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Abstract: Among the objectives of the upcoming space missions Tandem-L and BIOMASS, is the
3-D representation of the global forest structure via synthetic aperture radar (SAR) tomography
(TomoSAR). To achieve such a goal, modern approaches suggest solving the TomoSAR inverse
problems by exploiting polarimetric diversity and structural model properties of the different
scattering mechanisms. This way, the related tomographic imaging problems are treated in
descriptive regularization settings, applying modern non-parametric spatial spectral analysis (SSA)
techniques. Nonetheless, the achievable resolution of the commonly performed SSA-based estimators
highly depends on the span of the tomographic aperture; furthermore, irregular sampling and
non-uniform constellations sacrifice the attainable resolution, introduce artifacts and increase
ambiguity. Overcoming these drawbacks, in this paper, we address a new multi-stage iterative
technique for feature-enhanced TomoSAR imaging that aggregates the virtual adaptive beamforming
(VAB)-based SSA approach, with the wavelet domain thresholding (WDT) regularization framework,
which we refer to as WAVAB (WDT-refined VAB). First, high resolution imagery is recovered
applying the descriptive experiment design regularization (DEDR)-inspired reconstructive processing.
Next, the additional resolution enhancement with suppression of artifacts is performed, via the
WDT-based sparsity promoting refinement in the wavelet transform (WT) domain. Additionally,
incorporation of the sum of Kronecker products (SKP) decomposition technique at the pre-processing
stage, improves ground and canopy separation and allows for the utilization of different better
adapted TomoSAR imaging techniques, on the ground and canopy structural components, separately.
The feature enhancing capabilities of the novel robust WAVAB TomoSAR imaging technique are
corroborated through the processing of airborne data of the German Aerospace Center (DLR),
providing detailed volume height profiles reconstruction, as an alternative to the competing
non-parametric SSA-based methods.

Keywords: spatial spectral analysis (SSA); sum of Kronecker products (SKP); synthetic aperture
radar (SAR) tomography (TomoSAR); virtual adaptive beamforming (VAB); wavelet transform (WT)

1. Introduction

The upcoming space missions Tandem-L and BIOMASS, plan to create a 3-D map of the global
forest structure by means of synthetic aperture radar (SAR) tomography (TomoSAR), and monitor the
global carbon cycle in a systematic manner. Particularly, BIOMASS will signify the first space-borne
P-band SAR [1].
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TomoSAR is a powerful remote sensing (RS) technique that allows the 3-D imaging of volumetric
targets, recovering the vertical distribution of the backscattered power for each range-azimuth
resolution cell [2,3]. For the case of forested scenes, as the one considered in this work, the retrieval of
the forest height and the above-ground biomass, constitute the key components for the study of the
global carbon cycle [1,4]. The TomoSAR RS technique aids at the recovery of such parameters due to
its distinctive ability to monitor the 3-D inner structure of volumetric targets, gathering information
about the nature and location of the ongoing scattering processes.

Forested scenes are characterized by a continuous distribution of scatterers along the vertical axis,
and are not only composed of few prominent point-type scatterers. For such scenarios, SAR sensors
operating in longer wavelengths, e.g., L- and P-band, are commonly chosen, having better sensitivity
to the contributions from both the ground surface and the vegetation layers [5,6]. Specifically, the high
penetration capability of the transmitted wave at P-band, allows for observing the ground surface
even in a dense forest.

The TomoSAR nonlinear inverse problem at hand is commonly treated applying modern spatial
spectral analysis (SSA) techniques, within the direction-of-arrival (DOA) estimation framework [3].
The conventional non-parametric matched spatial filter (MSF) and Capon beamforming techniques [3,7]
are well suited to cope with scenarios characterized by the presence of distributed scatterers, since these
techniques recover an estimate of the continuous power spectrum pattern (PSP). Particularly, Capon
provides enhanced resolution when the number of processed looks/snapshots is sufficiently high to
avoid the rank deficiency of the data covariance matrix. Nonetheless, the resolution capability of such
SSA-based estimators highly depends on the total baseline span, the so-called tomographic aperture
(refer to Figure 1). Furthermore, irregular sampling and non-uniform acquisition constellations
introduce artifacts and increase the ambiguity levels, sacrificing the overall achievable image quality.

y

Figure 1. TomoSAR acquisition geometry using PLOS-oriented parallel passes (not to scale).

Taking advantage of the sparse representations of the perpendicular to the line-of-sight (PLOS)
profiles in the wavelet domain, super-resolved compressed sensing (CS)-based approaches [8,9] are
also employed to deal with the TomoSAR inverse problem. However, CS-based techniques often imply
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a considerable computational burden, due to their iterative nature and due to the non-availability of
adapted efficient convex optimization algorithms.

Overcoming the above-mentioned disadvantages of the conventional MSF and Capon
beamforming methods, in the real-world TomoSAR operating scenarios, and with significantly lower
computational burden in comparison to the wavelet-based CS techniques, a new nonparametric
multi-stage approach for feature enhanced TomoSAR imaging is addressed in this paper. The proposed
new approach combines the descriptive experiment design regularization (DEDR) framework [10,11],
for enhanced image reconstruction, with the sparsity preserving image refinement in the wavelet
transform (WT) domain [12,13]. First, high resolution imagery is recovered from the MSF initial
estimates via the virtual adaptive beamforming (VAB)-based processing with convergence guaranteed
projections onto convex sets (POCS) (Section 15.4.5 in Reference [14]). Further refinement with
suppression of artifacts is performed via the sparsity preserving wavelet domain thresholding (WDT).

The new addressed multi-stage iterative method, called WAVAB (WDT-refined VAB), operates
robustly in scenarios with non-regular constellation geometries and only a few available snapshots.
Additionally, the aggregation of the sum of Kronecker products (SKP) decomposition technique [15,16]
at the pre-processing stage improves ground and canopy separation and allows for the application
of different better suited TomoSAR imaging techniques, on the ground and canopy structural
components, separately.

The feature enhancing capabilities of the WAVAB TomoSAR imaging technique are corroborated
via processing E-SAR airborne real data of the German Aerospace Center, providing detailed
volume height profiles reconstruction as an alternative to the existing most prominent competing
non-parametric SSA-based approaches.

2. Problem Phenomenology

Consider a TomoSAR acquisition constellation composed by L tracks as a linear array. In a
discrete-form representation, the TomoSAR data signal vector y represents the set of L focused signals
for a specified azimuth-range position, and is related to the complex random scene reflectivity vector s
via the linear equation of observation (EO) [3,7],

y=As+n 1)

in which the L x M steering matrix A is composed of M L-dimensional steering vectors {am}n]\f:1 that
contain the interferometric phase information, associated to a source located at the PLOS elevation
position {z }f\nA:l above the reference focusing plane, which, for a certain elevation position z is given
by [7],

a(z) = [1,exp{jkz,z}, ..., exp{jkz, 2}]%, ()

fr- () (i) ©

is the two-way vertical wavenumber between the master track and the I-th acquisition positions. Here,
A stands for the carrier wavelength, § is the incidence angle, r is the slant-range distance between the
master track and the considered target, and {d;} le2 is the PLOS-oriented baseline distance between
the master position and the I-th acquisition position, as depicted in Figure 1.

Vectors s, n and y in the EO (1), define the vectors composed of the decomposition coefficients
{sm}%zl, {n;} IL:1 and {y;} lel, of the finite-dimensional approximations of the continuous signal S,
noise N and observation Y fields, respectively; and matrix A is the signal formation operator (SFO)
that maps S — Y, the source Hilbert signal space S onto the observation Hilbert signal space Y [10].

In the current study, we avoid any parameterization or structurization of the scattering field
model. Thus, we resort to a model in which the scatterers are assumed to be distributed over unknown
support regions over the pixel-framed sensing search area. In the case of absense of scatterers in

where
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certain zones (e.g., scenes composed of a mixture of point-like and distributed scatterers), the relevant
scattering field is sparse, and the sparsity supports are unknown to the observer. For such a case,
vectors s, n and y represent complex random Gaussian zero-mean vectors, which are characterized by
their corresponding correlation matrices [7,10]

Rs = (ss™) = D(b) = diag(b), (4)
Ry = (nn") = NyI )

and
Ry = (yy") = ARZAT + R, (6)

where * stands for the Hermitian conjugate operator, N is the power spectral density of the white
noise power [3] and (-) is the expectation operator.
Vector b at the principal diagonal of the diagonal matrix D(b), composed of the averaged entries

foo= () "

at each m-th PLOS elevation position, {z;, }%:1 defines the backscattering power, referred to also as
the PSP, i.e., the second order statistics of the complex reflectivity vector s.

The inverse TomoSAR imaging problem at hand resides on reconstructing an optimal estimate
bopt of the vertical profile of the illuminated scene backscattered power reflectivity map, for each
observed range-azimuth resolution cell, given the complex (multi-look) SAR data recordings y. Recall
that in this contribution, we intend to follow the DEDR-WDT optimization strategy and develop the
new nonparametric TomoSAR WAVAB optimal solver.

3. Related State-of-the-Art Work

In order to retrieve a statistically optimal solution to the previously specified TomoSAR nonlinear
inverse problem, the Bayes minimum risk (BMR) strategy [17] is extended to the maximum-likelihood
(ML) optimization approach, imposing no constraint on linearity and assuming no a priori knowledge
about the probability density function (pdf) of the desired PSP vector b.

Due to the intrinsic statistical nature of the physical phenomena, the TomoSAR data vector y,
in the EO (1), is customary modelled as a stochastic vector, which, in theory, represents an infinite
number of different realizations of the data formation process. The pdf of such a complex-valued
zero-mean Gaussian vector y is given by [18]

ply) = Tr_LdetflRy exp{— (y+R;1y) } (8)

We define then, the log-likelihood function of vector b as the logarithm of the conditional pdf
p(ylb) [19],

Inp(ylb) = —Indet{Ry} — tr{R; Y} )

in which the terms that do not contain b are ignored and the scene characteristics are retrieved from
the measurement statistics presented by the data covariance matrix Y [3,7],

1
Y= 7 &j=1 Y(j)ya)r (10)

where j =1,..., ] indicates one of | independent realizations (looks) of the SAR signal acquisitions.
The ML solution is then reduced to the minimization problem

by = arglr)nin{/\(b)} (11)



Remote Sens. 2018, 10, 1822 5o0f 24

with the objective function A(b) = —In p(yIb). As it has been proven in Reference [19], minimization
of (11) with respect to the PSP vector b, related to Ry = Ry(b) = AD(b)A™ + Ny, is equivalent to
minimizing the covariance fitting Stein’s loss and yields the ML-inspired estimator (Equation (32) in
Reference [19])

a; Ry YR 1a,

_ 2
(a$Ry 1am)

ol

.m=1,..., M. (12)

m

Taking into account the properties of the convergent Capon SSA estimates of the PSP (power
reflectivity), which in a coordinate/pixel form are given by [3,7]

A 1
bp=———..m=1,..., M, 13
" aZR}Tlam 13)

making use of the fixed-point iterative implementation of the ML algorithm (12), as suggested in
Reference [19], and performing some algebraic manipulations, we find that the ML estimator (12) in

. N
the vector form, b = {bm} __,is algorithmically equivalent to the solver to the following equation
(the transformation of (12) into the solver in (14) is detailed in Reference [11])

b — solutiontothe Eq. — ¥(b)b = {D(B)QD(B)}d‘ =f (14)
iag
with the real-valued measurement data statistics
Q =D(g) = diag(g); 8= {aq" }4ioy = {a} v (15)

the solution-depended weighted MSF data vector f = f(b) = {D(E)QD(B)}d_ and the
1ag
solution-dependent weighted MSF imaging system point spread function (PSF) operator

¥ = ¥(b) = (D(b)H + NoI) © (D(b)H + NoI)" (16)

where symbol ® denotes the Schur-Hadamard (element-wise) matrix product. In (14) and (15), operator
{*}diag returns the vector at the principal diagonal of the embraced matrix; in (16), H = A™* A represents
the matrix-form ambiguity function (AF) operator of the MSF system that performs formation of the
complex image q = A™Ty.

The initial estimate of the PSP vysg = bymsr = {q} lof2 is formed as a square detected MSF
output (here, { -}|O|z defines the element-wise square detection operator). To increase accuracy in the
presence of signal-dependent (multiplicative) noise when retrieving vyisp, multi-looking is performed
through the averaging of adjacent values in the data covariance matrix Y (10) or from multiple reduced
resolution focalizations of the cell of interest via azimuth sub-apertures [20].

4. Proposed TomoSAR-Adapted WAVAB Approach

Following the general DEDR methodology [10,11], first, we define the variational analysis
(VA)-inspired metrics structure in the solution space, specified by the inner product

bl[3,, = c1lb,b] + c2(AVb, AVb] = [b, Ub] (17)
with the metric inducing matrix-form operator
U=cil+c4, (18)

where I is the identity matrix, A = A(DTA() defines the numerically approximated discrete-form
Laplacian, computed applying the first-order finite difference operator A1) [21] over the original
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M-pixel formatted PLOS sensing direction z. The weight parameters ¢1,62,€[0,1], scaled to the [0,1]
interval, control the balance between the corresponding metrics measures in the image space B ).
In the general case, 0 < g1,62 < 1, the Laplacian term in U tends to contrast the image high spatial
frequency information; thus, contrast preservation regularization is implicitly considered [22].

Next, to construct the WAVAB solver for the feature enhanced image reconstruction, in the positive
cone solution set from B ), with the VA-inspired metric, we suggest to aggregate the image recovery
transforms and the convergence guaranteed POCS into the multi-stage DEDR-structured solution rule
(that we refer to as the WAVAB-optimal solver) S = §35,81. Application of such S to solve (14)
yields the desired feature enhanced TomoSAR image. The purpose of the proposed multi-stage solver
S is threefold:

(i) First, the action of operator &7 transforms (14) into the implicit contractive mapping iterative
scheme in the image space B ,;), with the VA-structured metric specified above.

(ii) Second, operator S, = P {-} defines a sparsity preserving POCS operator that clips off
all entries lower than the user specified nonnegative sparsity promoting tolerance threshold v > 0
in the image/solution space. For the simplest (zero) assignment, y =0, P_o{-} = P4 {-} defines the
constraining projector onto the nonnegative convex cone solution set. Hence, incorporation of P .,
Pof{-} = P+{-}, into the implicit iterative solver (19) guarantees its convergence, that is, a direct
sequence from the fundamental theorem of POCS (Section 15.4.5 in Reference [14]). These two cascade
transforms, 8,81, specify the iterative DEDR solver

pli+1] — ’P+7{f)m Yo (f[i] _ T[z’]f,[ﬂ) o (A{f[i]} _ A{T[i]ﬁ[i] }) },-

X (19)
initialized by b = vy,

where the adaptively weighted image vector fl! = D?(bl!)vysr and the solution-dependent
matrix-form PSF operator ¥l! = ¥(bl]), defined by (16), are updated at each i-th iteration, and
the metrics balancing factors g1, ¢, are the user-specified degrees of freedom to compete between the
overall enhanced image smoothing and contrast preservation regularization.

The iterative process is terminated at o0 = Bl = BDEDR-VAB/ for which the user specified
£>-norm convergence control tolerance level e7y, is attained at some i = I (or the maximum admissible
number of iterations is reached) [11,21]. In the experiments reported next, we followed the suggestions
from Reference [11] for the equi-balanced adjustment, ¢; = g» = 1, which does not affect the overall
convergence of (19) that is a direct sequence from the fundamental theorem of POCS.

(iii) Last, the composite transform operator S3{-} = P, T {-} performs the discrete WT-based
sparsity promoting (i.e., soft thresholding in the WT domain) transform of the last (I-th) iteration of
(19) into

o1l = PH{J{VM}}; t=0,1,...,T (20)

where J {\Ar[t] } = WD, {WTOM } defines the WDT-based sparsity promoting recovery operator, in

which W denotes the (inverse) discrete WT, ¥l!! represents the image recovered at the t-th iteration
of (20), and D, {x} = sign(x) (|x|—¢) . is the element-wise Donoho’s soft thresholding (denoising)
operator with a shrinkage parameter ¢, in which (f)_ denotes the function max(f, 0) and sign(x) is the
element-wise signum function [12,13]. In the experiments reported next, we adopted the Daubechies
Symlet WT basis with four vanishing moments and three levels of decomposition, as suggested in
the related works [8,9], and the median estimator for ¢ [13] that yields ¢ = 0.0481 (for the 0 ... 1
scale of |x| in Dy{x}). The iterations in (20) are initialized by the previously reconstructed image
(19), i.e., ol0] = plIl = bpEDR-VAB, and are terminated after attaining the asymptotic convergence, (in a
conventional ¢, discrepancy metric).

Incorporation of the POCS pre-conditioner P 1, {-} into (20) guarantees its convergence and
preservation of image non-negativity, i.e., consistency. The recovery performed at the last (T-th)
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iteration at the WDT processing stage (20) yields the desired WAVAB-optimally enhanced TomoSAR

image ‘A/'[T] = BWAVAB-

The motivation for performing the second iterative process (20) is based on the orthogonal WT
expansion of the PSP power image (at any iteration in (20)) v = Wa, where W denotes the (inverse)
DWT and « represents a vector of the wavelet coefficients defined as &« = W'v. Due to the presumed
orthogonality of the employed discrete WT, we have WITW = WWT = I, the identity operator [23].

The feature enhanced TomoSAR images recovered at the DEDR-VAB stage (19) manifest sparse
representations in the WT space with a few large coefficients and many very small ones. Thus,
incorporation of the WDT-based iterative recovery stage in (20) provides additional image enhancement
with suppression of the artifacts that may be produced by (19), performed via the sparsity promoting
denoising in the WT domain with assured non-negativity and consistency preservation.

With the extensions treated, the multi-level DEDR-WDT regularization via multi-stage iterative
processing (19), (20), guarantees well-conditioned solutions (in the Hadamard sense) to the TomoSAR
nonlinear inverse problem in (14).

Notice that the ML-inspired solver in (12) becomes the Capon method [3,7] when Y = Ry. Being
(14) algorithmically equivalent to (12), the introduced WAVAB approach in (19) and (20) can be seen
as a variant (refinement) of the Capon technique, adapted to the case when there are discrepancies
between the measured data covariance matrix Y and the actual (modelled) data correlation matrix
Ry. Moreover, by constructions, the computations in (19) do not involve any matrix inversion at all
iteration steps, which differs our approach from Capon beamforming, that requires inversions of Y;
the ML-based method in (12), that requires inversions of Ry; and from the previous DEDR-related
developments in [10,11], that require inversions of D(B[i]), meaning, that the latter techniques are
inapplicable for feature enhanced reconstruction of sparse tomographic PSP scenes, in which some of
the elements of vector b equal to zero.

In summary, the introduced WAVAB approach is implemented as follows:

1. As first input (zero-step iteration), retrieve an initial estimate of the PSP using the MSF
beamforming technique, vypsp = byse = {ATYA} diag-

2. Specify the balancing factors (degrees-of-freedom) ¢1,62,€[0,1] for each particular case; as
suggested in Reference [11], we recommend the equi-balanced adjustment g; = g» = 1. Next,
perform the DEDR-inspired reconstructive processing in (19) until convergence or when the
maximum admissible number of iterations is reached, ¥/ = bl!l = bpgpr_vap.

3. Last, using the previously reconstructed image %% as first input (zero-step iteration), execute
the WDT-based iterative recovery stage in (20) until convergence, V[T = BWAVAB. The WT basis
and the Donoho’s soft thresholding shrinkage parameter ¢ are specified for the specific cases.
As recommended in the previous related studies, we suggest the use of the Daubechies Symlet
WT basis with four vanishing moments and three decomposition levels [8,9], and the median
estimator for ¢ [13]. The second iterative process performs suppression of artifacts and provides
additional image enhancement to the last (I-th) iteration retrieval of (19) BDEDR-VAB-

5. Separation of Ground and Canopy

Incorporation of the sum of Kronecker products (SKP) decomposition technique at the
pre-processing stage, permits to characterize the data covariance matrix of multi-polarimetric (MP)
multi-baseline (MB) SAR surveys, through a sum of two Kronecker products [15,16],

P=2
RYMP-MB = szl CP ® EP/ (21)

in which P = 2 is the number of phase centers, in this case, associated to the ground and canopy
effective scattering mechanisms (SMs); {C, }ng are 3 x 3 squared matrices referred to as polarimetric

signatures; and {E,, }5:% are the L x L so-called structure matrices. The SKP decomposition technique
retrieves the ground-only and canopy-only contributions, combining baseline and polarization
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diversity; and allows the usage of different better suited tomographic SAR focusing methods on
the ground and canopy structure matrices independently.

In practice, the SKP decomposition technique is applied on the MP-MB data covariance matrix,
estimated from the measured data,

_ 1y + -
YMP—MB - 7 j=1 y(j)MP-MBy(j)MP-MB, ] = 1/ vy I/ (22)

where .
ymems = [ Y (HH) V2y'(HV) y"(VV) ] (23)

and HH, HV and VV correspond to the horizontal, cross and vertical polarimetric acquisition
channels, respectively.

Commonly, the SKP decomposition results in rank-deficient structure matrices, restricting its
usage to only those TomoSAR focusing techniques that do not involve its cumbersome inversion. Due
to its characteristics, the introduced WAVAB approach can be used for this purpose, in contrast to
Capon beamforming [3,7], which may result in being inapplicable. Nonetheless, the refined robust
versions of Capon, as the doubly constrained robust Capon beamforming (DCRCB) technique [24,25],
can be utilized instead, being robust with respect to inaccuracies in the track estimation as well as in
case of rank deficiencies of the structure (covariance) matrices.

6. Numerical Examples

In order to demonstrate the performance of the novel WAVAB approach in comparison to the
previously mentioned competing techniques, the signals of two uncorrelated scatterers with equal
reflectivity are simulated. To simulate independent realizations of the data vector y in (1), we consider
that the two scatterers follow (for simplicity) two Gaussian distributions among | independent looks,
with phase-centers (means) located at zy = 0 m and z; = 6 m, respectively, and spread (standard
deviation) ¢ = 0.05 m, as depicted in Figure 2.

Height [m]

Looks

Figure 2. Distribution of two scatterers among | = 250 independent looks, following two Gaussian
distributions with phase-centers (means) located at z; = 0 m and z; = 6 m, respectively, and spread
(standard deviation) o = 0.05 m.

Also, we consider a P-band sensor with wavelength A = 0.86 m and the simplified tomographic
acquisition geometry shown in Figure 3, composed of L = 6 PLOS-oriented tracks with baselines
evenly distributed, spanning a synthetic aperture of Dp;os = 40 m. The first target z; is assumed
to be at a slant-range distance from the master track of r; = 800 m, meaning a Fourier resolution,
opLos = Ar1/2Dpros [2], of 8.6 m in the PLOS direction.
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Frequency band P
Wavelength 0.86 m

40m ——
o] o

N

D PLOS
o~

7 =800 m

Figure 3. Simulated tomographic acquisition geometry (not to scale).

In the simulations reported next, we calculate the mean squared error (MSE)

18 N2
MSE = 5 Y (zp —2p) (24)
p=1
between the actual positions {z, };::f and the retrieved estimates {2, }P:f , for each particular case,
using 100 Monte-Carlo trials, with the aim of obtaining the average value. Asin (21),p =1,...,P
refers to the respective phase-center.

First, we simulate the data covariance matrix Y in (10), with different number of looks J, in order
to investigate the asymptotic properties of the Capon, DCRCB, CS and WAVAB techniques. The power
spectral density of the white noise power is set to Ny = 0.01. Figure 4 shows the fast convergence
properties of the aforementioned focusing techniques to a lower MSE as the number of looks increases.
The Capon and DCRCB methods converge to almost the same value, whereas WAVAB and CS converge
to a minor MSE, CS being the technique with better performance. As expected, due to the involved
inversion of the data covariance matrix Y, Capon presents worse results for a low number of looks,
being inapplicable when matrix Y is rank deficient (J < L).

In order to study the vertical resolution, a different distance between scatterers, Az = |z1 — zp|, is
simulated. We consider that the first target z; stays at the same location and a high multi-looking value
of | = 250. Figure 5 depicts how the accuracy of all methods improves as Az increases. We can notice
that the Capon, DCRCB and WAVAB techniques provide similar MSE when Az approaches to the
Fourier resolution, while, in general, CS provides more accurate estimates than the other competing
methods. On the other hand, for smaller distances between scatterers Az, the WAVAB estimator
retrieves better results than Capon and DCRCB.

Typically, when a high number of looks ] is considered, both Capon and DCRCB estimators tend
to have similar responses. When the data covariance matrix Y results in being rank deficient, the use
of the robust versions of Capon beamforming, as DCRCB, is recommended. For the particular case
of SKP decomposition, multi-looking is performed first in the MP-MB data covariance matrix (22) to
handle multiple non-deterministic sources; thus, to prevent resolution loss, it is advisable to avoid
a second multi-looking procedure in the retrieved (rank-deficient) structure matrices; rather, robust
methods as DCRCB, CS and the novel WAVAB are employed.
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—e— Capon
—+— DCRCB
-+-- Wavelet-based CS
—e— WAVAB

= .
10 = \.*'\.
\\..’ _____ B Il T T YREP ISP S P -, *

MSE [m]

—— —e
.."*-
-~
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g,
S ——— ,—————— P pm————— P ->————— >
1072
0 50 100 150 200 250

Looks

10 of 24

Figure 4. Height estimation of two uncorrelated scatterers with equal reflectivity, versus number of
looks. The scatterers are located at zy = 0 m and z; = 6 m, respectively. The presented plot is the

average of 100 Monte-Carlo trials.

10°
« —e— Capon
A —— DCRCB
\\ -+—- Wavelet-based CS
\, —e— WAVAB
£
w 1071t
wn
s
102
45 5.0 5.5 6.0 6.5 7.0 7.5
Az [m]

Figure 5. Height estimation of two uncorrelated scatterers with equal reflectivity, versus height
difference between scatterers Az. The considered number of looks equals | = 250. The presented plot

is the average of 100 Monte-Carlo trials.

The next sections are intended to corroborate the capabilities of the introduced WAVAB approach
through experimental results, and to point out its particular advantages in comparison to the other
competing approaches. First, in order to study the robustness of the methods against irregular
sampling, the tomographic slices of a forested test site are retrieved, using a non-evenly distributed
acquisition constellation. Then, in order to analyze the response of the methods using only a few
available snapshots, the SKP decomposition technique is applied at the pre-processing stage, retrieving
rank-deficient structure matrices. A second multi-looking procedure is not performed with the aim of

preserving resolution.
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7. Experimental Results

To demonstrate the enhanced imaging capabilities of the multi-stage TomoSAR WAVAB technique
(19), (20), we use a stack of nine single-look complex SAR images properly co-registered and phase
flattened (Figure 6 shows one image out of the stack), obtained by processing fully polarimetric P-band
data of the German Aerospace Center (DLR), acquired by the E-SAR airborne sensor, during the
BioSAR campaign in October 2008, in the forested test area located at the Vindeln municipality, in
northern Sweden. The main parameters of the E-SAR sensor, used during the BioSAR 2008 campaign,
are gathered in Table 1.

Table 1. DLR’s E-SAR main parameters.

Frequency band P
Wavelength 0.85631 m
Chirp bandwidth 94 MHz
Altitude above ground 3891.30 m
Pulse repetition frequency 500 Hz
Look angle (near-, mid-, far-range) 25°,40°, 53°
Azimuth resolution 4m

Range resolution 1.6m

Figure 6. Fully polarimetric SAR image of the test site in northern Sweden (colours correspond to the
channels: red: HH; green: HV; blue: VV). The region of interest is located within the yellow rectangle
along azimuth.

Phase calibration has been performed by exploiting the availability of permanent scatterers,
namely, single-stable targets within the illuminated scene [26]. The acquisition constellation follows
the minimum redundancy principle [27], spanning a horizontal synthetic aperture of approximately
Droriz =~ 288 m, as shown in Figure 7. In practice, regions with high air traffic, such as the one
considered in this study, demand to operate over only one height level, so that the flight space is not
blocked. Therefore, the acquisition constellation rather spans a horizontal synthetic aperture Dyoriz.

The tomographic reconstruction has been conducted as follows: several azimuth positions at a
fixed range distance were selected as indicated by the yellow rectangle in Figure 6. The tomographic
slices in the azimuth and height PLOS directions correspond to 1080 m by 40 m acquisition formats.



Remote Sens. 2018, 10, 1822 12 of 24

— 416.762, 1.2883)
1.254 4176.932, 1.206)
E. 480.899 , 1.0922)
v 1.001
i 424.555, 0.865) 42801984 , 0.855)
0 0.751 48.613, 0.747)
3
— 0.501
©
O
£ 0.251 432.444 ,0.166)
(] 4-8.521,0.092)
> 0.001 40.,0)

0 50 100 150 200 250
Horizontal baseline [m]

Figure 7. Tomographic acquisition constellation. The location of each slave, with respect to the master
track at position (0, 0), is indicated in meters

For the selected range line, with incidence angle p = 52.0417° and slant-range distance
r1 = 6366.99 m, the Fourier resolution, dpros = Arq tan(6)/2Dyoriz [28], is about 12 m (6 stands for
the look angle). However, due to the irregular sampling, it is expected to have high ambiguity levels.

Figures 8-13 show the recovered tomographic slices for the selected azimuth positions at
the specified range line (refer to Figure 6), using the MSF, Capon beamforming, DCRCB, CS and
WAVAB approaches, correspondingly, for each polarization. The tomograms retrieved by means of
the introduced TomoSAR WAVAB method at the first DEDR-VAB stage (19), with convergence at
I = 8 iterations, are shown in Figure 12; while the tomograms recovered after the second WDT stage
(20), followed by T = 3 iterations (in total 11 iterations), are depicted in Figure 13.

For all cases, the color coded tomogram, calibrated to the same [0,1] scales, for the three
corresponding polarimetric channels (red HH, green HV and blue VV) is also presented. The employed
wavelet-based CS technique considers a sparsifying basis based on the Symlets 4 wavelet family with
three decomposition levels, as suggested in the previous related studies [8,9].

Next, the SKP decomposition technique is applied on the measured MP-MB data covariance
matrix (22) at the pre-processing stage, retrieving the (rank-deficient) structure matrices for both
ground-only and canopy-only contributions. Since the ground component behaves as a point-type
target [15,16], its tomogram is recovered using the multiple signal classification (MUSIC) method [3,7]
with a single source model (as shown in Figure 14), which is better suited for such kinds of responses.
On the other hand, the canopy-only contributions are treated using TomoSAR focusing techniques
that are better adapted to tackle with volumetric targets, including the proposed WAVAB approach.
The conventional Capon beamforming method [3,7] is usually not used, due to the ill-posed nature of
the involved structure matrix inversion; rather, the DCRCB technique [24,25] is used instead, which
overcomes the aforementioned limitation.

Figure 14 presents then a comparison between the reconstructed canopy-only tomograms by
means of the related most prominent competing techniques: (a) MSF beamforming; (b) Capon
beamforming; (c) DCRCB; (d) wavelet-based CS; followed by the outlined (e) WAVAB approach
in (19), (20). The average processing time of the addressed TomoSAR focusing techniques (with SKP
decomposition at the pre-processing stage) needed to retrieve the canopy-only tomograms, is presented
in Table 2.

Table 2. Average processing time needed to retrieve the canopy-only tomograms .

TomoSAR Focusing Technique Processing Time in Seconds
MSF 123.518
Capon beamforming 198.435
DCRCB 343.373
Wavelet-based CS 2159.678
WAVAB 429.654

1 A set of 50 experimental realizations (range lines) is considered. The experiments were performed using
Python(x,y)-2.7.10.0 in an Intel© Core i7 at 2.20 GHz PC with 8GB in RAM. The reported results include the
processing time due to the SKP decomposition stage.
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Figure 8. Tomograms recovered after applying MSF beamforming [3] for three different polarizations:
(a) HH, (b) HV and (c) VV. (d) The color-coded tomogram, calibrated to the same [0,1] scales, for the

three corresponding polarimetric channels (red HH, green HV and blue VV).
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Figure 9. Tomograms recovered after applying Capon beamforming [3,7] for three different
polarizations: (a) HH, (b) HV and (c) VV. (d) The color-coded tomogram, calibrated to the same

[0,1] scales, for the three corresponding polarimetric channels (red HH, green HV and blue VV).



Remote Sens. 2018, 10, 1822

40 HH Channel

0 200 400 600 800 1000
Azimuth [m]

(@)

40 HV Channel

0 200 400 600 800 1000
Azimuth [m]

(b)

40 VV Channel

0 200 400 600 800 1000
Azimuth [m]

(©

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

15 of 24

600
Azimuth [m]

(d)

Figure 10. Tomograms recovered after applying DCRCB [24,25] for three different polarizations: (a) HH,
(b) HV and (c) VV. (d) The color-coded tomogram, calibrated to the same [0,1] scales, for the three

corresponding polarimetric channels (red HH, green HV and blue VV).
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Figure 11. Tomograms recovered after applying the wavelet-based CS technique [8,9] for three different
polarizations: (a) HH, (b) HV and (c) VV. A sparsifying basis based on the Daubechies Symlet 4 wavelet
family, with three decomposition levels, is considered. (d) The color-coded tomogram, calibrated to the
same [0,1] scales, for the three corresponding polarimetric channels (red HH, green HV and blue VV).
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Figure 12. Tomograms recovered after applying the first stage of the WAVAB technique in (19), with
convergence at I = 8 iterations, for three different polarizations: (a) HH, (b) HV and (c) VV. (d) The
color-coded tomogram, calibrated to the same [0,1] scales, for the three corresponding polarimetric
channels (red HH, green HV and blue VV).
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Figure 13. Tomograms recovered after applying the overall TomoSAR WAVAB method (19), (20), with
convergence at | = 8 iterations at the DEDR-VAB stage (19), followed by T = 3 iterations at the WDT
stage (20); in total 11 iterations, for three different polarizations: (a) HH, (b) HV and (c) VV. (d) The
color-coded tomogram, calibrated to the same [0,1] scales, for the three corresponding polarimetric
channels (red HH, green HV and blue VV).
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Figure 14. Tomograms obtained after applying SKP separation of ground and canopy. Ground (red)
separation is done using MUSIC [3,7] with a single source model. Canopy (green) separation is
followed by: (a) MSF beamforming [3]; (b) Capon beamforming [3,7]; (c) the DCRCB technique [24,25];
(d) wavelet-based CS [8,9], with a sparsifying basis based on the Symlets 4 wavelet family with three
decomposition levels; (e) the introduced TomoSAR WAVAB technique, with convergence at I = 8
iterations performed at the DEDR-VAB stage (19) followed by T = 3 iterations at the WDT stage (20);
in total, 11 iterations.
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Finally, we compare the recovered phase-center locations of the novel WAVAB approach against
the retrieved phase-center locations of the well-established DCRCB method [24,25] through the
computation of the MSE (24) between both estimates. The aim of this comparison is to show how
consistent the results of the WAVAB technique are with respect to the well-known DCRCB technique.
To calculate the MSE, we consider each azimuth position among a set of 50 different range lines within
the considered test site (Figure 6), for which, the computed MSE equals 0.26 m. The reason to choose
DCRCB for this comparison is due to the similarity between methods, treated both, by constructions, as
a refinement of Capon beamforming, being robust with respect to non-regular constellation geometries
and only few available looks. Figure 15 shows the contour of the top of the canopy (red), retrieved from
the DCRCB phase-center estimates at the highest position, superimposed on a tomogram obtained
using WAVAB, for a certain range line out of the set of 50.

0 200 400 600 800 1000
Azimuth [m]
Figure 15. Contour of the top of the canopy (red), retrieved from the DCRCB phase-center estimates at
the highest position, superimposed on a tomogram obtained using WAVAB.

8. Discussion

From the assessed experiments, we can observe that, as expected, the conventional DOA-inspired
MSF beamforming technique [3] (Figure 8) presents high ambiguity levels, mostly due to the irregular
sampling and due to the reduced number of passes; the latter complicates the accurate location of the
ground and canopy phase centers. Incorporation of the SKP decomposition technique [15,16] at the
pre-processing stage of all addressed TomoSAR imaging procedures (Figure 14) evidences considerable
improvement on ground and canopy separation, allowing the utilization of a better suited TomoSAR
technique, as MUSIC [3,7], on the ground structural components, which tend to behave as a point-type
target. Yet, for the particular case of MSF beamforming, the presence of high ambiguity levels remains
after SKP decomposition, as it can be observed in Figure 14a.

The SKP decomposition technique is a parametric approach that expects to have contributions
from both ground-only and canopy-only effective SMs. Therefore, in areas without vegetation, the two
corresponding tomograms superimpose each other (refer to Figure 14).

Capon beamforming [3,7] performs better than the MSF technique for the considered irregularly
distributed acquisition constellation (refer to Figure 7), as it can be seen in Figure 9. It provides
enhanced resolution and lower ambiguity levels in comparison to MSE. On the other hand, since the
retrieval of rank-deficient structure matrices is common after SKP decomposition, Capon beamforming
presents in such case a poor performance due to the ill-posedness of the involved structure matrix
inversion, as depicted in Figure 14b.

The formation of the MP-MB covariance matrix in (22) involves multi-looking in order to handle
multiple non-deterministic sources. A second multi-looking procedure on the retrieved structure
matrices, after SKP separation, is usually avoided in order to prevent resolution loss. Rather, the use of
robust versions of the conventional Capon beamforming method, such as the DCRCB approach [24,25],
is recommended, which alleviates the drawback related to the cumbersome inversion of the recovered
rank-deficient structure matrices.

We can observe through Figure 14c, that after the SKP pre-processing stage, DCRCB performs
better than Capon beamforming when only few snapshots (looks) are available. However, the presence
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of artifacts and high ambiguity levels is still an issue. Also, DCRCB demands more processing
time in contrast to the standard MSF and Capon beamforming techniques, as depicted in Table 2,
due to the use of numerical methods to recover the involved Lagrange multipliers and due to the
eigen-decomposition of the structure matrices.

Consistently with the previously addressed numerical examples, the wavelet-based CS
approach [8,9] (Figure 11) provides finer resolution in comparison to the other competing techniques,
including the introduced WAVAB approach. This is especially notorious in Figure 14d, after SKP
decomposition, where we can observe the detection of multiple vegetation layers (phase centers)
among the canopy. The wavelet-based CS method is also robust against the presence of only few
available looks; however, due to the iterative nature of the method and due to the non-availability of
adapted efficient convex optimization algorithms, it incurs much more computation time in contrast
to the other addressed competing techniques (refer to Table 2). In this study, the CVXPY software
library [29] has been employed to solve the involved convex optimization problem. Furthermore, the
main drawback of CS is related to the presence of artifacts and high ambiguity levels after focusing;
particularly, the introduction of artifacts is usually translated into false detections, which complicate
the discrimination of the actual ground and canopy phase centers.

The first stage of the novel WAVAB estimator is presented in Figure 12, which relates to the
DEDR-inspired solutions in (19). At this stage, we can notice the retrieval of detailed height profiles
reconstructions with lower ambiguity levels. Later on, the WDT-based second stage (20) is shown
in Figure 13, which provides additional image enhancement, with suppression of artifacts, to the
previously recovered DEDR-inspired estimates. The balance between information lost and suppression
of artifacts is controlled via modifying the Donoho’s soft thresholding shrinkage parameter ¢ in (20),
when ¢ is not properly set some information may be lost [13].

The introduced WAVAB technique performs consistently with the other addressed
TomoSAR-adapted non-parametric methods. The reliability of the retrieved estimates is corroborated
through the comparison of the canopy-only tomograms in Figure 14, where we can notice the tendency
of all methods to follow the same outline along azimuth. Figure 15 also shows how consistent the
WAVAB approach is against the well-established DCRCB method, through the comparison of the
retrieved phase-center location estimates. The reason to choose DCRCB for this evaluation is due to
the similarity between methods, both treated by constructions as a refinement of Capon beamforming.

By definition, the WAVAB technique in (19) depends on a first estimate of the PSP, which acts as
first input (zero-step iteration). For such purpose, the MSF beamforming technique is used. Therefore,
the degradation or improvement of the solver depends on the precision of the first estimate, meaning
that the solution degrades or improves depending on the accuracy of the MSF estimates.

The main characteristics of the WAVAB technique are summarized as follows: (i) It is robust with
respect to irregularly distributed acquisition geometries, such as the one considered in this study,
presented in Figure 7; (ii) it is robust against the few available snapshots, meaning that it can be applied
on the rank-deficient structure matrices retrieved after SKP separation of ground and canopy; (iii) its
processing time is comparable to DCRCB and is significantly lower than wavelet-based CS, as depicted
in Table 2; (iv) it achieves better suppression of artifacts and ambiguity levels reduction in contrast to
the other assessed techniques, as observed in Figures 13 and 14, easing the localization of the recovered
(estimated) ground and canopy phase centers and preventing false detections; and (v) it performs
consistently with the other addressed competing techniques.

9. Conclusions

This article introduces a novel multi-stage DEDR-WDT framework intended to retrieve
feature-enhanced tomographic profiles. The addressed WAVAB method puts in a single optimization
frame, robust VAB-inspired TomoSAR focusing and multi-stage feature enhanced image restoration,
performed in an optimal consistent rapidly convergent fashion. The proposed WAVAB approach
provides resolution-enhanced tomographic profiles, performing suppression of artifacts and reduction
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of the ambiguity levels. Furthermore, incorporation of the SKP decomposition technique at the
pre-processing stage improves separation of the ground and canopy components and allows for the
application of different better suited TomoSAR focusing techniques on the ground-only contributions,
along with the application of the introduced WAVAB method on the canopy-only contributions.
With all these extensions, the addressed method is presented as a feasible candidate for practical
implementations in the perspective of future space missions, such as Tandem-L and BIOMASS, aimed
to estimate the global forest structure using TomoSAR data.
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List of Acronyms

BMR Bayes Minimum Risk

CSs Compressed Sensing

DCRCB Doubly Constrained Robust Capon Beamforming
DEDR Descriptive Experiment Design Regularization
DOA Direction of Arrival

MB Multi-Baseline

ML Maximum Likelihood

MP Multi-Polarimetric

MSE Mean Squared Error

MSF Matched Spatial Filter

MUSIC Multiple Signal Classification

pdf Probability Density Function
PLOS Perpendicular to the Line of Sight
POCS Projections onto Convex Sets

PSF Point Spread Function

PSP Power Spectrum Pattern

RS Remote Sensing

SAR Synthetic Aperture Radar

SFO Signal Formation Operator

SKP Sum of Kronecker Products

SM Scattering Mechanism

SSA Spatial Spectral Analysis
TomoSAR SAR Tomography

VAB Virtual Adaptive Beamforming
WAVAB WDT-refined VAB

WDT Wavelet Domain Thresholding
WT Wavelet Transform
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