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Abstract: The prediction of forest biomass at the landscape scale can be achieved by integrating
data from field plots with satellite imagery, in particular data from the Landsat archive, using
k-nearest neighbour (kNN) imputation models. While studies have demonstrated different kNN
imputation approaches for estimating forest biomass from remote sensing data and forest inventory
plots, there is no general agreement on which approach is most appropriate for biomass estimation
across large areas. In this study, we compared several imputation approaches for estimating forest
biomass using Landsat time-series and inventory plot data. We evaluated 18 kNN models to
impute three aboveground biomass (AGB) variables (total AGB, AGB of live trees and AGB of
dead trees). These models were developed using different distance techniques (Random Forest
or RF, Gradient Nearest Neighbour or GNN, and Most Similar Neighbour or MSN) and different
combinations of response variables (model scenarios). Direct biomass imputation models were
trained according to the biomass variables while indirect biomass imputation models were trained
according to combinations of forest structure variables (e.g., basal area, stem density and stem
volume of live and dead-standing trees). We also assessed the ability of our imputation method to
spatially predict biomass variables across large areas in relation to a forest disturbance history over
a 30-year period (1987–2016). Our results show that RF consistently outperformed MSN and GNN
distance techniques across different model scenarios and biomass variables. The lowest error rates
were achieved by RF-based models with generalized root mean squared difference (gRMSD, RMSE
divided by the standard deviation of the observed values) ranging from 0.74 to 1.24. Whereas gRMSD
associated with MSN-based and GNN-based models ranged from 0.92 to 1.36 and from 1.04 to 1.42,
respectively. The indirect imputation method generally achieved better biomass predictions than
the direct imputation method. In particular, the kNN model trained with the combination of basal
area and stem density variables was the most robust for estimating forest biomass. This model
reported a gRMSD of 0.89, 0.95 and 1.08 for total AGB, AGB of live trees and AGB of dead trees,
respectively. In addition, spatial predictions of biomass showed relatively consistent trends with
disturbance severity and time since disturbance across the time-series. As the kNN imputation
method is increasingly being used by land managers and researchers to map forest biomass, this work
helps those using these methods ensure their modelling and mapping practices are optimized.
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1. Introduction

Forest biomass is considered a key factor in carbon and water cycles in terrestrial ecosystems.
Spatial estimates of forest biomass are therefore needed for understanding the sources and sinks
of terrestrial carbon and for accomplishing scientific and practical tasks in forest management [1].
National and international reporting of forest biomass and carbon has traditionally relied upon
field measurements from National Forest Inventory (NFI) programs [2]. However, these approaches
cannot provide a continuous spatial distribution of forest biomass at the landscape scale, since field
measurements often have limited spatial and temporal coverage, especially for large jurisdictions
or remote areas [3]. To address this problem, researchers and practitioners often combine field
measurements with remote sensing data to estimate forest biomass across large areas. Many studies
have recently demonstrated the ability of lidar (light detection and ranging) data in providing
high accuracy estimates of forest biomass and structure [4–10]. Lidar can be integrated with forest
inventory data to make lidar-based biomass maps where data is available wall-to-wall [7–9,11,12],
or to create lidar-based plots to support forest inventory where data are discrete available as sample
transects [13,14]. Lidar-based plots can then be fused with larger coverage data, such as satellite
imagery, to facilitate mapping forest biomass and structure at the land management scale [15–20].
However, while lidar is often available over forests in developed regions such as North America,
such data is generally not available in developing regions, due to its high acquisition costs and
advanced computational requirements. The immediate need of biomass estimations across large forest
areas, therefore, relies on field-based inventories and multi-spectral remote sensing data provided by
satellites such as Landsat and Sentinel.

The free availability of the entire historic Landsat archive (since 2008) makes it a popular remotely
sensed data source for mapping current forest biomass, as well as monitoring forest biomass dynamics
across space and time. The Landsat archive provides a 40-year collection of satellite imagery (since
1972) at a spatial resolution sufficient for capturing changes in forests [21]. This has facilitated the
development of many approaches that utilize Landsat time-series imagery to characterize forest
change [22,23]. Information from Landsat time-series has been widely used in many studies to
estimate forest biomass and other structure attributes across large areas (e.g., [15,16,19,20,24–27]).
At the conceptual level, Kennedy, Ohmann, Gregory, Roberts, Yang, Bell, Kane, Hughes, Cohen, Powell,
Neeti, Larrue, Hooper, Kane, Miller, Perkins, Braaten and Seidl [24] developed a comprehensive forest
biomass monitoring framework that is based on the analysis of Landsat time-series. Studies have also
demonstrated the utility of Landsat time-series in improving forest biomass and structure estimates
in comparison with methods that conventionally rely on single-date Landsat images [6,9,16,28].
For example, Pflugmacher, Cohen and E. Kennedy [9] indicated that the inclusion of spectral
disturbance and recovery metrics extracted from Landsat time-series can improve biomass model
results. More recently, Bolton, White, Wulder, Coops, Hermosilla and Yuan [16] demonstrated that time
series metrics such as long-term Landsat spectral means and variability can also describe long-term
forest dynamics. The inclusion of time series metrics not only improves the accuracy of empirical
models but also makes spatial predictions of forest attributes more consistent with ecological changes
such as those resulting from forest disturbance and recovery processes [19].

In forest mapping applications, k-Nearest Neighbour (kNN) imputation has been commonly used
to leverage forest attributes of interest (response variables), derived from sample plot data, with spatial
metrics (predictor variables), derived from remote sensing data, to generate spatial predictions of
forest attributes (e.g., [15,16,19,24,29,30]). kNN imputation is a non-parametric and multivariate
modelling method that aims to impute (or share) values of response variables from measured samples
to target samples where response variables have not been observed (e.g., pixels covering an area of
interest) [31]. Imputation associated with each target sample is based on the similarity (evaluated
using a distance metric) between values of predictor variables associated with that target pixel and
those associated with k nearest training samples. The imputed value of each target sample is assigned
as the observed value of a particular training sample if k = 1, and as the average of observed values
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associated to k nearest training samples if k > 1. Using k values greater than 1 often produces more
accurate imputation results than using k = 1, but increases the bias/variance between imputed and
observed values, which is an important consideration when comparing the performance of imputation
models [31,32]. There are several common techniques to derive a nearest neighbour distance metric
(hereafter, distance technique), including weighted Euclidean distance based techniques, such as Most
Similar Neighbour (MSN) [33], or Gradient Nearest Neighbour (GNN) [34], and machine learning
based methods such as Random Forest (RF) [35]. In fact, MSN is the configuration consisting of the
canonical correlation analysis and k = 1 [33], and GNN is the configuration consisting of the canonical
correspondence analysis and k = 1 [34]. However, several studies also used these techniques with
k > 1 [36]. Some studies have compared kNN distance techniques [31,32,37]. Hudak, Crookston, Evans,
Hall and Falkowski [31] compared several kNN distance techniques for imputing plot-level response
variables (basal area and tree density) using airborne lidar data in small case study areas. The study
found that the RF technique performed best in comparison with GNN and MSN. Eskelson, Temesgen,
Lemay, Barrett, Crookston and Hudak [32] also found that RF outperformed other techniques when
estimating current forest attributes from inventory data. As the kNN imputation method has been
increasingly used in mapping forest biomass, it is critical for land managers and researchers to identify
which distance technique performs better at regional and national scales.

Another important consideration when developing a kNN model is the method used for imputing
biomass variables. This can be divided into two groups: direct and indirect imputation methods. In the
direct method, forest biomass variables are included in kNN models as response variables and are thus
directly imputed based on their relationship with predictor variables [30,37–40]. In the indirect method,
however, kNN models are trained by response variables other than biomass [15,19,24]. These response
variables are often forest structure attributes extracted from inventory plots, such as basal area, stem
density and stem volume. Alternatively, variables may be measured from lidar-based plots such
as mean vegetation height and percentage of returns [19]. Biomass variables are then attached as
ancillary variables to the imputation predictions for target samples. That is, the nearest neighbours
for each target sample are found based on the relationship between structure attributes and predictor
variables and then are indirectly transferred to biomass variables. For instance, Kennedy, Ohmann,
Gregory, Roberts, Yang, Bell, Kane, Hughes, Cohen, Powell, Neeti, Larrue, Hooper, Kane, Miller,
Perkins, Braaten and Seidl [24], following Ohmann and Gregory [34], developed GNN imputation
models to link a variety of plot-level measures including basal area by species and tree size classes with
Landsat-based predictor variables. Using GNN models, each pixel was assigned tree measurements
from an inventory plot, resulting in inventory-like maps, from which forest biomass was mapped.
As the abovementioned studies were conducted in different locations and used different data sources,
it is difficult to compare the imputation methods used for estimating forest biomass. Currently, there is
no general agreement on whether direct or indirect imputation methods are better for estimating forest
biomass from remote sensing data.

The main aim of this study is to determine the most accurate imputation approaches for mapping
forest biomass at the landscape scale, using remote sensing and inventory data, and in doing so,
fill current gaps in the literature. To achieve this, we compare the performance of several imputation
approaches used for modelling aboveground forest biomass (AGB) over large areas using Landsat
time-series and field plot measurements. In particular, we compare and contrast (1) direct and indirect
biomass imputation methods and (2) three commonly used kNN distance techniques (RF, GNN and
MSN), for predicting three forest biomass variables (total AGB, AGB of live-standing trees, AGB
of dead-standing trees). In addition, we demonstrate and assess the utility of the kNN imputation
method for spatially predicting biomass variables across large areas in relation to ecological changes
(a 30-year history of forest disturbance, Nguyen, Jones, Soto-Berelov, Haywood and Hislop [23]).
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2. Materials and Methods

The main steps implemented in this study are summarized in Figure 1. In summary, we derived
a series of forest biomass (total AGB, AGB of live and dead-standing trees) and structure
variables (e.g., basal area, stem density) from 633 forest inventory plots. As predictor variables,
we calculated Landsat time-series based metrics across 19 Landsat tiles plus topographic and climatic
variables. We extracted the predictor variables for each plot location and then developed, compared,
and evaluated different kNN imputation approaches. Finally, we assessed the ability of the optimal
kNN model to predict forest biomass in relation to disturbance history over a 30-year time-series
(1987–2016). A more detailed description follows below.
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Figure 1. Overall flowchart of steps used for developing and comparing biomass imputation approaches.

2.1. Study Area

The study area contains the whole public land forest estate (7.1 million hectares) of Victoria,
southeast Australia (Figure 2). Victorian public land forests extend across the state and include two
main land tenures: state forests, and national parks and conservation reserves [41]. The area is stratified
by eleven main bioregions (Interim Biogeographic Regionalization for Australia or IBRA, Figure 2),
each of which has distinct ecological, geological and climatological features [41].

Victorian public forests include a wide range of ecosystems. North-western Victoria is mostly
covered by mallee ecosystems, characterised by small woodland (up to 8 m tall) and multi-stemmed
forests, on flat to undulating landscapes. In contrast, most ecosystems in the central part of the State are
box-ironbark and red gum forests, which have dense to sparse canopies and reach up to 25 m in height.
They are found on flat to undulating topography on rocky and auriferous soils. The most widespread
and variable forest ecosystem in the study area consists of damp sclerophyll forests, which cover the
central and eastern parts of Victoria. In this ecosystem, trees grow on loam, clay loam, and sandy loam
soils and heights range from 40 m to 60 m. Distributed mostly in the eastern part of the state are wet
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and dry sclerophyll forests. The former are the tallest forest ecosystems in Victoria, with trees reaching
75 m or more in height while the later include relatively low and spreading trees that reach a maximum
height of 25 m [42]. Forests within the study area have been impacted by a series of disturbance events
including fuel reduction burns, wildfires, logging and drought, resulting in significant changes in
carbon biomass stocks [23].
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2.2. Forest Biomass and Structure Response Variables

Forest inventory plot data was collected as a part of the Victorian Forest Monitoring Program
(VFMP) which is implemented by the Department of Environment, Land, Water, and Planning [43].
The VFMP includes a network of 786 permanent ground circular plots (0.04 ha) randomly distributed
across a systematic statewide grid (Figure 2). In each plot, inventory data is collected on large trees,
small trees, herbs, shrubs, and woody debris. Further descriptions of sample designs and field
measurements can be found in Haywood, Mellor and Stone [43].

In this study, we extracted data from 633 VFMP plots measured between 2011 and 2016 and
calculated nine tree-level forest biomass and structure variables (Table 1). Following Haywood and
Stone [44], we estimated AGB (Mg·ha−1) of all large live-standing trees (AGBlive_tree, ≥10 cm in
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diameter at breast height—DBH) using a generic allometric equation for sclerophyll forests [45] of
the form:

ln(BLTi) = −2.3267 + 2.4855 × ln(DBHi), (1)

where BLTi is the AGB of large live-standing tree i. AGB of large dead-standing trees (AGBdead_tree)
was calculated by subtracting the amount of biomass in leaves, twigs and branches from AGB of
live-standing trees. Total aboveground woody biomass (AGBtotal) was calculated as the sum biomass
of live- and dead-standing trees (AGBlive_tree and AGBdead_tree), small trees (<10 cm DBH), stumps,
slash and coarse woody debris (all fallen dead woody material, Haywood and Stone [44]). In addition
to biomass variables, we calculated some structural measures that are summaries of tree measurements
in each plot, including basal area (BA), stem density (TD, number of trees per hectare), and tree volume
(VL) of both live- and dead-standing trees (Table 1).

Table 1. Forest biomass and structure variables extracted from inventory data.

Variable Description Mean (Range) Unit

Biomass measurements

AGBtotal Total aboveground woody biomass 284.9 (0.3–1037.7) Mg·ha−1

AGBlive_tree Total AGB of large live-standing trees 207.4 (0.1–907.8) Mg·ha−1

AGBdead_tree Total AGB of large dead-standing trees 31.4 (0.0–349.8) Mg·ha−1

Structure attributes

BAlive_tree Total basal area of live-standing trees 26.3 (0.3–140.9) m2·ha−1

BAdead_tree Total basal area of dead-standing trees 6.6 (0.0–134.9) m2·ha−1

TDlive_tree Live-standing tree density 371.9 (25.0–2750.0) Trees per hectare
TDdead_tree Dead-standing tree density 109.8 (0.0–2450.0) Trees per hectare
VLlive_tree Tree volume of live-standing trees 297.2 (0.5–2885.6) m3·ha−1

VLdead_tree Tree volume of dead-standing trees 20.0 (0.0–460.8) m3·ha−1

2.3. Predictor Variables

The candidate predictor variables included Landsat-based metrics as well as topographic and
climatic ancillary data (Table 2). Landsat-based variables consisted of spectral indices and change
metrics derived from the analysis of Landsat time-series.

Table 2. Predictor variables derived from Landsat time-series and topographic and climatic data.

Group Variable Description

Spectral indices

NBR Normalised burn ratio

TCB Tasselled cap brightness

TCG Tasselled cap greenness

TCW Tasselled cap wetness

TCA Tasselled cap angle

TCD Tasselled cap distance

Change metrics

Pre-disturbance value NBR value at the start vertex of
disturbance segment

Post-disturbance value NBR value at the end vertex of
disturbance segment

Disturbance onset year The year when disturbance begins

Disturbance duration Number of years between the start vertex
and the end vertex of disturbance segment
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Table 2. Cont.

Group Variable Description

Disturbance magnitude
Difference in NBR value between the start

vertex and the end vertex of
disturbance segment

Relative disturbance magnitude Ratio of disturbance magnitude to
pre-disturbance value

Disturbance rate Ratio of disturbance magnitude to
disturbance duration

Recovery onset year The year when post-disturbance
recovery starts

Recovery duration Number of years between the start vertex
and the end vertex of recovery segment

Recovery magnitude
Difference in NBR value between the start

vertex and the end vertex of
recovery segment

Relative recovery magnitude Ratio of recovery magnitude to
post-disturbance value

Recovery rate Ratio of recovery magnitude to
recovery duration

Time since disturbance Number of years since disturbance ends

Disturbance level High, medium, or low disturbance

Disturbance causal agent Fire, logging, and other (drought,
insects, flood)

Topographic and climatic
metrics

Elevation Elevation in meters

Slope Slope in degrees

Precipitation Mean total rainfall

Temperature Mean annual temperature

Location
X Northing

Y Easting

2.3.1. Landsat Time-Series

The study area is covered by 19 Landsat WRS-2 tiles ranging from row 84 to 87, and path 90
to 96 (Figure 2). From the USGS archive, we processed all available Level-1 Terrain Corrected (L1T)
Landsat TM/ETM+ images acquired within a pre-defined southern hemisphere summer window
(from December to the end of February) from 1987 to 2016. Annual anniversary-date, best observation
mosaic composites were created for the 30-year time period using all cloud-free observations within
the summer window. For more details on image processing, please see Nguyen, Jones, Soto-Berelov,
Haywood and Hislop [23]. For each composite of surface reflectance, we calculated the Normalized
Burn Ratio index (NBR) [46], and the Tasselled-cap (TC) components of Greenness (TCG), Brightness
(TCB), and Wetness (TCW) [47]. We also computed TC angle (TCA = arctan (TCG/TCB), Powell,
Cohen, Healey, Kennedy, Moisen, Pierce and Ohmann [38]) and TC distance (TCD =

√
TCG2 + TCB2,

Duane, et al. [48]).
To derive spectral trends for each pixel, we analysed annual NBR time-series using the LandTrendr

temporal segmentation algorithm developed by Kennedy, et al. [49]. Similar to other studies
(e.g., [49–52]), we found that NBR was the most sensitive spectral index for capturing forest disturbance
from Landsat time-series [53]. The core segmentation process includes two steps: finding vertices and
fitting trends. The first step establishes the vertex years that define temporal breakpoints, reducing
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year to year noise over the time series. The second step determines the best straight-line trajectory that
fits through those vertices, resulting in a fitted spectral trajectory for each pixel within the processing
area (Figure 3).
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From the NBR fitted trajectories, we computed a suite of change metrics representing disturbance
and recovery trends for each pixel (Table 2). We first labelled the greatest disturbance segment which
corresponds with the greatest negative change magnitude. We then identified the subsequent recovery
segment as the monotonic positive segment following the greatest disturbance (Figure 3). More details
can be found in Nguyen, Jones, Soto-Berelov, Haywood and Hislop [23]. These two segments were
then used to derive disturbance and recovery metrics that represent year, duration, and spectral
magnitude of change, as well as pre- and post-change spectral conditions [19,20,23,50]. We also
calculated the number of years since the greatest disturbance (or time since disturbance, TSD) to the
last year of the time-series (2016). However, for this metric, we applied an additional rule that set the
TSD of all un-changed pixels to 50 years. TSD is an important predictor of the regrowth of forests
following disturbance. However, since we only had disturbance data for the last 30 years, we assigned
non-disturbed pixels a value of 50, to represent mature forests. This was done so as not to confuse
the model with a value of 0, for example, which might be interpreted incorrectly. Although 50 was
a somewhat arbitrary value, in these forests, it was considered sufficient to represent mature forests.
Using disturbance and recovery metrics, we developed classification models to predict disturbance
severity levels (high, medium and low; with a high level disturbance resulting in the full removal of
trees in forests) and associated causal agents [23]. These data were also included as predictor variables
in biomass models in this study, resulting in 15 change metrics in total. A spatial filtering process was
applied to the derived change metrics to select only pixels within forested areas and remove change
events smaller than 0.5 ha [23].

2.3.2. Topographic and Climatic Ancillary Data

Topographic variables including elevation and slope were derived from the Shuttle Radar
Topography Mission (SRTM) 1 arc-second resolution (~30 m) dataset [54]. Mean annual temperature
and mean total rainfall were extracted from the Global Climate Data (WorldClim) with a spatial
resolution of 1 km [55]. These datasets were obtained and resampled to a spatial resolution of 30 m,
to match that of Landsat.

2.4. Biomass Model Development

2.4.1. Variable Extraction

For each inventory plot location, we extracted the values from the prepared predictor variables
(Table 2) associated with the single Landsat pixel that contained the plot centre. Although extracting
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values from a kernel size, such as a 3 × 3 pixel window, minimises the spatial mismatch between
spatial data and inventory plots, the use of the single Landsat pixel allows us to capture the specific
disturbance history associated with each inventory plot. Earlier research has shown that a disturbance
may impact pixels within a plot in different ways [23]. For example, a fire may have a higher
severity in a given pixel than its adjacent pixels. To reduce the mismatch between plot condition
at the time of field measurement and time of image acquisition, the Landsat-index variables were
extracted from the composite images with the dates that closely coincided with plot measurement
dates. Values of change metrics for each disturbed plot were calculated for the time period from 1987
to the plot observation year. In addition, we identified and removed potential outliers to improve data
quality. Outliers were defined as plots associated with edge effects such as adjacent water or roads.
This removed approximately 8% of the of inventory plots.

2.4.2. Variable Selection

As reducing the number of predictor variables can avoid detrimental impacts on kNN imputation
accuracy, the preliminary modelling step was to determine an optimal set of predictor variables.
To achieve this, we first ran the least absolute shrinkage and selection operator (LASSO, Efron, et al. [56])
model to rank all predictor variables based on their importance to each response variable. The LASSO
model quantifies the strength of the relationship between predictor variables and response variables
using a pseudo R2 metric that ranges from 0 to 1. The importance rankings of predictor variables for
individual response variables were made based on this metric. Predictor variables with consistently low
rankings were excluded from further analyses. Redundant variables (or highly correlated variables)
were also identified and removed by calculating Pearson correlation coefficients between all pairs of
remaining variables and removing those with r > 0.9.

2.4.3. Imputation Models

We developed and compared different kNN (with k = 1) imputation approaches to predict
three biomass measurements (AGBtotal, AGBlive_tree, AGBdead_tree) based on several combinations of
response variables and distance techniques. For each of the three distance techniques (RF, GNN,
or MSN), we developed six model scenarios using different groups of response variables (Table 3),
resulting in 18 kNN models in total. The first model scenario (BM) was the direct biomass imputation
model since it was trained by biomass response variables (AGBtotal, AGBlive_tree and AGBdead_tree).
The nearest neighbour was found by directly relating observed biomass variables to predictor variables.
In contrast, the other five model scenarios (BA, TD, VL, BA-TD and VL-TD) were the indirect biomass
imputation models, as the nearest neighbour was found based on the relationships between predictor
variables and forest structure variables rather than biomass variables. Biomass measurements of the
corresponding training plots were not included in these models but were subsequently attached as
ancillary variables to impute each target pixel. The combination of BA and VL was not included in
our analysis since these variables are highly correlated. The Pearson correlation coefficient between
BAlive_tree and VLlive_tree was 0.91 and between BAdead_tree and VLdead_tree was 0.96.

GNN and MSN identify the nearest neighbour based on weighted Euclidean distance techniques.
The MSN technique computes the distance in projected canonical space while the GNN technique
computes distance using a projected ordination of predictors based on canonical correspondence
analysis (CCA) [33,34]. The distance metric in RF, on the other hand, is derived based on a proximity
matrix [35]. The elements of the proximity matrix contain the proportion of decision trees where both
training and target samples are found in the same terminal node. The statistical distance metric is
calculated as one minus that proportion [57]. After testing with different model parameters, we set
the number of trees (ntree) to 200 for each RF model (associated with each response variable), and the
number of predictor variables selected at each node (mtry) to the default, based on the square root of
the number of predictors. These values were chosen since they minimized the model errors (RMSE)
within the training dataset. Since kNN imputation creates multiple RF models associated with the
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number of response variables and shares the number of trees across the individual models, the input
parameter of ntree of kNN model was actually 200 multiplied by the number of response variables.
We built our models using the R-package yaImpute [57].

Table 3. Model scenarios developed for each distance technique (BM = biomass, BA = basal area, TD =
stem density, VL = tree volume, X = denotes response variable group in each model).

Response Variables
Model Scenarios

BM BA TD VL BA-TD VL-TD

Biomass variables

AGBtotal X
AGBlive_tree X
AGBdead_tree X

Structure variables

BAlive_tree X X
BAdead_tree X X
TDlive_tree X X
TDdead_tree X X
VLlive_tree X X X
VLdead_tree X X X

2.4.4. Model Evaluation

We evaluated the accuracy of each model scenario using a leave-one-out cross validation approach.
For each sample plot, models were trained by all data except the candidate plot which was then treated
as a target observation. Errors were computed for each withheld sample and averaged to evaluate
model performance. For each biomass variable, imputed values were compared to observed values
using the generalised root mean square difference (gRMSD, RMSE divided by the standard deviation
of the observed values under the assumption that they are representative of the population, Crookston
and Finley [57]), and relative mean deviation (rMD, Gorard [58]) which is a measure of bias:

rMD =
1
n ∑n

i=1|x̃i − xi|
|x| , (2)

where x̃i and xi are the imputed (predicted) and observed biomass value, respectively, of the ith sample,
and x is the mean of observed values.

2.4.5. Assessment of Biomass Imputation Maps Using Disturbance History

After evaluating the accuracy metrics, we selected the kNN model that consistently performed
well across the biomass response variables, to implement spatial imputations (k = 1) to forested
pixels across the study area for the year 2016. We assessed the ability of the selected kNN model to
predict forest biomass in relation to disturbance history throughout the 30-year time-series (1987–2016).
To facilitate this, we created a reference dataset containing 7860 reference points (with a minimum
distance of 250 m between them) across the study area [59]. These points were built around the
VFMP inventory plot network (10 points around each plot), thus they were also stratified according
to bioregions (Figure 2). Points that fell on the boundary of land cover types, or at the edge of
disturbances were shifted away from the edge to avoid mis-registration errors. Reference points
were then interpreted and attributed with disturbance severity levels (high, medium and low),
and associated causal agents (fire, logging and other) using a multiple-lines of evidence approach. For a
detailed explanation of the multiple lines of evidence approach, see Soto-Berelov, Haywood, Jones,
Hislop and Nguyen [59]. Some points that fell in non-forest areas, defined following Nguyen, et al. [60],
were removed from the dataset.
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From the kNN imputed maps, we extracted the mean values from a 3 × 3 pixel window around
each reference pixel, for each of the biomass response variables. As the range of biomass often varies
across forest ecosystems, it is not appropriate to compare reference points from different bioregions
using imputed biomass values. Thus, we grouped the random points by bioregion and then scaled
biomass values for each set from 0 to 100 (corresponding with low to high biomass in each bioregion).

To examine the relationship between scaled biomass values and recent disturbance events,
we selected reference points that had been disturbed by fire and logging events that occurred between
2013 and 2016. The main reason for choosing this time period is that, for non-stand replacing
disturbance events occurring in over three years prior to the mapping date (2016), the evidence
of their impacts on biomass maps may not be clear as forests may have regrown [61]. Trends and
variation of biomass associated with these points were then analysed according to disturbance severity
level and causal agent using boxplots. In addition, we assessed biomass patterns according to time
since disturbance or TSD, for each disturbance severity level. This analysis was completed for all
disturbances occurring within the time-series (1987–2016). We first stratified TSD into nine intervals
(0–3, 3–6, 6–9, 9–12, 12–15, 15–18, and 18–26 years). The basis of this division was to illuminate the trend
of biomass according to TSD. A shorter interval (3 years) was applied for TSD smaller than 18 years
since forests often significantly change/grow during this period. We then grouped the disturbance
points using these TSD intervals and by disturbance severity levels, and calculated the mean of the
scaled biomass values for each group.

3. Results

3.1. Variable Selection

The LASSO model reported that spectral indices (excepting TCB and TCD), climatic and
topographic variables were the most important predictor variables related to our response variables
(Figure 4). Pre- and post-disturbance values and relative disturbance magnitude were the most
important change metrics. Variables such as disturbance and recovery onset year and duration
had consistently low importance rankings and thus were excluded from kNN biomass models.
Although disturbance severity levels and causal agents had relatively low importance, these variables
were included in biomass models since they have been effective in other studies [15,16]. TCB and TCD
were relatively important but were excluded as redundant variables, based on having high correlations.
Nineteen remaining variables were finally selected to use in the kNN biomass models.
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3.2. Biomass Imputation Model Accuracy

The results of biomass model assessment varied across model scenarios, imputation techniques
(RF, GNN and MSN) and the biomass variables (AGBtotal, AGBlive_tree and AGBdead_tree). Figure 5
shows the pattern of gRMSD across all tested models. It clearly indicates that RF consistently
outperformed MSN and GNN distance techniques in terms of gRMSD. Across biomass models,
AGBtotal consistently achieved lower gRMSD values (ranging from 0.74 to 1.34) than AGBlive_tree
(0.88–1.39) and AGBdead_tree (1.08–1.42). The lowest gRMSD values across biomass variables were
reported by RF-based BM, BA and VL models, while the highest values were reported by GNN-based
BA and TD models. In addition, model scenarios performed differently across imputation techniques.
For example, the BM model scenario achieved the lowest errors when using RF and MSN but not
when using GNN. The BA model scenario showed better performance than the other model scenarios
when using RF but it was one of the worst performings when using GNN. The VL-TD model scenario
reported lower error rates than the other model scenarios when using MSN or GNN techniques but
higher when using RF. TD was the worst performing model scenario regardless of distance techniques.Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 23 
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The patterns in model-strength indicated by rMD were relatively similar to those illustrated by
gRMSD (Figure 6). RF performed much better than the other distance techniques and rMD values
were generally lower for AGBtotal and AGBlive_tree (ranging from 0.26 to 6.44 for AGBtotal, from 0.03
to 6.46 for AGBlive_tree, and from 0.55 to 6.45 for AGBdead_tree). The lowest values associated with
AGBtotal and AGBlive_tree were achieved by the RF-based BA model while the lowest value associated
with AGBdead_tree was obtained by the RF-based TD model. The highest values were reported by
GNN-based BA and TD models. Similar to gRMSD, the patterns of rMD indicate that model scenarios
show varied performances across distance techniques and biomass variables. When using RF, the BA
model scenario reported lower error rates for AGBtotal and AGBlive_tree (0.26 and 0.03, respectively) than
the other model scenarios. When using MSN and GNN distance techniques, however, lower error rates
were reported by TD and VL-TD model scenarios, respectively. In addition, models associated with
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low bias for AGBtotal and AGBlive_tree often reported relatively high bias for AGBdead_tree, for example
4.84 for the RF-based BA model and 4.42 for the MSN-based TD model.Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 23 
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3.3. Biomass Imputation Maps in Relation to Disturbance History

Based on model comparisons, we selected the model trained by the combination of basal area
and stem density variables (RF-based BA-TD model) to produce imputation maps of biomass for 2016,
across the study area (Figure 7). This model reported relatively and consistently low error rates across
both accuracy metrics (gRMSD and rMD) and all three biomass variables (Figure 8). For all biomass
variables, the model over- and under-predicted low and high observed biomass values, respectively.
The imputation maps of forest biomass show clear longitudinal trends at the state level, with lower
biomass in northwestern mallee forests and higher in southeast sclerophyll forests (Figure 7a). At the
local scale, biomass predictions are spatially consistent with ground conditions of forests, accurately
capturing evidence of recent forest disturbance (Figure 7b–e).

Predictions of biomass showed relatively consistent trends in relation to the severity of recent
(2013–2016) fire and logging disturbance events (Figure 9). For all three biomass variables, high severity
disturbance consistently resulted in low biomass predictions. Scaled biomass values were generally
higher when relating to lower disturbance levels (medium and low severity), excepting small trends
in AGBtotal and AGBlive_tree associated with low severity logging. In addition, fire disturbed areas
indicated slightly lower scaled biomass values in comparison with logged areas.

The trends of biomass predictions in relation to TSD varied across disturbance severity levels
and biomass variables (Figure 10). Similar to the analysis on recent disturbances, the analysis on all
disturbances within the 30-year time-series indicated that biomass predictions associated with low
severity disturbance were generally higher than those associated with medium and high severity
disturbance. For high and medium severity levels, scaled biomass values were generally higher with
increased TSD. For the low severity level, on the other hand, scaled biomass values were generally
stable across TSD intervals. However, these trends were not linear. There was a substantial increase in
biomass predictions within the 3–6 and 6–9 years TSD intervals across all disturbance severity levels
and biomass variables.
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4. Discussion

Studies have demonstrated different kNN imputation approaches for the empirical estimation of
forest AGB using remotely sensed time-series and forest inventory data. However, different approaches
can produce markedly different results. Thus, knowledge of which approach is the most appropriate is
needed for land managers and researchers. In this study, we compared several kNN-based imputation
approaches for estimating forest biomass using Landsat time-series and field plot measurements.
Specifically, we evaluated three commonly used kNN distance techniques: RF, MSN and GNN,
and two biomass imputation methods: direct and indirect imputation. While a few studies have
compared the performance of different distance techniques used in kNN imputation models [31,32],
none of them conducted their comparisons by leveraging multispectral time-series data and forest
inventory data. Furthermore, there is no existing literature demonstrating whether biomass variables
should be included as response variables and directly imputed, or be indirectly imputed from models
built upon other structure variables. In addition, we evaluated the utility of kNN imputation models
built upon Landsat time-series and inventory data by conducting ecological validations of imputed
biomass maps.

Our results indicate that the accuracy of kNN biomass imputation models (k = 1) varies with
different distance metrics. Models based on the RF distance technique, which calculates the distance
metric based on a proximity matrix, generally outperformed those based on MSN and GNN distance
techniques. As shown in Figures 5 and 6, RF-based models consistently achieved lower error rates
of biomass imputation (in both gRMSD and rMD values) as compared to MSN and GNN-based
models. These results agree with previous studies that compared imputation techniques for modelling
forest attributes [31,32]. In addition, we found the performance of RF-based models to be relatively
stable while that of MSN-and GNN-based models tended to be inconsistent across varied model
scenarios. The rMD value associated with AGBtotal reported by RF-based models ranged from 0.26 to
0.54, while the range reported by MSN and GNN-based models were significantly higher (from 0.45 to
2.59 and from 1.87 to 6.44, respectively, Figure 6).

The results also indicate the influence of the number of response variables included in kNN
biomass imputation models on the performance of different distance techniques. In general, RF-based
models were not significantly impacted by the number of response variables, given the models with
four response variables (RF-based BA-TD and VL-TD models) achieved comparable accuracies to those
with two variables (such as RF-based BA and VL models). This could be due to the small number of
response variables (2 to 4) included in our RF-based models. Previous studies used a larger number of
variables and found that RF works optimally with few variables and when factors are used rather than
continuous values [31,57]. In contrast to RF, GNN-based models performed significantly better with
an increased number of response variables. Error rates reported by GNN-based models were highest
for models with two response variables (such as GNN-based BA and TD models) and lowest for those
with four response variables (GNN-based BA-TD and VL-TD models). This compares favourably with
other studies [34,62]. The performance of MSN-based models varied with the number of response
variables, making it difficult to identify a specific trend. As our models included a relatively small
number of response variables, further work is needed to investigate the impact of the number of
response variables on the performance of kNN imputation with different distance techniques.

Among indirect biomass imputation model scenarios (BA, VL, TD, BA-TD, and VL-TD), models
trained by basal area or stem volume variables generally achieved better accuracy than those trained
by stem density variables (Figures 5 and 6). This was expected, since basal area and stem volume
variables are often more correlated with the biomass variables than stem density variables. However,
models with only basal area or stem volume response variables (BA and VL scenarios) often produced
unbalanced accuracies across biomass ranges, exhibiting high bias for the dead biomass variable
(AGBdead_tree, Figure 6). The inclusion of stem density variables (BA-TD and VL-TD scenarios)
significantly reduced this bias, balancing accuracy across all biomass variables. rMD values associated
with AGBdead_tree reported by BA and VL models ranged from 2.12 to 6.35 while those reported by
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BA-TD and VL-TD models ranged from 0.71 to 3.27 (with an exception of 5.54 from GNN-based VL-TD
model).

The determination of whether direct or indirect imputation method is better for forest biomass
estimation depends on the distance technique used in the kNN model. Although the direct biomass
imputation model (BM model scenario) performs relatively well across different distance techniques,
it is not always the best method for estimating biomass variables. When the MSN distance technique
is applied, the BM model scenario performed better overall than the indirect model scenarios given it
consistently reports lower errors for all three biomass variables. The next best is the BA-TD model
scenario which produced slightly higher errors for total and live tree AGB but lower errors for dead
tree AGB (Figures 5 and 6). When using the RF distance technique, however, the BM model scenario
did not perform as well as the BA and BA-TD scenarios. Although the BM model scenario achieved
the lowest gRMSD values (0.74 and 0.88 for AGBtotal and AGBlive_tree, respectively), it produced
greater bias than the BA and BA-TD model scenarios. In particular, the rMD values reported by
the BM model scenario ranged from 0.48 to 6.33 while those reported by BA and BA-TD were from
0.03 to 4.84 and from 0.33 to 3.27, respectively (Figure 6). Despite a relatively high rMD value for
AGBdead_tree (4.84), it is reasonable to consider BA as the best model scenario for imputing AGB
variables when applying the RF distance technique. The results from GNN-based models indicate the
superior performance of VL-TD and BA-TD model scenarios. The model trained by stem volume and
stem density variables (VL-TD) obtained the lowest errors for total and live tree AGB but high errors
for dead tree AGB. Whereas, the model trained by basal area and stem density variables (BA-TD)
achieved more consistent results across all three biomass variables (Figures 5 and 6). These results
suggest that BA-TD is the most robust model scenario for imputing forest biomass given it maintains
the most consistent performance across the tested distance techniques and biomass variables. Overall,
the indirect imputation method, particularly kNN models trained using a combination of basal area
and stem density variables, achieved better biomass estimates than the direct imputation method.

It is important to note that we developed and compared the kNN models using the single
nearest neighbour (k = 1). This makes the comparison consistent and our methods and results
applicable in other study areas/contexts. While increasing k (to an optimal value) reduces the
imputation error, the determination of an optimal k value is often difficult and depends on many
factors including distance metrics, response variables and forest environments [32,36]. Maintaining
consistent parameters (i.e., k value) and methods allows the imputation results to be evaluated more
effectively [32]. We note also, that the use of a single nearest neighbour has been increasing in
forest applications with kNN models, particularly in biomass estimation [15,16,19,29,36,63]. Chirici,
Mura, McInerney, Py, Tomppo, Waser, Travaglini and McRoberts [36] found in their review work
that k = 1 is the most common selection to use with MSN and GNN techniques. This is reasonable
since these techniques are initially created to use with the single nearest neighbour, as mentioned
in the introduction. Recent studies using the RF technique also often selected k = 1 for their
imputation models [16,19,63]. As forest inventory programs are increasingly developed systematically,
measurements from inventory plots are representatives of forest populations [64]. The use of k = 1
is thus recommended to keep variance in the imputations similar to variance in the observations.
Although further work is required to examine how higher k values impact the comparison results,
we strongly believe that RF would outperform MSN and GNN distance techniques, regardless of the k
values used.

Our results indicate that RF was the most accurate distance technique, thus the selection of
the best kNN imputation model for mapping biomass variables was between the RF-based BA and
BA-TD models. The former was most accurate for AGBtotal and AGBlive_tree estimates, while the
latter resulted in a more balanced performance across all three biomass variables. Our biomass maps
were predicted using the BA-TD model as we aimed to focus on both live and dead biomass pools
(Figure 8). Results from the model showed that AGBtotal and AGBlive_tree achieved better accuracies
than AGBdead_tree. This supports the results of other studies, which have demonstrated that the total



Remote Sens. 2018, 10, 1825 18 of 22

and live biomass variables often have better relationships with Landsat spectral values than dead
biomass [6,9,65]. Spatial predictions of biomass were consistent with the distribution of different forest
systems across the state (as described in Section 2.1), with low productivity in the low-spare mallee
forests in the northwest and high productivity in the high-dense sclerophyll forests in the southeast
(Figure 7).

Predictions of biomass were relatively consistent with the 30-year disturbance history of forests
within the study area (Figures 9 and 10). Forest dynamics within the study area are dominated by fire
and logging disturbances. When relating current predictions of forest biomass with recent disturbance
events, we found that increased disturbance severity was consistently associated with decreased
biomass predictions (Figure 9). The reduction of dead tree AGB after a high severe fire is expected
given we defined a high level disturbance as the full removal of trees in forests [23]. This trend was
also evident in the analysis based on all disturbances occurring from 1988 to 2016 (Figure 10) and is
consistent with findings from other studies [19,26]. In addition, the results also suggest that predicted
biomass was more sensitive to fire than to logging disturbance (Figure 9). This should be expected
as un-wanted parts of logged trees (such as branches and stumps) and small trees often remained in
forests after a selective logging event. Although current predictions of biomass are more variable when
relating to time since disturbance (TSD), the trends were relatively consistent with post-disturbance
forest recovery. Biomass values were often lowest within 0 to 3 years following a disturbance and
generally reached an asymptotic level at 18–26 years after disturbance (Figure 10). Within Victorian
forests, fires often cause high rates of tree mortality, which can exist for many years after a fire, resulting
in increased trends in dead tree biomass [44]. In general, biomass predictions showed relatively high
values within 3–9 years after a disturbance. This trend was consistent across the biomass variables and
disturbance severity levels (Figure 10). The reason for this could be that Landsat spectra and indices
are known to saturate at relatively low leaf area and biomass levels. These can be attained only a few
years post-disturbance [61]. This also suggests that the uncertainty of predicted biomass maps can be
informed by forest disturbance history.

Our analysis on variable selection further clarifies the benefits of including change metrics from
Landsat time-series to improve predictions of forest biomass. To our knowledge, this is the first time
spatial change metrics extracted from Landsat data have been combined with the systematic network
of forest inventory, across large areas of sclerophyll forests in Victoria, Australia. Our results from
the variable importance analysis were consistent with those from previous studies [6,9,16,19,20,63].
Spectral indices such as NBR and TCA were the most important variables overall, and change metrics
such as disturbance and recovery magnitude, and TSD, were particularly important for modelling
dead biomass and structure variables. Similar to Zald, Wulder, White, Hilker, Hermosilla, Hobart
and Coops [19], our results indicate that change attribution variables (disturbance level and causal
agent) are less important since fire is the dominant disturbance within the study area. However,
these metrics may greatly benefit kNN imputation models by distinguishing pixels with similar
spectral information [19,63].

5. Conclusions

The kNN imputation method is increasingly used to combine remote sensing data with ground
sample plots to produce spatially explicit predictions of forest biomass at the landscape scale.
While studies have demonstrated different kNN imputation approaches for estimating forest biomass,
there is currently no consensus on which method is most appropriate when integrating multispectral
time-series with field inventory data. This study addresses this gap by comparing different kNN
distance techniques (with k = 1) and biomass imputation methods (direct and indirect). We found
that the best results of forest biomass predictions can be achieved using the indirect imputation
method rather than the direct method. In addition, our results confirm that RF outperforms GNN
and MSN distance techniques in biomass imputation models. Our recommendation is that land
managers and researchers should consider using a RF-based kNN imputation model that incorporates



Remote Sens. 2018, 10, 1825 19 of 22

Landsat-based time-series metrics with forest structure variables (basal area and stem density) for
estimating forest biomass.
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