Index (NVSWI), were calculated using
monthly Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST) from
the Moderate Resolution Imaging Spectroradiometer (MODIS). The monthly NDVI and LST data
were filtered by the Savitzky–Golay (S-G) filtering method. A meteorological station-based drought
index represented by the Standardized Precipitation Evapotranspiration Index (SPEI) was compared
with the RSDIs. Additionally, the dimensionless Skill Score (SS) method was adopted to identify
the spatiotemporally optimal RSDIs for presenting meteorological droughts in the Yellow River
basin (YRB) from 2000 to 2015. The results indicated that: (1) RSDIs revealed a decreasing drought
trend in the overall YRB consistent with the SPEI except for in winter, and different variations of
seasonal trends spatially; (2) the optimal RSDIs in spring, summer, autumn, and winter were VHI,
TCI, MTVDI, and VCI, respectively, and the average correlation coefficient between the RSDIs and
the SPEI was 0.577 (α = 0.05); and (3) different RSDIs have time lags of zero–three months compared
with the meteorological drought index.

Keywords: remotely sensed drought indices (RSDIs); Standardized Precipitation Evapotranspiration
Index (SPEI); meteorological drought; Skill Score (SS); Yellow River basin (YRB)

1. Introduction

Drought is a complex and recurring natural disaster that occurs throughout the world and often
has negative impacts on many sectors of society [1,2]. Droughts are increasing in frequency and
severity, and their impact on human lives and the economy is accelerating due to growing levels of
urbanization and an increasing number of extreme weather events [3–5]. The effective assessment
of drought is an essential means towards achieving sustainable development. Traditional drought
monitoring is based on data from meteorological stations. The relatively mature meteorological
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drought index includes the Palmer Drought Severity Index (PDSI) [6], the Standardized Precipitation
Index (SPI) [7], and the Standardized Precipitation Evapotranspiration Index (SPEI) [8]. Despite the
high accuracy of meteorological station data, the meteorological drought index is constrained by the
insufficient spatial distribution of stations, and has difficulty in reflecting a wide range of drought
information [9]. In 2015, 17 sustainable development goals (SDGs) were formally adopted at the UN
Sustainable Development Summit, which clearly indicates that remote sensing technology has become
an important way to reduce the risk of loss from drought disaster and achieve the goal of sustainable
development [10,11]. Remote sensing technology makes up for the shortage of meteorological stations
thanks to its advantages of objective, its timely, economic, and wide coverage, its continuous data,
and its ability to extend traditional “point” measurements to information about the entire areas.
Remote sensing has proved to be the most promising technology in drought monitoring, and is now
widely used in drought prevention, response, recovery, and mitigation [12,13].

Many drought-monitoring methods based on remote sensing have been developed, including
the vegetation index method, thermal inertia method, canopy temperature method, and microwave
remote sensing method. As vegetation growth is closely related to soil moisture levels, the vegetation
index method has become the main approach for monitoring agricultural drought based on remote
sensing [14]. Kogan considered that the Vegetation Condition Index (VCI) is capable of monitoring
drought and providing accurate drought information under different ecological environmental
conditions in the United States. The VCI is suitable for monitoring the interannual dry–wet conditions
and can eliminate the effects of climatic conditions, soil type, and topography, allowing comparison
between different regions [15,16]. The Temperature Condition Index (TCI) is defined by the principle of
elevated temperature and deficient water, and vegetation canopy or soil surface temperature increases
with the rise of water stress. The TCI can reflect the adverse effects of high temperature on the growth
of crops [17]. The Vegetation Health Index (VHI) is a health condition index that takes into account
the effect of vegetation leaf surface and temperature on vegetation. The VHI is used to reflect the
differences in the spatio–temporal patterns of drought and has a better effect of drought monitoring [18].
Sandholt et al. indicated that there was a triangular or trapezoidal relationship between the vegetation
index and land surface temperature, and developed the Temperature Vegetation Dryness Index (TVDI)
based on the scattered point feature space of these two parameters [19]. Wang et al. proposed the
Modified Temperature Vegetation Dryness Index (MTVDI) based on the difference between one and
the TVDI [20]. The MTVDI combines the special physiological and ecological significance of the
vegetation index and land surface temperature; it is easy to understand and calculate, and is widely
used in drought monitoring. Abbas et al. revised the Vegetation Supply Water Index (VSWI), and
discovered that the physical mechanism of the Normalized Vegetation Supply Water Index (NVSWI) is
much clearer [21]. The NVSWI is superior to the VSWI for the analysis of time series, it can express the
actual drought situation, and has a prominent advantage in drought monitoring [22].

There are many remotely sensed drought indices (RSDIs), which use data from the Moderate
Resolution Imaging Spectroradiometer (MODIS) for drought monitoring. While all of these RSDIs
can be used to monitor drought, the capability of different indices varies with temporal and spatial
patterns [23]. Klisch et al. quantified drought strength by calculating the VCI at the pixel level from
de-noised MODIS Normalized Difference Vegetation Index (NDVI) data, and successfully applied
drought products to drought monitoring in Kenya [24]. Zhang et al. used drought events during
2011 and 2012 to compare various RSDIs, and found that different RSDIs had differing characteristics
and were suitable for specific environments [25]. The studies of Hao et al. and Du et al. indicated
that studying the capability of RSDIs can better reveal drought characteristics, by comparing the
drought monitoring ability of several different RSDIs [26,27]. RSDIs are used to quantitatively evaluate
the effects of drought and directly determine the accuracy of drought monitoring; therefore, it is
particularly important to study their capability under different spatio–temporal patterns. However,
few studies have combined RSDIs with the meteorological drought index to assess whether the
remotely sensed index is suitable for drought monitoring, and the research on the capability
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of RSDIs under different spatio–temporal patterns is insufficient [28,29]. Moreover, most of the
methods to evaluate capability are based on a single statistical indicator (e.g., average deviation and
root-mean-square error). While average deviation can reflect the overall deviation degree of remotely
sensed and meteorological drought results in time-field or space-field, it cannot measure the similarity
degree. Likewise, the correlation coefficient can measure the similarity degree between remotely
sensed and meteorological drought, but it cannot reflect the actual deviation information. Due to the
obvious temporal and spatial differences in drought, it is urgent to improve the comprehensiveness and
objectivity of drought assessment through a composite statistical indicator with explicit significance.
The latest development of Skill Score (SS) is a composite indicator that considers deviation and
correlation coefficient synthetically [30,31]. By comparing the grade results of remotely sensed and
meteorological drought, the spatio–temporal capability of RSDIs is quantitatively evaluated [32].

The capability of RSDIs should be fully considered on temporal and spatial scales. However,
the systematic investigation of the spatio–temporal capability of RSDIs has not been carried out in
the Yellow River basin (YRB). In view of this, the composite indicator SS was used for the first time in
the YRB to quantitatively evaluate the capability of RSDIs in order to obtain the optimal RSDIs under
different spatio–temporal patterns. We can elaborately and systematically reveal the highly precise
RSDIs used to assess the YRB under different temporal and spatial patterns based on SS, so as to
improve the accuracy of drought monitoring. The research results can provide a reasonable scientific
assessment of the drought situation in the YRB and provide reference and basis for drought relief
measures. It is of great practical significance to study the evolution and scientific development of
drought under the changing environment in the YRB.

2. Materials and Methods

2.1. Study area

The Yellow River basin (YRB) is located between 95◦53’–119◦05’E and 32◦10’–41◦50’N. It originates
in the Bayan Har Mountains and flows from Kenli County of Shandong Province to the Bohai Sea.
Most of the YRB consists of arid and semi-arid areas with scarce water resources. Under the influence
of climate change and human activities, the ecological environment of the YRB is fragile and has the
basic characteristics of drought. The YRB is composed of eight water resource secondary subzones,
namely, Above Longyangxia (AL), Longyangxia to Lanzhou (LL), Lanzhou to Hekou (LH), Inner Flow
region (IF), Hekou to Longmen (HL), Longmen to Sanmenxia (LS), Sanmenxia to Huayuankou (SH),
and Below Huayuankou (BH) (Figure 1). The distribution of meteorological stations is shown in
Figure 1. According to the divided results of subzones in the YRB, the meteorological stations in each
subzone are counted separately. It can be seen from Figure 1 that these meteorological stations are
relatively well–distributed, and as such, can well represent the overall situation of the YRB.
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Figure 1. The study area and distribution of meteorological stations.

2.2. Drought indices

2.2.1. Remotely sensed drought indices (RSDIs)

Five RSDIs were adopted: The Vegetation Condition Index (VCI), Temperature Condition Index
(TCI), Vegetation Health Index (VHI), Modified Temperature Vegetation Dryness Index (MTVDI),
and Normalized Vegetation Supply Water Index (NVSWI). The range, formula, parameter meaning,
and source of the different RSDIs are shown in Table 1.

Table 1. Descriptions of remotely sensed drought indices (RSDIs).

Index Range Formula Parameter Source

VCI [0,1] VCI = NDVIi−NDVImin
NDVImax−NDVImin

NDVIi is the NDVI value of a certain period, and
NDVImax and NDVImin are the maximum and
minimum NDVI values in multi-year dataset.

[13]

TCI [0,1] TCI = LSTmax−LSTi
LSTmax−LSTmin

LSTi is the LST value of a certain period, and LSTmax
and LSTmin are the maximum and minimum LST

values in multi-year dataset.
[15]

VHI [0,1] VHI = aVCI + bTCI
a and b are used to show the contributions of VCI and
TCI to VHI. Here we assume that the contributions are

equal (a = b = 0.5).
[15]

MTVDI [0,1] MTVDI = LSTsmax−LSTs
LSTsmax−LSTs min

LSTs is the land surface temperature of an arbitrary
pixel, and LSTsmin and LSTsmax are LST values on wet

edge and dry edge. LSTsmin and LSTsmax are calculated
by groups of points at the lower and upper limits of the
scatterplots, where LSTsmin is the minimum LST for a
given NDVI (wet edge), and LSTsmax is the maximum

LST for a given NDVI (dry edge).

[18]

NVSWI [0,1] NVSWI = VSWIi−VSWImin
VSWImax−VSWImin

VSWIi is the VSWI value of a certain period, VSWImax
and VSWImin are the maximum and minimum VSWI

values in multi-year dataset.
[19]

2.2.2. Meteorological station-based drought index

The Standardized Precipitation Evapotranspiration Index (SPEI) was adopted as a meteorological
drought index. This index considers different types of droughts with the characteristics of multiple
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time scales. The SPEI can be calculated using precipitation and potential evapotranspiration (PET)
information. The SPEI additionally takes temperature into account and involves the influence of
changes in surface evapotranspiration on drought. The index is more sensitive to drought caused by
the rapid rise of temperature, and the detailed procedures are described in Reference [33]. The SPEI is
suitable for areas with annual precipitation greater than 200 mm; the mean annual precipitation in
the YRB is approximately 466 mm [34]. Therefore, the SPEI can better reflect meteorological drought
in the YRB. Referring to related research [35,36] and combined with the actual drought situation in
the YRB, the grade standards of drought indices are shown in Table 2. The range of drought grade
is between 1 and 5: 1 = no drought; 2 = mild drought; 3 = moderate drought; 4 = severe drought;
and 5 = extreme drought.

Table 2. Classification of drought indices used in this study.

Grade Classification VCI TCI VHI MTVDI NVSWI SPEI

1 No drought [0.8,1] [0.8,1] [0.8,1] [0.8,1] [0.8,1] (−0.5,+∞)
2 Mild drought [0.6,0.8) [0.6,0.8) [0.6,0.8) [0.6,0.8) [0.6,0.8) (−1, −0.5]
3 Moderate drought [0.4,0.6) [0.4,0.6) [0.4,0.6) [0.4,0.6) [0.4,0.6) (−1.5, −1]
4 Severe drought [0.2,0.4) [0.2,0.4) [0.2,0.4) [0.2,0.4) [0.2,0.4) (−2,−1.5]
5 Extreme drought [0,0.2) [0,0.2) [0,0.2) [0,0.2) [0,0.2) (−∞, −2]

2.3. Savitzky–Golay (S-G) Filtering

MODIS data are affected by undetected clouds and poor atmospheric conditions, resulting in
discontinuous data; thus, these data should be filtered [37,38]. The Savitzky–Golay (S-G) filtering
method was proposed by Savitzky and Golay in 1964. This method smoothes and reconstructs a set of
adjacent values or related spectral values by using the least squares algorithm, in order to reduce the
errors or noises caused by undetected clouds and poor atmospheric conditions. S-G filtering can also
be understood as a moving-window weighted averaging algorithm, taking each pixel in the study area
as a unit, using a given high-order polynomial to fit the pixel values of each unit at different times, and
reconstructing this set of data to compensate for the shortcomings of the data itself [39]. The formula
for data processing by S-G filtering is as follows:

Y∗
j =

i=m

∑
i=−m

CiYj+1

N
(1)

where Yj
* is the reconstructed time series data; Y is the original time series data, Ci is the coefficient of

filter fitting, i.e., the weight of the original time series data; N is the filter processing data length and is
equal to the smoothing window size (2m+1); and m is the half-width of the smoothing window.

In this paper, we adopted S-G filtering to reconstruct the MODIS NDVI and land surface
temperature (LST) data. In the process of data reconstruction, two parameters need to be set. The first
parameter is m, the half-width of the smoothing window. The larger the value of m, the more
smoothing is applied to the data. The second parameter is d, an integer specifying the degree of the
smoothing polynomial. A smaller value of d will produce a smoother result, but may introduce larger
deviation; a higher value of d will reduce the filter bias, and may “over fit” the data and give a noisier
result [40]. The flowchart of the S-G filtering method is shown in Figure 2.
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2.4. Data Processing

Monthly precipitation and temperature data from the 124 meteorological stations were
obtained from the National Meteorological Information Center (NMIC) of the China Meteorological
Administration. Spatio–temporal homogeneity tests, together with manual inspection and correction
of the data, had been performed by the NMIC, and the monthly precipitation and temperature data of
each meteorological station were reliable and of good quality during the research period (2000–2015).
Monthly SPEI of each station were calculated using monthly precipitation and temperature data from
the 124 meteorological stations. In this study, 10 spatial interpolation methods were compared
to choose the best one (Table 3). These methods can be classified into four categories: Inverse
Distance Weighting (IDW), Polynomial Interpolation (PI), Radial Basis Function (RBF), and Kriging
Interpolation (KI). Spatial interpolation of SPEI, based on 99 randomly selected stations (i.e., 80% of the
124 stations), was performed using all of the interpolation methods to choose the best one. Then, the
interpolated SPEI of the remaining 25 stations using each method were compared with the calculated
SPEI. Cross-validation was used to compare and select the most suitable interpolation method by
calculating the mean relative error (MRE), root-mean-square error (RMSE), and correlation coefficient
(R). Through comparative analysis, the Ordinary Kriging method was found to be the most suitable
interpolation method, having the lowest MRE (0.01), lowest RMSE (0.18), and highest R value (0.99).
Hence, in this study, the raster dataset of the SPEI was interpolated into a spatial resolution of 1 km
using the Ordinary Kriging interpolation method.
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Table 3. Comparison of different interpolation methods.

Interpolation methods MRE RMSE R

Inverse Distance Weighting IDW 1.11 1.05 0.91

Polynomial Interpolation Global PI 2.60 1.75 0.71
Local PI 1.49 1.09 0.90

Radial Basis Function

Completely Regularized Spline 0.03 0.19 0.99
Spline With Tension 0.03 0.19 0.99
Multiquadric Spline 0.04 0.21 0.99

Inverse Multiquadric Spline 0.03 0.19 0.99
Thin Plate Spline 0.03 0.19 0.99

Kriging Interpolation Ordinary Kriging 0.01 0.18 0.99
Universal Kriging 1.87 1.35 0.84

Vegetation index datasets based on remote sensing were derived from the monthly MOD13A3 data
product with a spatial resolution of 1 km from the US National Aeronautics and Space Administration
(NASA) website (https://ladsweb.nascom.nasa.gov), including the NDVI. Five tiles covering the YRB
(h25v04, h26v04, h25v05, h26v05, and h27v05) were selected from 2000 to 2015. LST data were derived
from the 8-day MOD11A2 data product with a spatial resolution of 1 km, and were composed by
Maximum Value Composite (MVC). The NDVI involves bands 1 and 2 of MODIS, and LST involves
bands 20, 22, 23, 29, and 31–33 of MODIS. Quality control was performed according to the MOD13
User’s Guide (see: https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/
mod13_user_guide.pdf) and the MOD11 User’s Guide (see: https://lpdaac.usgs.gov/sites/default/
files/public/product_documentation/mod11_user_guide.pdf).

In this paper, we used the S-G filtering method to reconstruct MODIS NDVI and LST data for
improving data quality. First, the MODIS Reprojection Tool (MRT) was used to deal with MODIS
images by batch-processing splicing, re-projecting, and clipping, and obtained the NDVI and LST
for the general scope of the YRB. Then, combined with the vector layer of the YRB, batch cutting
was carried out in ArcMap10.2 to obtain the monthly NDVI and LST data. Finally, NDVI and LST
time series data were reconstructed based on S-G filtering, and the final filtered NDVI and LST were
obtained. On the basis of the formula of VCI, TCI, VHI, and NVSWI, the monthly values of VCI,
TCI, VHI, and NVSWI in the YRB were obtained by band math in ENVI. Based on the NDVI and
LST, IDL programming was adopted in order to extract the LST value corresponding to the NDVI,
and an NDVI–LST feature space scatter-plot was obtained. The maximum and minimum LST values
corresponding to each NDVI value can be obtained, which were the dry and wet edges, and the
monthly MTVDI can be obtained by fitting the dry and wet edges equation. Filtered monthly, NDVI
and LST with a spatial resolution of 1 km were used to calculate all the monthly RSDIs (VCI, TCI, VHI,
MTVDI, and NVSWI) (see formulas in Table 1), with an identical spatial resolution of 1 km. In this
way, the temporal and spatial resolutions of all the remote sensed datasets are identical, and can be
compared with the interpolated SPEI dataset.

2.5. Statistical methods

2.5.1. Extreme-Point Symmetric Mode Decomposition (ESMD)

Extreme-Point Symmetric Mode Decomposition (ESMD) is the latest development of the
Hilbert–Huang transform. ESMD draws on the ideas of Empirical Mode Decomposition (EMD)
and can be used in the fields of information science, marine and atmospheric science, ecology, and all
other scientific studies involving data processing [41]. It uses the least squares method for optimizing
the last remaining mode to become the entire data “adaptive global mean line” in order to obtain the
optimal screening number. ESMD is an innovative method for obtaining the overall variation situation
of time series, and can decompose the original time series into a series of IMF components and a trend
item. The detailed decomposition process is described in Reference [42].

https://ladsweb.nascom.nasa.gov
https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/mod13_user_guide.pdf
https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/mod13_user_guide.pdf
https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/mod11_user_guide.pdf
https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/mod11_user_guide.pdf
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2.5.2. The Modified Mann–Kendall (MMK) trend test method

The Mann–Kendall (MK) trend test method is a nonparametric statistical test method to detect the
trend change of time series. The prerequisite of the MK method is that the time series is assumed to be
random and independent. However, the time series often has autocorrelation, which influences the
significance of the test results. However, the Modified Mann–Kendall (MMK) trend test method can
eliminate the autocorrelation components in the sequence and improve the testing ability of the MK
method [43]. The detailed steps of the MMK method are described in Reference [44] and Reference [45].

2.5.3. Skill Score (SS)

Ordinary statistical methods such as average deviation, root-mean-square error, and correlation
coefficient are used to evaluate the capability of various RSDIs. In this paper, we not only
consider these ordinary methods, but also use a composite indicator (SS), considering deviation
and correlation coefficient comprehensively, to evaluate the capability of different RSDIs elaborately
and systematically [46]. The detailed steps are as follows:

Assuming that Yt and Xt are the time series of remotely sensed and meteorological drought grade
results, respectively, the square error of remotely sensed and meteorological drought time series is
defined as:

MSE(y, x) =
1
n

n

∑
t=1

(Yt − Xt)
2 (2)

where n is the length of the time series. Through the non-dimensionalization of the above formula,
the dimensionless SS can be calculated as follows:

SS = 1 − MSE(y, x)
MSE(x, x)

= r2
y,x − [ry,x − (sy/sx)]

2 − [(y − x)/sx]
2 (3)

where r2
y,x is the square of the correlation coefficient between the remotely sensed and meteorological

drought sequence, sy and sx are the standard deviations of the remotely sensed and meteorological
drought sequence, respectively, and y and x are the average values of the remotely sensed and
meteorological drought sequence, respectively. The greater the correlation coefficient of the remotely
sensed and meteorological drought grade results, and the smaller the deviation, the closer the results
of the remotely sensed and meteorological drought (SS is close to 1). Otherwise, the SS is smaller (<1).

3. Results

3.1. Reconstruction of NDVI and LST time series data

To minimize the possible impacts of undetected clouds and poor atmospheric conditions,
S-G filtering was used to reconstruct the MODIS NDVI and LST time series data for the YRB during
2000–2015. The program achieved the best fitting effect after 10 iterations, and the filter parameters
were set to m = 2, d = 3. The NDVI and LST profiles of one randomly selected pixel is shown in
Figure 3. The pixel is located in the IF of the YRB with the land cover type of grassland. Theoretically,
the inter-annual variation of NDVI and LST curves should be continuous and smooth. From the
original NDVI and LST curves of the verification point, it can be seen that the time series were not very
smooth, with a sudden drop occurring in some periods. The original NDVI and LST of the sudden
drop were attributed to cloud and snow pixels, which resulted in sudden descent points (noises) that
were inconsistent with the overall trend. After filtering, the values lower than the overall trend were
considered as noise points, and were replaced by the filtering results, while the values higher than the
overall trend were considered as normal values and were reserved. The NDVI and LST curves were
obviously smoothed after S-G filtering, and the values marked as noise had been improved (Figure 3).
The final curves were in accordance with the gradual variation trend of the NDVI and LST.



Remote Sens. 2018, 10, 1834 9 of 18Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 18 

 

 

Figure 3. Original and filtered Normalized Difference Vegetation Index (NDVI) (a) and land surface 
temperature (LST) (b) time series. 

Figure 4 shows a comparison of the original and filtered images of NDVI and LST in July 2010. 
The good data in the original image can be retained to ensure the accuracy of the reconstructed 
image. The noise points were replaced by the new pixel values, and the difference of each pixel 
between the filtered and original image was greater than or equal to zero. From Figure 4, it can be 
seen that the NDVI in IF and the LST in AL were obviously improved. The data reconstructed by S-G 
filtering were significantly improved, as compared with the original data, and the filtered image can 
represent the real information of NDVI and LST. S-G filtering can effectively compensate for the data 
error caused by undetected clouds and poor atmospheric conditions, thus improving the quality of 
MODIS NDVI and LST time series data. 

 

Figure 4. Original and filtered image comparisons of Normalized Difference Vegetation Index 
(NDVI) and land surface temperature (LST) in July 2010: (a) Original NDVI image; (b) Filtered NDVI 
image; (c) Original LST image; and (d) Filtered LST image. 

3.2. Temporal and spatial characteristics of drought 

3.2.1. Temporal characteristics 

In order to explore the overall drought variation in the YRB from 2000 to 2015, the RSDIs (VCI, 
TCI, VHI, MTVDI, and NVSWI) and the meteorological drought index (SPEI) were decomposed, 
respectively, using ESMD. The ESMD decomposition automatically stopped with trend item R 
corresponding to the minimum variance ratio, and the long-term overall variation trend of drought 
could be obtained (Figure 5). The trend item R based on ESMD decomposition can reflect the overall 
variation trend of drought, which was the adaptive global average line of the sequence. The 
variation trends of different drought indices clearly varied. The linear tendency rates of the annual 
VCI, TCI, VHI, MTVDI, NVSWI, and SPEI were 0.2/10a, 0.059/10a, 0.133/10a, 0.005/10a, 0.137/10a, 
and 0.148/10a, with the most obvious increasing trend being observed in the VCI. The remotely 
sensed and meteorological drought index showed an upward trend during 2000–2015, indicating 

Figure 3. Original and filtered Normalized Difference Vegetation Index (NDVI) (a) and land surface
temperature (LST) (b) time series.

Figure 4 shows a comparison of the original and filtered images of NDVI and LST in July 2010.
The good data in the original image can be retained to ensure the accuracy of the reconstructed image.
The noise points were replaced by the new pixel values, and the difference of each pixel between the
filtered and original image was greater than or equal to zero. From Figure 4, it can be seen that the
NDVI in IF and the LST in AL were obviously improved. The data reconstructed by S-G filtering were
significantly improved, as compared with the original data, and the filtered image can represent the
real information of NDVI and LST. S-G filtering can effectively compensate for the data error caused
by undetected clouds and poor atmospheric conditions, thus improving the quality of MODIS NDVI
and LST time series data.
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Figure 4. Original and filtered image comparisons of Normalized Difference Vegetation Index (NDVI)
and land surface temperature (LST) in July 2010: (a) Original NDVI image; (b) Filtered NDVI image;
(c) Original LST image; and (d) Filtered LST image.

3.2. Temporal and spatial characteristics of drought

3.2.1. Temporal characteristics

In order to explore the overall drought variation in the YRB from 2000 to 2015, the RSDIs (VCI,
TCI, VHI, MTVDI, and NVSWI) and the meteorological drought index (SPEI) were decomposed,
respectively, using ESMD. The ESMD decomposition automatically stopped with trend item R
corresponding to the minimum variance ratio, and the long-term overall variation trend of drought
could be obtained (Figure 5). The trend item R based on ESMD decomposition can reflect the overall
variation trend of drought, which was the adaptive global average line of the sequence. The variation
trends of different drought indices clearly varied. The linear tendency rates of the annual VCI,
TCI, VHI, MTVDI, NVSWI, and SPEI were 0.2/10a, 0.059/10a, 0.133/10a, 0.005/10a, 0.137/10a, and
0.148/10a, with the most obvious increasing trend being observed in the VCI. The remotely sensed and
meteorological drought index showed an upward trend during 2000–2015, indicating that the drought
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in the YRB was slowing down on the annual scale. On the seasonal scale, the agricultural drought in
each season, based on remote sensing, showed a downward trend, with the most obvious decreasing
trend of drought being observed in summer. The linear tendency rates of VCI, TCI, VHI, MTVDI,
and NVSWI in summer was 0.241/10a, 0.089/10a, 0.165/10a, 0.052/10a, and 0.212/10a, respectively.
The average SPEIs for spring, summer, autumn, and winter were −1.51, −2.03, −0.59, and −0.44,
respectively. The most severe season for meteorological drought was summer, followed by spring.
The smaller the SPEI value was, the heavier the drought was; that is, a downward trend of SPEI
indicates that drought is increasing. The tendency rate of winter SPEI was −0.035/10a, indicating that
meteorological drought was increasing in winter. This shows that, although meteorological drought
occurred, agricultural drought was not necessarily occurring due to agricultural irrigation and other
field management measures.
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3.2.2. Spatial distribution

The drought spatial distribution characteristics of the YRB were obtained after the drought
classification monitored by remotely sensed and meteorological drought index (Figure 6). In spring,
the percentage of areas with moderate drought monitored by VCI, TCI, VHI, MTVDI, NVSWI, and SPEI
was 81.6%, 95.5%, 96.3%, 85.2%, 65.8%, and 38.3%, respectively, and the percentage of areas with severe
drought (59.4%) was also higher—monitored by the SPEI. With the increase of temperature in summer,
extreme drought occurred in most areas monitored by the MTVDI and SPEI, with area percentages of
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63.2% and 48.2%, respectively. The percentage of areas with moderate drought monitored by VCI, TCI,
VHI, and NVSWI was 75.7%, 93.7%, 91.9%, and 79.6%, respectively. In autumn, the percentage of areas
with moderate drought monitored by the VCI, TCI, VHI, MTVDI, and NVSWI was 84.8%, 75.8%, 94.3%,
78.2%, and 39.2%, respectively, while the percentage of areas with mild drought monitored by SPEI
(48.3%) was also higher. The TCI and NVSWI also detected severe drought in some areas, with the
percentage of areas with severe drought detected by NVSWI (52.1%) being higher than that detected
by TCI (24.2%). In winter, the percentage of areas with moderate drought monitored by the VCI, TCI,
VHI, MTVDI, and NVSWI was 53.1%, 61.6%, 92.9%, 70.9%, and 47.2%, respectively; conversely, most
areas experienced no drought, as monitored by SPEI, which detected an area percentage of 62.7%.
The VCI and TCI also detected mild drought and severe drought, respectively, giving area percentages
of 41.9% and 38.1%, respectively.

From the drought grade results, it can be seen that the main drought type was moderate drought
as monitored by different RSDIs in the YRB. The TCI and NVSWI in autumn, and the TCI in winter,
detected severe drought in the YRB. The MTVDI in summer, and the VCI in winter, detected extreme
drought and mild drought, respectively. The grade results of meteorological drought indicated that
meteorological drought was more serious in spring (severe drought) and summer (extreme drought),
and less serious in autumn (mild drought) and winter (no drought).
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The seasonal trends of drought indices in the YRB based on the MMK trend test method are
shown in Figures 7 and 8. The trend characteristic values of the VCI, TCI, VHI, MTVDI, NVSWI, and
SPEI were 1.22, 0.50, 1.13, 0.19, 1.07, and 0.37 in spring; 1.24, 0.48, 0.96, 0.42, 1.05, and 0.04 in summer;
1.15, 0.34, 0.99, 0.06, 0.96, and 0.21 in autumn; and 0.87, 0.26, 1.25, 0.11, 0.58, and −0.39 in winter.
Seasonal drought showed a decreasing trend based on remote sensing in the YRB. Among them, the
Zs values of spring, summer, and autumn VCI, spring, autumn, and winter VHI, and spring NVSWI
in HL all passed the significance test of α = 0.05, which indicated that drought in these regions was
significantly slowing down, as monitored by these indices. Based on the SPEI, the meteorological
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drought showed a decreasing trend in spring, summer, and autumn, and an increasing trend in
winter (Zs = −0.39) in the YRB. The trend characteristic value of each subzone was slightly different;
the Zs value of winter SPEI passed the significance test of α = 0.05 in SH, which showed that the
meteorological drought in this region increased significantly in winter.
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3.3. Capability of remotely sensed drought indices

This paper compared the grade results of remotely sensed and meteorological drought in order
to quantitatively explore the capability of RSDIs in the YRB. The spatial distribution of SS was
used to reflect the correlation coefficient and deviation information between remotely sensed and
meteorological drought. The optimal RSDIs with high accuracy under different temporal and spatial
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patterns were selected by using optimal strategy in order to improve the accuracy of remotely sensed
drought monitoring in the YRB.

Based on the classification standard of drought indices (Table 2), the spatial distribution of
remotely sensed and meteorological drought grade results were obtained. The grade results of the
meteorological drought index (SPEI) were considered as reference values, the grade results of RSDIs
(VCI, TCI, VHI, MTVDI, and NVSWI) were considered as evaluation values, and the SS of the RSDIs
were calculated (Figure 9). The greater the SS value, the higher the accuracy of Remotely Sensed
Drought Index (RSDI). The average SS value of all pixels was calculated in each subzone of the YRB
and the optimal RSDI with the maximum SS value in a specific season of each subzone was obtained
(Table 4). In spring, the optimal RSDI of seven subzones was the VHI. In summer, the optimal RSDI of
seven subzones was the TCI. In autumn, the optimal RSDI of five subzones was the MTVDI. In winter,
the optimal RSDI of seven subzones was the VCI. As mentioned above, the optimal RSDI in spring,
summer, autumn, and winter was the VHI, TCI, MTVDI, and VCI, respectively.

A total of 18 optimal drought indices passed the significance test of α = 0.05 and nine optimal
drought indices passed the significance test of α = 0.01. The proportion of optimal drought indices
reached 84.4%, which passed the significance test. The average correlation coefficient was 0.577,
which passed the significance test of α = 0.05. It can be seen that the correlation coefficient of drought
grade results between the agricultural drought based on the optimal RSDIs and meteorological drought
based on SPEI was higher. In view of the fact that the SS was a dimensionless indicator, which took
into account correlation coefficient and deviation, the evaluation result was more comprehensive and
objective. In future research, we should adopt these optimal RSDIs based on SS to monitor drought in
the YRB in order to provide a scientific and rational assessment of drought conditions and provide
reference and basis for the formulation of drought relief measures.
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Table 4. The optimal remotely sensed drought indices (RSDIs) in various subzones. Spr., Sum., Aut.,
and Win. denote spring, summer, autumn, and winter, respectively. The values in parentheses are
the correlation coefficients of drought grade results between the optimal index and the Standardized
Precipitation Evapotranspiration Index (SPEI). “∗” means significance at the 95% confidence level and
“∗∗” means significance at the 99% confidence level.

Subzone Spr. Sum. Aut. Win.

AL VHI(0.569∗) TCI(0.683∗∗) MTVDI(0.538∗) VCI(0.498∗)
LL VHI(0.543∗) VHI(0.558∗) MTVDI(0.558∗) VCI(0.415)
LH VHI(0.715∗∗) TCI(0.881∗∗) MTVDI(0.519∗) MTVDI(0.558∗)
IF VHI(0.584∗) TCI(0.865∗∗) MTVDI(0.508∗) VCI(0.781∗∗)

HL VHI(0.580∗) TCI(0.718∗∗) MTVDI(0.396) VCI(0.656∗∗)
LS NVSWI(0.612∗) TCI(0.507∗) VHI(0.415) VCI(0.519∗)
SH VHI(0.334) TCI(0.498∗) VCI(0.664∗∗) VCI(0.507∗)
BH VHI(0.479) TCI(0.527∗) NVSWI(0.595∗) VCI(0.675∗∗)

4. Discussion

4.1. Hysteresis analysis

The results of remotely sensed drought showed different delayed responses to meteorological
drought with a certain time lag [47]. In order to quantitatively investigate the hysteresis of remotely
sensed drought monitoring results relative to meteorological drought results, this paper delayed
the drought results of RSDIs for zero to three months (zero-month lag, one-month lag, two-month
lag, and three-month lag) so as to seek the optimal time-lag effect between remotely sensed and
meteorological drought [48,49]. By comparing the average SS between meteorological drought and
remotely sensed drought with a zero-month lag, one-month lag, two-month lag, and three-month lag,
the time lags of RSDIs in each subzone were obtained (Figure 10). Remotely sensed drought monitored
by VCI, TCI, VHI, MTVDI, and NVSWI had hysteresis relationships with meteorological drought, with
different time-lags in each subzone. In January, the time lag of VCI was one month in AL and LL, three
months in LH and IF, two months in HL, and zero months in LS, SH, and BH. The time lag of TCI was
one month in AL, LL, LH, and LS, two months in IF, and zero months in HL, SH, and BH. The time
lags of the other RSDIs are shown in Figure 10. Each RSDI had a time lag in different periods. This was
because changes in vegetation greenness and moisture due to drought took time to accumulate and
develop, which is in accordance with the result of Reference [50].
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4.2. Drought evolution in the YRB

Drought occurrence has obvious temporal and spatial characteristics. The drought conditions were
different when monitored by different RSDIs. On the annual scale, drought slowed down in the YRB
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during the 16-year study period, which is consistent with the previous research of References [51,52].
On the seasonal scale, the agricultural drought in each season showed a decreasing trend based on
remote sensing, which was slightly different from the meteorological drought (which was aggravated in
winter). The decreasing trend of precipitation (−3.88 mm/10a) and the increasing trend of temperature
(0.18°C/10a) were more significant in winter; thus, winter was the only season when an increase in
meteorological drought was observed (SPEI tendency rate of −0.035/10a), which was in agreement
with the conclusion of the characteristic value of the MMK trend test (Zs < 0). While meteorological
drought occurred, agricultural drought did not necessarily occur, due to agricultural irrigation
and other field management measures [53]. If meteorological drought occurred with a long-term
reduction in precipitation, the occurrence of agricultural drought depended on the time and location of
meteorological drought and the local irrigation conditions and planting structure. If timely irrigation
can be provided for crops after meteorological drought, or other agricultural measures can be taken to
maintain soil moisture and meet crop demand, agricultural drought will not occur [25,54]. Furthermore,
human activities can also affect the vegetation status of the YRB, thus affecting vegetation coverage
and the development of agricultural drought. The YRB has always been the major region of ecological
protection and construction in China. Since 2000, China has invested significant funds in ecological
restoration. A large number of major ecological environmental protection and construction projects
have been implemented, such as grain for green, returning pasture to grass, natural forest protection,
and protective forest system engineering [55]. With the implementation of ecological engineering,
the vegetation status of the YRB has been improved and the vegetation growth has an obvious
increasing trend. Therefore, it was considered that agricultural drought tended to slow down in
the YRB, which was the result of ecological protection and forest planting in large areas in recent
years [56,57]. Besides forest planting, an increase in precipitation (19.88 mm/10a) was also one of the
main causes of drought mitigation [58]. The characteristic of meteorological drought in each season
was obviously different, with the highest average temperature being recorded in summer (20.08°C) and
the second highest in spring (9.64°C). The most serious meteorological drought occurred in summer
and spring. Liu et al. indicated that there was relatively large crop water demand in summer, and less
rainfall in spring with great inter-annual variation, resulting in serious meteorological drought in
summer and spring, which is consistent with the research results obtained in this study [59].

5. Conclusions

The capability of RSDIs should be fully considered under different spatio–temporal patterns,
which can improve the accuracy of drought monitoring in the YRB. Based on the SS method, five RSDIs
(VCI, TCI, VHI, MTVDI, and NVSWI) were quantitatively evaluated with the meteorological drought
index SPEI in order to determine the optimal RSDIs under different spatio–temporal patterns from
2000 to 2015.

Drought slowed down in the YRB during 2000–2015. The linear tendency rates of the VCI,
TCI, VHI, MTVDI, NVSWI, and SPEI were 0.2/10a, 0.059/10a, 0.133/10a, 0.005/10a, 0.137/10a, and
0.148/10a, with the most obvious trend being seen for the VCI. The main drought type was moderate
drought, as monitored by different RSDIs in the YRB. On the seasonal scale, agricultural drought
showed a decreasing trend based on the RSDIs, and meteorological drought showed a decreasing
trend based on spring, summer, and autumn SPEI and an increasing trend based on winter SPEI.
The drought results based on remote sensing were slightly different from the results obtained for
meteorological drought, and had time lags of zero–three months compared with meteorological
drought. By investigating the capability of RSDIs under different spatio–temporal patterns, the optimal
RSDIs in spring, summer, autumn, and winter were found to be the VHI, TCI, MTVDI, and VCI,
respectively, and the average correlation coefficient between the RSDIs and the SPEI was 0.577 (α = 0.05).
In the future, the optimal RSDIs should be adopted to monitor drought conditions in the YRB, which
can provide a reasonable scientific basis for relevant departments to plan and make decisions relating
to drought.
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In this study, we combined remotely sensed and meteorological drought indices to study the
characteristics of drought and quantitatively evaluated the capability of RSDIs in the YRB. However,
the factors involved in this paper were limited, and the physical mechanism of drought was not taken
into account. There are many other factors involved in the occurrence of drought, and we should take
these into account. Furthermore, we should increase the category of RSDIs to expand the scope of
selection in future research, which is highly necessary for accurate drought monitoring.
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