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Abstract: This work proposes a multi-parameter method for the detection of cloud-to-ground stroke
rate (SRCG) associated to convective cells, based on the measurements of a low-cost single-polarization
X-band weather radar. To train and test our procedure, we built up a multi-year dataset, collecting
1575 radar reflectivity volumes that were acquired in the pilot study area of Naples metropolitan
environment matched with the LIghtning NETwork (LINET) strokes and meteorological in-situ data.
Three radar-based variables are extracted simultaneously for each rain cell and properly merged
together, using “ad hoc” classification methods, to produce an estimation of the expected lightning
activity for each rain cell. These variables, proxies of mixed-phase particles and ice amount into a
convective cell, are combined into a single label to cluster the SRCG into two categories: SRCG = 0
(no production of strokes) or SRCG > 0 (stroke production), respectively. Overall, the main results
are comparable with those that were obtained from more advanced radar systems, showing a
Critical Success Index of 0.53, an Equitable Threat Score of 0.34, a Frequency Bias Index of 1.00,
a Heidke Skill Score of 0.42, a Hanssen-Kuiper Skill Score of 0.42, and an area under the curve of
probability of detection as a function of false alarm rate (usually referred as ROC curve) equal to 0.78.
The developed technique, although with some limitations, outperforms those based on the use of
single stroke proxy parameters.

Keywords: weather radar; lightning detection; convective rain cells; detection methods

1. Introduction

Cloud-to-ground (CG) strokes are a natural hazard having a large impact on human activities.
They involve, in fact, very strong electrical currents (up to dozen of kAmperes), and, for this reason,
they constitute a serious threat for human safety as well, as they may adversely affect industrial
productions, transport activities (especially the air traffic routing) and power lines [1,2].

The information about the spatial and temporal occurrence of CG strokes is typically provided by
in situ ground-based electromagnetic stroke detection systems, which perform direct measurements
through extremely-low (ELF) to very-low (VLF) frequency and very-high (VHF) to extremely-high (EHF)
frequency sensors. According to [3,4], the ground-based lightning network systems are able to detect CG
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stroke discharges with a spatial resolution as high as up to 100 m and with a detection efficiency up to
95%, although these performances depend on the network density and the type of sensors.

The real-time surveillance of stroke occurrence can also rely on weather radar measurements,
which are able to track and characterize the three-dimensional (3D) structure of rain cells, thus allowing
for identifying the developing cycle of cells and the areas much prone to stroke activity, even before
the occurrence of the first lightning event (e.g., [5]). Therefore, the set-up of a reliable, affordable, and
accessible radar-based stroke detection system, complementary to traditional ground-based stroke
networks, can be very useful for risk prevention and for safety of human life, goods and services.
In addition, a stand-alone radar-based stroke detection system could cover those areas where data
from lightning networks are not freely accessible or where their detection efficiency levels are not
constant over large domains, due to the irregular distribution of lightning sensors.

This work is aimed at proposing a new algorithm for the radar-based detection of stroke activity
based on a multi-variable approach.

To explain our approach, it is useful to briefly summarize the atmosphere electrification
mechanisms and the radar-based approaches so far proposed in the state of the art literature.
Electrification mechanisms in thunderstorms are explained following the widely accepted
Non-Inductive Charging (NIC) theory, whose evidences have been supported by many laboratory
studies, as well as by field campaigns (e.g., [6,7]). According to NIC theory, the most efficient conditions
for charge separation within the updraft of a thunderstorm occur during the collision between graupel
and ice crystals [8]. This mechanism takes place in the mixed-phase cloud region, which consists of a
proper mix of supercooled liquid droplets, ice crystals, and water vapor [9].

Dual polarization radars have demonstrated, to some extent, to be able to segment a precipitating
cloud, allowing for the separation of the mixed-phase regimes from the rest (e.g., [10,11]). In this
respect, some previous works have highlighted a correlation between dual polarization radar variables
and microphysical processes of stroke initialization [12–18]. However, most of the local weather
services cannot afford dual polarization technology, and, on top of this, the increasing diffusion of
small networks of single polarization X band radars for urban and small catchment monitoring is a
demonstration of a constant interest toward these systems and the related applications [19].

The measurements that are provided by single polarization weather radars, although with some
well-known limitations, can still provide some exploitable information for the hydrometeor detection
in the mixed-phase region of a thunderstorm. In this respect, several studies [20–24] have found links
between the presence of graupel at different environmental levels and the occurrence of a strong
reflectivity core. These relationships have been synthetized into a radar-based stroke forecast criterion,
named Isothermal Reflectivity Threshold (IRT), which is based on the occurrence of a determined
reflectivity core (Z), usually 30 dBZ or 40 dBZ, at a certain environmental height typically represented
by the level of −10 ◦C, −15 ◦C or −20 ◦C isotherms (T). The performance of the IRT method has been
extensively evaluated [25–35], especially in the USA, after the introduction of the WSR-88D radar
network. As a general result, these studies show that CG strokes occur within a time ranging from 4 to
45 min after the presence of certain reflectivity cores (ranging from 10 dBZ to 40 dBZ) at isothermal
heights varying between 0 ◦C and −20 ◦C.

The existing literature has also proposed also other radar-derived parameters for the stroke
forecast, such as the Vertically Integrated Liquid (VIL) and the Vertically Integrated Ice (VII). The VIL
product, introduced in [36], is an estimate of the liquid water mass content (excluding ice) along the
convective column. Weather forecasters have traditionally used VIL to discriminate between weak
and severe storms; the use of VIL for stroke prediction has been proposed for the first time in [37],
for a storm that occurred in Oklahoma in June 1993. Another attempt to use VIL for stroke forecast has
been performed in [38], for a dataset including 120 cells. The results of these two studies highlighted a
low correlation degree between VIL and CG stroke occurrence. The VII product has been proposed
in [14] to improve the low correlation with respect to the stroke activity that was found using VIL
alone. VII provides a quantitative estimation of the amount of ice between the −10 ◦C and −40 ◦C
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isothermal levels. VII tool has been tested for stroke forecast purposes in [30,31]. Other approaches
discussed in previous literature are the Differential Isothermal Height (DIH) and the “Larsen Area”
(LA). The former has been defined in [39] as the difference between the height achieved by a given
reflectivity core and a certain isothermal level. This difference can be considered as a proxy for the
electric field development and the subsequent stroke discharge. The LA, in its original definition,
introduced in [21], corresponds to a nearly horizontal area occupied by reflectivity echoes greater than
43 dBZ above 7 km height. In [5], some simple storm attributes, such as the maximum reflectivity
value observed in the storm cell area, the maximum height reached by a determined reflectivity
core within a cell and the storm area, have been evaluated as predictors of CG stroke occurrence.
In [18], the relationship between ice water content of graupel (IWCg) and CG stroke activity has been
investigated for eleven convective events. Finally, some radar-derived variables, such as the maximum
reflectivity value, the reflectivity observed at the level of −10 ◦C isotherm, and the VIL product, have
been merged with attributes from ground-based lightning network (i.e., the lightning density and the
ideal lightning density) in a multi-sensors algorithm for CG stroke prediction [40]. Such algorithm
has been included in the Multi-Radar Multi-Sensor (MRMS) system, developed at the National Severe
Storms Laboratory and the University of Okhlahoma [41].

A summary of the results that were achieved by previous works focused on radar-based stroke
prediction is summarized in Table 1, in terms of some standard statistical scores, such as the Probability
of Detection (POD), the False Alarm Rate (FAR), and the Critical Success Index (CSI). Most of these
studies use single-polarization reflectivity measurements collected by S-band or C-band weather radars
and evaluate, from a quantitative perspective, only the IRT and VII methods. To our knowledge, dual
polarization capability has been used for stroke detection applications only in few studies [5,18,34,35].
Such works have explored the usefulness of some common dual polarization moments (e.g., differential
reflectivity, cross-correlation coefficient, specific differential phase, as well as traditional horizontal
reflectivity measure), in stroke initiation forecasting. Moreover, the four variables just mentioned
have been used in [5,18,32] as input to fuzzy logic systems, such as the Hydrometeor Classification
Algorithm (HCA) and the Particle IDentification (PID), designed to detect the first occurrence of the
hydrometeors that usually participate in electrification processes (e.g., graupel, hail and supercooled
raindrops). From Table 1, it is worth highlighting that the number of rain cells analyzed in previous
works is extremely variable (from 20 to 123,360), suggesting that the statistical robustness of the
dataset used, especially in terms of the representativeness of the thunderstorm climatology, needs
to be taken into account when quantitatively comparing results from different studies. Moreover,
it is important specifying that Table 1 uniquely lists the radar-only self-consistent approaches, i.e.,
it does not include the multi-sensors algorithms, which cannot be directly compared to the algorithm
proposed in this study.

The goal of this work is to develop a multi-parametric radar-based algorithm for the detection
of CG stroke rate (i.e., the number of strokes per minute, hereafter indicated as SRCG) associated
to convective cells, using single-polarization X-band weather radar measurements. The proposed
methodology has been trained and tested in the pilot study area of Naples metropolitan environment,
located in southern Italy, using a dataset including 1575 radar volumes, stroke observations provided
by LIghtning NETwork (LINET) [42], and in-situ meteorological data.

The main novelties and strengths of this study can be synthetized in the following key-points:

1. for the first time, a multi-parameter approach for SRCG detection, based on different radar-based
proxy parameters, has been developed (all previous approaches are based on single parameter, as
shown in Table 1);

2. the proposed algorithm relies on the reflectivity measurements of a low-cost and portable
single-polarization X-band weather radar. The latter, as demonstrated in [43,44], may exhibit
acceptable performance at short ranges (i.e., below 80 km) when compared to conventional
systems (the S and C-band systems), but with the advantage of more affordable costs in terms of
infrastructure, power requirements and maintenance. In this respect, our work fits a research
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path that in recent years has been devoted to exploit the potential usefulness of low-cost X-band
radars in weather surveillance, especially at urban scale (e.g., [43,45–48]);

3. the radar-based predictors evaluated in this study include the DIH and LA methods, that have
been both scarcely tested in previous works;

4. the performance of the stroke detection criteria is assessed through a complete metric that
includes some statistical scores scarcely or never used in similar studies, providing a robust and
fair evaluation of algorithm skills; and,

5. the dataset used in this study has a reasonable size, including a total of 5754 convective cells, it is
well populated, involving a great variety of meteorological scenarios, and it is fairly balanced
(i.e., both stroke and non-stroke producing rain cells are reasonably represented in the dataset).

The paper is organized, as follows. Section 2 presents both radar and stroke measurements,
giving some information also about the target area. Section 3 provides an overview of the investigated
radar-based stroke predicting variables. The algorithm used for the identification of convective cells
and the stroke detection methodologies are described in Section 4. The criteria used to select the
optimal radar-based stroke predicting variables and the training of the algorithm designed for the
clustering detection of stroke activity are presented in Section 5. The results are discussed in Section 6,
in terms of score indexes. Finally, the conclusions are drawn in Section 7.

Table 1. Results from previous studies of stroke nowcasting using radar-based predictors. For all the
studies T (isotherm level) is the environmental temperature, with the only exception of Wolf (2007),
where T is the updraft temperature.

Authors Radar Band Number of Cells Detection Strategy POD FAR CSI

Buechler and Goodman (1990) S 20 Z = 40 dBZ, T = −10 ◦C 1.00 0.20 0.80

Hondl and Eilts (1994) S (Doppler) 28 Z = 10 dBZ, T = −10 ◦C 1.00 0.18 0.82

Gremillion and Orville (1999) S 39
Z = 40 dBZ, T = −10 ◦C 0.84 0.07 0.79
Z = 25 dBZ, T = −15 ◦C 0.84 0.24 0.67

Vincent et al., (2004) S 50
Z = 40 dBZ, T = −15 ◦C 0.86 0.31 0.63
Z = 35 dBZ, T = −10 ◦C 1.00 0.41 0.59

Wolf (2007) S 1164 Z = 40 dBZ, T = −10 ◦C 0.96 0.11 0.86

Yang and King (2010) C (dual pol.) 143 Z = 40 dBZ, T = −10 ◦C 0.88 0.16 0.76

Mosier et al., (2011) S 67,384

Z = 35 dBZ, T = −10 ◦C 0.84 0.42 0.52
Z = 40 dBZ, T = −10 ◦C 0.67 0.33 0.51
Z = 35 dBZ, T = −15 ◦C 0.72 0.34 0.53
Z = 40 dBZ, T = −15 ◦C 0.51 0.24 0.44
Z = 30 dBZ, T = −20 ◦C 0.87 0.42 0.56

VII = 0.42 kg m−2 and VII = 0.58 kg m−2 n.a. 1 n.a. 0.68

Seroka et al., (2012) S 17,000
Z = 25 dBZ, T = −20 ◦C 0.78 0.35 0.55

VII = 0.84 kg m−2 0.75 0.44 0.47

Woodward et al., (2012) C (dual pol.) 50 Graupel PID at −15 ◦C 0.93 0.03 0.91

Antonescu et al., (2013) S, C 49 Z = 35 dBZ, T = −10 ◦C 0.95 0.10 0.85

Wang et al., (2016) S (dual pol.) 83 Z = 40 dBZ, T = −10 ◦C 0.87 0.16 0.76

Roberto et al., (2016) C (dual pol.) Based on 11
convective events IWCg > 0 g cm−3 0.85 0.25 n.a.

Voormansik et al., (2017) C (dual pol.) 123,360 Maximum height of Z = 20 dBZ 0.78 0.55 0.39
1 n.a. stands for data not available.

2. Experimental Measurements

The area investigated in this study, shown in Figure 1a, is the one covered by the X-band weather
radar system operating in Naples urban area, in southern Italy. The target region encompasses the
western side of Campania region, extending from 40.1893◦N to 41.4975◦N and from 13.4005◦E to
15.0939◦E. Such an area is characterized by heterogeneous geographical features: it includes, in fact,
the western and the meridional side of Campania Apennines reliefs (Matese, Taburno, and Partenio),
which have altitudes ranging between 1400 m and 2000 m, the plain of Caserta, the coastal sector
of Naples and Caserta Provinces and the Gulf of Salerno. As highlighted in [44,45], thunderstorm
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development in the study area might be triggered either by synoptic and small-scale mechanisms or
by local interactions between them.
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Figure 1. In (a), a map of study region, including WR-10X radar (filled-in red star) and Mount Vesuvio
(blue triangle) locations, is presented. The red circular line at 72 km from Naples Castel Sant’Elmo
indicates the limit of the area covered by the radar. In (b), WR-10X installation at Naples Castel
Sant’Elmo Site is shown. In (c), a picture of LIghtning NETwork (LINET) stroke detection sensor,
retrieved from [49], is presented.

The dataset used to train and test the proposed methodology includes X-band reflectivity
volumes, ground-based stroke measurements and in situ-meteorological data collected into 48 different
thunderstorm days, occurred between April 2012 and March 2016. These case studies have been
carefully selected, in order to take into account periods of strong lightning activity as well as convective
events characterized by low atmospheric electrification. Moreover, the selection criteria have been also
defined according to some issues that are related to the radar scanning geometry, as better described in
the next paragraph.

2.1. X Band Radar Measurements

The radar system that is involved in this study, named WR-10X, is a single-polarization X-band
weather radar, manufactured by ELDES srl. The main strengths of WR-10X lie in its reduced size
(90–130 cm2) and weight (about 100 kg), as well as in the low electric power consumption (about 300 W),
which simplifies the installation facilities, especially in urban contexts. A prototype of this radar system
has been installed, at the end of 2011, in Naples metropolitan area (Figure 1b) by the Campania Center
for Marine and Atmospheric Monitoring and Modelling (CCMMMA) of the University of Naples
“Parthenope”. The WR-10X operating in Naples urban area provides a complete data volume every
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10 min. Such temporal sampling, which is used by most weather agencies in Europe, is a compromise
among technical reasons (antenna rotation velocity), scan strategy (number of antenna elevations
included in the volume scan), and opportunity to observe rapidly evolving events and data processing.
More specifically, the reflectivity data are collected in the first two minutes of a WR-10X scan which
include six different elevation angles (ranging from 1.0◦ to 10.0◦ with respect to horizon), whereas the
remaining eight minutes are dedicated to the data processing and to the product generation. Other
technical features of WR-10X weather radar are listed in Table 2.

Table 2. Technical features of WR-10X weather radar operating in Naples urban area.

Main Paramaters of WR-10X Weather Radar

Frequency 9.4 GHz
Pulse Repetition Frequency (PRF) 800 Hz

Peak power 10 kW

VCP mode Six elevations (1◦, 2◦, 3◦, 4◦, 5◦ and 10◦) scanned and
processed in 10 min with pulse width of 0.6 µs

Range resolution 300 m
Angular resolution 3◦ azimuth
Antenna diatameter 70 cm
Vertical Lobe width <3.2◦

Sidelobes within ±10◦ <25 dB
Antenna gain >35 dB

Sensitivity 10 dBZ at 25 km

According to the Volume Coverage Pattern (VCP) that is used by WR-10X in operational mode,
the thunderstorm events that partially extended over areas closer than 15 km (i.e., over the cone of
silence) have been discarded, since the radar may be not able to properly observe the highest portion
of convective cells. Moreover, other potential biases in the characterization of thunderstorm vertical
structure may arise due to the following issues: (i) the presence of the Volcano Vesuvio (40.8226◦N,
14.4292◦E), which can totally block the propagation at the three lowest antenna elevation angles
(namely at 1◦, 2◦, and 3◦) of WR-10X beam in the southeastern portion of the study area; (ii) the
relatively broad beam width (<3◦ at 3 dB), which may adversely affect the sampling of convective
clouds at great distances from the radar site; (iii) residual path attenuation, that in some cases can fade
the radar signal compromising quantitative retrievals; and, (iv) radar calibration.

For the period analyzed in this study, 1575 reflectivity radar volumes have been collected and
further processed through a quality control chain. The latter is focused to compensate for the following
systematic errors: ground and sea clutter, beam attenuation along the path, and beam blocking by
surrounding topography. Some details on the strategies and methodologies designed to overcome
these issues are provided below.

• Ground and sea clutter suppression: the statistical declutter filter of WR-10X relies on the different
sample statistical distribution between meteorological and non-meteorological echoes. This
filtering procedure has been improved through an in-house statistical filter, in order to suppress
the noise caused by ground clutter. Such filter is based on entropy and texture calculations,
as well as on median filtering [50]. To eliminate sea clutter, an approach that is based on vertical
reflectivity profile analysis has been considered [51]. Such analysis involves the difference
between the reflectivity measurements at 1◦ antenna elevation angle and 2◦ antenna elevation
angle; the sea clutter is diagnosed when such difference is above a fixed threshold, determined
through the analysis of a large number of case studies. An example of ground clutter and sea
clutter suppression for a convective event occurred on 27 October 2012 is provided in Figure 2.
The filter for ground clutter removal proves to be very efficient, although it tends to eliminate a
few meteorological echoes.
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• Beam blocking by surrounding topography: in order to mitigate such an issue, the correction
scheme described in [52], based on the percentage of beam cross section shielded and on a simple
interception function between the radar beam cross section and the topography, has been applied.

• Attenuation along the path: such a challenge has the major impact on the quality of X-band
reflectivity measurements (e.g., [53,54]) and may be optimally compensated only through
approaches based on dual-polarization features [55]. In our case, the attenuation has been
mitigated by means of a classical iterative procedure, tested for heavy and moderate rainfall
events, in which attenuation may be relevant [50]. In order to evaluate the impact of such issue
and other impairments, a sensitivity analysis has been performed and is shown in Section 6.
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Figure 2. In (a), the Vertical Maximum Intensity (VMI) reflectivity map collected by WR-10X on
27 October 2012 at 14:25 UTC is presented. The zoom on Naples Gulf emphasizes the presence of
ground and sea clutters, whose most important evidences are indicated by black circles. Panel (b)
shows the same reflectivity map, obtained after applying the quality control algorithms developed to
suppress ground and sea echoes.

2.2. Stroke Measurements

Stroke data from the ground-based low-frequency (VLF/LF) LINET are used to analyze the
evolution of the storms. LINET system covers a wide area from approximately 30◦N 10◦W to
65◦N 35◦E and allows for discriminating between CG and intra-cloud (IC) strokes, as well as their
polarity [42,56,57]. An example of LINET stroke detection sensor, retrieved from [49], is shown in
Figure 1c.

LINET is able to register weak stroke events with currents well below 5 kA within the central part
of the network, whereby IC events dominate. The 3D-discrimination procedure uses a time-of-arrival
method to separate CG from IC (with a position accuracy of 150 m) and its accuracy is higher when
the sensor baseline does not exceed ~200 km. More specifically, CG strokes can be discriminated
from IC strokes in a more reliable way for distances not exceeding about 120 km from the closest
sensor. Moreover, LINET allows for the estimation of IC emission height, although at least four sensors
are needed for a reliable determination of the IC stroke height [42,57]. Finally, the network has an
optimized location accuracy of strokes, which reaches an average value of about 150 m, whereby false
locations (‘outliers’) rarely occur.

The information provided by LINET has been exploited in terms of the position, expressed in
geographical coordinates, and the number of IC and CG strokes occurred within the radar domain in a
time interval ∆t = 2 min from the beginning of each WR-10X volume acquisition time. In this way, the
reflectivity data, which are collected in the first two-minute time interval for each radar acquisition,
are co-located in time with the LINET data.
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2.3. In-Situ Meteorological Data

The conventional in-situ meteorological data have been included in the experimental measurement
dataset in order to estimate, for each of the examined thunderstorm days, the isotherm levels, HT, for
T = 0 ◦C, T = −10 ◦C, and T = −20 ◦C.

The near-surface temperature has been obtained from three Automatic Weather Stations (AWS),
located in Naples, and belonging to the CCMMMA monitoring network. These stations have been
selected according to the high percentage of data availability and to their representativeness of the
meteorological conditions that affect the study area. For each thunderstorm day, an estimate of
HT has been performed extrapolating the temperature from the AWS measured at the time closest
to the WR-10X acquisition time, assuming a standard temperature lapse rate of 6.5 ◦C/km. This
approach, ensuring higher time sampling that is comparable with the radar acquisitions and a better
representativeness of the spatial domain considered, was preferred over common practice approaches
that are based on the use of the nearest (in time and space) radiosounding or on the outputs of
numerical weather prediction (NWP) model (e.g., [5,29,31]). In our case, the nearest radiosounding
(two lunches per day at 00 and 12 UTC) was 150 km away from the target area, and we wanted to
maintain the temperature information used in our algorithm directly derived from measurements.

To check how this procedure agrees with the more customary use of NWP products, a comparison
between the isotherm altitudes derived from AWS and NWP model for ten main events in our dataset
has been performed. For the NWP model, we considered the Weather Research and Forecasting (WFR)
system with a spatial resolution of 6 km in the domain of our interest. The comparison results are
satisfactory in terms of Pearson correlation coefficient (=0.98) and Root Mean Square Error (=0.3 km).

3. Radar-Based Stroke Predicting Variables

In this study, three radar-based stroke prediction criteria have been evaluated. Such prediction
criteria are: the DIH, the Vertical Integral of Reflectivity (VIR) methodology, and the LA technique.
Each of the DIH, VIR and LA technique is further fractionated and refined into eighteen different cases
by setting proper thresholds. A brief summary of DIH, VIR and LA is given below.

The DIH approach (∆HZ,T) is based on the height difference (H) between a given reflectivity
factor level, (HZ) and an isotherm level, (HT):

∆HZ,T = HZ−HT (1)

The thresholds for Z and T have been fixed to 30 dBZ, 40 dBZ and 0 ◦C, −10 ◦C,
−20 ◦C, respectively, leading to five selected values of ∆HZ,T: ∆Hmax

30dBZ,−20◦C, ∆Hmax
30dBZ,−10◦C,

∆Hmax
40dBZ,−20◦C, ∆Hmax

40dBZ,−10◦C, and ∆Hmax
40dBZ,0◦C. Note that for each rain cell we can have a

distribution of values of ∆HZ,T, one for each grid point associated to a convective cell. The superscript
“max” in ∆Hmax

Z,T indicates that, for each rain cell, we have selected the maximum value among those
that are available. It is worth highlighting that the thresholds of Z and T used have been extensively
examined in the previous studies, being representative of graupel occurrence in the mixed-phase
region of a cumulonimbus (e.g., [27,28,31]).

The VIR approach relates to the radar-derived estimates of VIL and VII into a vertical column.
VIL and VII have been tested for stroke forecast purposes in some previous studies, which highlighted
a low relationship between VIL and CG strokes events. Therefore, we propose a slight different version
of the original VIL and VII products, by modifying the boundaries of the integration layer, in order to
better separate the liquid and frozen mass contributions and to better characterize their relationship
with cloud electrification processes. More specifically, we have introduced the Vertical Integral of
Water concentration (VIW), expressed in kg m−2, which is the vertical integral of equivalent liquid
water content (Cwat) in the rain layer of a convective cell:
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VIW =
∫ HR

HB

Cwat dH (2)

where HR is the top height of the rain layer (i.e., the depth of the convective cell below the freezing
level H0◦C), HB is the lowest height sampled by weather radar. Cwat is obtained from Z measurements
through a power-law relationship, using the coefficients that are provided by [58].

To compute the VII, which is also expressed in kg m−2, we have constrained the vertical integration
of ice water content (Cice) to the layer between H0◦C and HTOP. The latter is the observed cloud top
height within a convective cell.

VII =
∫ HTOP

H0◦C

Cice dH (3)

According to [59], we have used three different Z-Cice relationships, depending on the temperature
value at the reflectivity measurement height. From VIW and VII products, we have derived additional
predicting criteria: the Vertical Total Integral of equivalent water (VTI), which is simply the sum
between VIW and VII, and the density of VIW, VII and VTI (VIWD, VIID, and VTID), that have been
obtained by normalizing them to HR, (HTOP − H0◦C) and HTOP, respectively. Moreover, for each of the
identified convective cells, we have also computed the Total Water Content (TWC) and the Total Ice
Content (TIC), defined as:

TWC =
∑n

p=1 VIW(p)× ∆A(p)

Ac
(4)

TIC =
∑n

p=1 VII(p)× ∆A(p)

Ac
(5)

where p = 1, . . . ., n is the number of radar pixels within a convective cell, ∆A is the discrete area
element (obtained from ∆A = r × ∆r × 2 × tan(∆φ/2), where r is the distance from radar site, ∆φ

and ∆r are the radar azimuth and range resolutions, respectively) and Ac is the area covered by a
rain cell. Therefore, for VIR method, eight predictors have been evaluated: VIWmax, VIImax, VTImax,
VIWDmax, VIIDmax, VTIDmax, TWC, and TIC. The superscript max indicates the maximum value within
a convective cell.

The LA approach has been applied using the same reflectivity Z and temperature T combinations
involved in DIH criteria. The resulting AZ,T predictive variable is defined for five predictive sets
(A30dBZ,−20◦C, A30dBZ,−10◦C, A40dBZ,−20◦C, A40dBZ,−10◦C, and A40dBZ,0◦C) as the horizontal area at the
isotherm T level with a reflectivity value greater than or equal to Z.

4. Algorithm Description

The stroke detection methodology is aimed at establishing the degree of maturity of a rain cell
in terms of its likelihood to produce strokes. The detection strategy is based on two steps: (i) the
contouring of rain cells in a radar map and (ii) the categorization of each rain cell to establish its
likelihood to produce strokes or not. The first step uses a radar-based storm cell identification
algorithm, whereas the second step uses certain classification techniques, which involve some of the
radar-based stroke predicting variables that are introduced in Section 3.

4.1. Contouring of Rain Cells and Stroke Features Extraction

The identification of convective cells from corrected WR-10X reflectivity measurements has been
performed using a simplified and modified version of the Storm Cell Identification and Tracking (SCIT)
algorithm, as introduced in [60]. The key parameter settings of SCIT algorithm adopted in this study
are sketched in Table 3. For the purposes of our study, it is very important to detect the 30 dBZ and
40 dBZ boundaries of the convective cells. Radar-based criteria for lightning nowcasting, such as the
DIH and the LA methods, are typically based on the occurrence of 30 and 40 dBZ echoes at −10 ◦C
and −20 ◦C environmental temperature levels or above them (e.g., [28,31,39]). Our modified version
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of SCIT algorithm runs with the lowest reflectivity threshold (30 dBZ) for convective systems detection.
The 30 dBZ threshold allows for identifying the early stages of a convective cell development that may
be related to the physical processes that are associated to thunderstorm electrification. The thresholds
above 40 dBZ, used in the original version of SCIT algorithm are not useful in the context of our work,
because the rain cells identified with such thresholds cannot be used for a reliable assessment of the
radar-based criteria for lightning nowcasting. However, the 35 and 40 dBZ reflectivity thresholds
mentioned in Table 3 have been used to refine the detection procedure in the case of convective cells
characterized by a very large area (>200 km2).

Table 3. Key-parameter settings of Storm Cell Identification and Tracking (SCIT) algorithm. A detailed
description of the listed parameters can be found in [60].

Main Parameters of SCIT Algorithm

Reflectivity thresholds 30, 35 and 40 dBZ
Azimuthal separation 3◦

Segment length overlap 2.0 km
Component Area 5 km2

Number of segments 2

The convective cell detection procedure has been applied to each of the six elevation scans.
Subsequently, a vertical association of the identified two-dimensional (2D) structure has been
performed, starting with the highest elevation angle; in this respect, our algorithm follows the strategy
designed in [61].

From the available WR-10X reflectivity volumes, 8257 convective cells have been identified.
For each cell, the centroid, the vertex positions (expressed in geographical coordinates) and the area
(in km2) have been determined and stored. Subsequently, the radar-based stroke predicting variables
that are presented in Section 3 have been extracted for each rain cell.

The process of association of CG and IC strokes registered by the LINET network with the
convective cells detected from WR-10X starts with identifying all strokes that occurred in the area that
is covered by the radar in the two minutes after the beginning of radar acquisition. If a certain stroke is
within the boundaries of a convective cell, then it is associated with that cell. Otherwise, the distance
between the stroke and the nearest convective cell centroid is evaluated: if this distance is less than
10 km, then the stroke is associated with the nearest cell. In rare circumstance, a stroke appears quite
far away (>10 km) from defined cells and this may occur due to the following reasons:

• radar issues, specifically: (i) Strong attenuation of WR-10X signal along the path, which can lead
to a signal extinction and, therefore, to a missing detection of a convective cell that produces CG
stroke activity; or, (ii) Partial or total beam blockage by orography at lower antenna elevation
angles, which can determine an erroneous estimation of the horizontal and vertical extension of
convective systems;

• physical reasons: CG lightning can occur also between the anvil of the cloud and the ground.
The anvil can be displaced from cell core, and usually, it is not fully detected by X-band weather
radars due to sensitivity problems.

The stroke activity produced by a given rain cell registered by the LINET network has been
characterized using the position and numerosity of the CG and IC strokes. It has been assumed that
a stroke event occurs when a convective cell identified by WR-10X produces at least one LINET CG
stroke (i.e., SRCG > 0) in the two minutes interval coincident with the one of radar acquisition. It should
be noted that the 10 min WR-10X temporal sampling is likely not sufficient to track lightning during
convection: this is the main reason why we did not consider a lead-time in our analysis and we focused
on the detection issue rather than the forecast.

An example of rain cell identification and stroke feature extraction is provided in Figure 3.
In Figure 3a, the reflectivity field collected by WR-10X on 27 October 2012 at 14:35 UTC, synthetized
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by the Vertical Maximum Intensity (VMI) product, is shown. In this example, the detection algorithm
has recognized seven different convective structures, which are presented in Figure 3b. The CG and IC
LINET strokes detected from 14:35 to 14:36 UTC are superimposed. A strong CG stroke production
has been observed for orange and yellow-coded cells (Figure 3b), which affected the Gulf of Salerno:
the former produced a SRCG of 10.5 min−1, whereas the other one generated a SRCG of 4.0 min−1.
The vertical slice representation shown in Figure 3c allows to highlight some stroke predictors extracted
from rain cell, such as ∆H30dBZ,−20◦C and A40dBZ,−10◦C, as well as 0 ◦C, −10 ◦C, and −20 ◦C isotherm
levels (derived from AWS measurements at 14:30 UTC). Finally, Figure 3d shows the VIW, VII, and
VTI horizontal profiles along the 139◦ azimuth. Such profiles exhibit their peak values between 45 km
and 55 km, where stroke production has been mainly observed.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 26 
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predictors, such as ∆H30dBZ,−20°C, A40dBZ,−10°C, and the environmental variables H0°C, H−10°C, and H−20°C are 
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In order to perform comparisons with more customary techniques, a single-parameter radar-
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Figure 3. Example of rain cells observed by the WR-10X radar on 27 October 2012 at 14:35 UTC. Panel
(a) VMI of radar reflectivity factor. Panel (b) output of the rain cell identification procedure, where
the area occupied by each rain cell is color coded. The distribution of strokes registered by the LINET
network in the two minutes coincident with the radar acquisition, namely between 14:35 and 14:36
UTC, is overimposed to rain cell patterns. Panel (c) Range Height Indicator (RHI) referred to the
azimuth at 139◦, shown in the panel (a) by the black radial line. In this panel, some radar-based stroke
predictors, such as ∆H30dBZ,−20◦C, A40dBZ,−10◦C, and the environmental variables H0◦C, H−10◦C, and
H−20◦C are shown. The cloud-to-ground (CG) and intra-cloud (IC) strokes are also highlighted as black
crosses and magenta filled-in circles, respectively. The panel (d) shows VII, VIW, and VTI for the same
rain cell in the upper right panel.

4.2. Single-Variable Clustering Detection of Stroke Activity

In order to perform comparisons with more customary techniques, a single-parameter radar-based
stroke detection criterion has been implemented. For the j-th stroke radar-based predictive variable
(xj), as introduced in Section 3, the stroke detection criterion can be formalized, as follows:
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xj ∈ ck ⇔ thlw
j,k < xj ≤ thup

j,k (6)

where ck is the k-th class of stroke rate levels and thlw
j,k , thup

j,k are the lower and the upper thresholds
that define the boundary limits for the k-th class and the input variable xj. In our case, two classes
are foreseen: c1 for stroke rates SRCG = 0 (i.e., no production of strokes) and c2, SRCG > 0 (i.e., stroke
production). The criterion that is used to objectively select thlw

j,k and thup
j,k is described later on in

Section 5.3.

4.3. Multi-Variable Clustering Detection of Stroke Activity

The multi-variable detection of stroke activity implemented relies on a classification approach
where an input radar-based stroke predictor vector x = [1, . . . xj, . . . xn]T, with “T” standing for
transpose operator, associated to each rain cell, needs to be associated to one of the k-th output class
(ck). To this goal, we have investigated the performance of three classifiers among the most popular and
easy to implement, which are: the Fuzzy Logic (FL), the Quadratic Discriminant Analysis (QDA), and
the Support Vector Machine (SVM). In selecting the classification approaches, we privileged those that:
(i) involve a minimization/maximization of a cost function; (ii) require low or reasonable computational
cost; and, (iii) are widely used in radar meteorology. According to [62], a classifier system can be
thought as a method to find a boundary separation in the input variable space (represented by the
vector x in our case), among several regions, each of them representative of one of the target output
classes. The flexibility in the definition of the boundary separation of x depends on the specific classifier
considered. A detailed description of the considered classifiers can be found in [62–67]. The training of
the classification algorithms is described in Section 5.

5. Algorithm Training

The training phase of the algorithm is aimed at: (i) selecting the components of the input vector
x of the radar-based predicting variables that are more correlated with stroke occurrence and (ii)
selecting the parameters for the clustered detection of stroke activity.

5.1. Selection of the Radar-Based Stroke Predicting Variables

Prior to selecting the radar-predictors of SRCG, a preliminary correlation analysis between the
investigated radar-based detection variables and the SRCG measured by LINET has been performed
considering five different distance (r) intervals, i.e., (rmin–rmax): 15–30, 30–40, 40–50, 50–60, and
distances larger than 60 km. Such analysis has revealed a very low correlation for convective events
occurred between 15 and 30 km. According to this result, we concluded that the WR-10X scan strategy
used does not provide an adequate sampling of the mixed-phase region of thunderstorm clouds within
this distance interval. Therefore, the dataset used for the selection of the radar-based CG strokes
predicting variables and in the subsequent analyses includes 5754 convective cells, i.e., only the rain
cells occurred at a distance >30 km from the radar site.

To select the radar-predictors of SRCG, we have performed an objective screening that is structured
into two different steps: (i) the maximization of Pearson correlation coefficient between LINET
observations and each of the radar-based stroke predictors introduced in Section 3, namely: DIH, VIR,
and LA; and, (ii) the maximization of the separation degree among the histograms of DIH, VIR, and
LA for the two classes SRCG = 0 and SRCG > 0. The latter criterion is important, because it should
maximize the independence of the information content brought by each of the selected radar-based
stroke predictors.

Table 4 lists the correlation coefficients between LINET CG, IC, and overall (All) stroke rates,
SRCG, SRIC, and SRAll, respectively, and each of the DIH, VIR, and LA radar-based stroke variables.
As a general result, we have found better correlation levels when only CG strokes are considered.
The relatively low detection efficiency of IC strokes may be the main reason for the scarce correlation
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of SRIC with radar-based variables. As highlighted in [56], the detection of IC strokes by LINET is
challenging, due to the following main reasons: (i) they are associated to a lower energetic values
than CG strokes; and, (ii) they occur at a certain height above the ground. In the light of such issues,
IC strokes can be correctly detected only through a three-dimensional localization system. The latter
would require the availability of a lightning detection network with a homogeneous baseline (which is
the mean distance between sensors), not exceeding 120 km [42]. Unfortunately, such a requirement
may be not satisfied in some regions, due to the irregular distribution of lightning sensors, and
especially in coastal areas, such as the one investigated in this study, because of the lack of sensors
over the sea. Therefore, due to the scarce relationships between the investigated radar-variables and
the detected IC lightning, hereafter we have decided to focus our study only on the detection of CG
strokes. For the LA method, A40dBZ,−10◦C and A40dBZ,0◦C outperform the other variables, whereas for
VIR, only the predictors based on ice amount estimates show comparable levels of correlation with
respect to LA and DIH. In this respect, the results of this study confirm the achievements of the few
previous studies [37,38] that investigate the relationship between liquid water content estimates and
lightning occurrence. According to the results that are shown in Table 4, nine different predicting
variables have been pre-selected, including all DIH criteria, VIImax, TIC, A40dBZ,−10◦C, and A40dBZ,0◦C.

Table 4. Pearson correlation coefficient between the investigated radar-based detection variables and
the stroke rate (SR) measured by LINET within the radar coverage in ∆t = 2 min. Results are partitioned
in terms of CG, IC, and all types of strokes.

Method Predictive Variables SRCG SRIC SRAll

DIH

∆Hmax
30dBZ,−20◦C 0.36 0.17 0.32

∆Hmax
30dBZ,−10◦C 0.36 0.17 0.32

∆Hmax
40dBZ,−20◦C 0.35 0.19 0.32

∆Hmax
40dBZ,−10◦C 0.35 0.19 0.32

∆Hmax
40dBZ,0◦C 0.35 0.19 0.32

VIR

VIWmax 0.13 0.06 0.11
VIImax 0.34 0.23 0.33
VTImax 0.18 0.08 0.15

VIWDmax 0.07 0.02 0.06
VIIDmax 0.22 0.14 0.22
VTIDmax 0.08 0.02 0.07

TWC 0.21 0.14 0.20
TIC 0.31 0.17 0.29

LA

A30dBZ,−20◦C 0.28 0.13 0.25
A30dBZ,−10◦C 0.34 0.15 0.29
A40dBZ,−20◦C 0.32 0.20 0.30
A40dBZ,−10◦C 0.42 0.25 0.39

A40dBZ,0◦C 0.40 0.26 0.39

The second selection criterion is based on a joint probability distribution function (PDF) analysis,
which has been carried out after partitioning the training dataset into the two categories, c1 and c2.
For a j-th predicting variable xj, we have calculated the joint probability p

(
xj ∈ c1, xj ∈ c2

)
, which

gives an estimate of the overlapping area between the two classes in terms of the predicting variable xj
only. We have repeated the calculation of the joint probability for all nine predicting variables that have
been previously pre-selected and the results are listed in Table 5. Lower values of the joint probability
mean small overlaps and an higher probability of separation between the two classes used. The results
highlight that, in each homogeneous variable set, the lower overlap is obtained for the following
predictors: x = [∆Hmax

40dBZ,−20◦C, VIImax, A40dBZ,−10◦C], whose frequency distribution for the two
classes is shown in Figure 4. It is worth highlighting that the variables listed in Table 5, being already
optimized with respect to the linear correlation criterion, exhibit slight differences in joint probability
values. Moreover, the frequency distributions of the variable A40dBZ,−10◦C (Figure 4c) appear to be very
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similar. However, the overlapping degree between histograms found for this parameter is comparable
to the other two variables. It should be noted, in fact, that A40dBZ,−10◦C has the largest dynamic range
if compared with the other two variables in Figure 4a,b and this tends to mask the discrimination of
the events with and without strokes in Figure 4c.

As a result of this analysis, the three predicting variables just mentioned have been selected as
inputs to the detection procedure. After selecting the optimal radar-based stroke predicting variables,
we have partitioned the convective cell dataset into a 45% training dataset and a 55% test dataset.
The two non-overlapping sets have been selected randomly, after assigning a progressive integer
number to each rain cell detected at a given time and position. Using this selection strategy, the same
rain cell, considered throughout its time evolution (i.e., tracked in time), may belong to the training
set for some radar acquisition time intervals and to the test one for others. It has been implicitly
assumed that each rain cell (and then its selected predicting parameters) at a given time is independent
from itself at a different time. Under this assumption, the training and test subsets can be reasonably
considered as two independent datasets with a balanced proportion between stroke and non-stroke
producing rain cells. We have also tested other training/test ratios, like 55%/45%, 60%/40%, and
40%/60%, and we did not find any significant variation in terms of the results that were achieved
in training and test phases. Detailed information about the number of convective cells assigned by
random selection to the training and test dataset is provided in Appendix A (Table A1), for each
thunderstorm day analyzed in this work.

The training set has been used to find the coefficients that are needed to run Equation (6) and the
best multi-variable separation functions, whereas the test dataset has been considered for verifying the
stroke detection performance.
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shown in green. The histograms have been determined from the entire dataset of convective cells.
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Table 5. Estimate of the separation distance between the histograms in Figure 3 obtained for SRCG = 0
and for SRCG > 0 for the radar-based stroke predictors selected from correlation analysis. The results
are presented in terms of joint probability (%). Bold numbers indicate the predicting variable showing
the lower overlap between the histograms in each homogeneous dataset.

Predicting Variables xj
Joint Probability (%)

p(xj ∈ SRCG = 0, xj ∈ SRCG > 0)

∆Hmax
30dBZ,−20◦C 0.633

∆Hmax
30dBZ,−10◦C 0.638

∆Hmax
40dBZ,−20◦C 0.619

∆Hmax
40dBZ,−10◦C 0.620

∆Hmax
40dBZ,0◦C 0.627

TIC 0.636
VIImax 0.627

A40dBZ,−10◦C 0.616
A40dBZ,0◦C 0.638

5.2. Threshold Selections for the Single Variable Approaches

The training of the single-variable detection methods consists in identifying the discriminatory
thresholds thlw

j,k and thup
j,k introduced in Equation (6) that best separates the two classes c1 and c2 of

SRCG = 0 and SRCG > 0, respectively. However, since we have only two classes (i.e., k = 1 or k = 2),
it holds that thj = thlw

j,k = thup
j,k and only one threshold needs to be fixed for each predicting variable xj.

To pursue this aim, a traditional two-by-two contingency table (e.g., [62]) has been used; the latter has
lead to the definition of CSI, Equitable Threat Score (ETS), Frequency Bias Index (FBI), Heidke Skill
Score (HSS), Hanssen-Kuiper Skill Score (KSS), and Area Under the Receiver Operating Characteristic
(ROC) Curve (AUC). The definition of these scores is provided in Appendix B.

According to an approach that is widely used in literature (e.g., [5,28,31,47]), for each of the
components of the input vector x = [x = ∆Hmax

40dBZ,−20◦C, x2 = VIImax, x3 = A40dBZ,−10◦C] of the
radar-based predicting variables, we have looked for the respective thresholds, th1, th2, th3, which
maximize the CSI. The CSI maximization process is shown in Figure 5, where we have expressed the
CSI as a function of various percentile levels of xj to present the result in a single plot. From the same
figure, the optimal threshold values, highlighted by black circles, have been obtained for th1 = −2.3 km
(CSI = 0.50), th2 = 0.9 kg m−2 (CSI = 0.46), and th3 = 0.7 km2 (CSI = 0.45).
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40dBZ,−20◦C = −2.3 km, VIImax = 0.9 kg m−2 and
A40dBZ,−10◦C = 0.7 km2) have been determined from training dataset.
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5.3. Threshold Selections for the Multi Variable Approaches

The classification techniques that are presented in Section 4.3 have been trained for the
multi-variable detection of SRCG (i.e., the two classes c1 and c2), assuming that the input vector
x has components x1 = ∆Hmax

40dBZ,−20◦C, x2 = VIImax and x3 = A40dBZ,−10◦C. The predictive radar
variables, before being used as input to the various classification schemes, have been scaled by the
corresponding mean and standard deviation.

To train the FL method, we have designed the membership functions by fitting the normalised
histograms presented in Figure 4 using trapezoidal functions. The weights for each membership
function have been fixed by considering the overlapping levels between the two classes that were
obtained for each predicting variables, xj (Table 5). According to this criterion, a larger weight has
been assigned to the predicting variable showing a lower overlap value.

For the training of the QDA method, we have previously calculated the covariance matrices,
the mean vector and the a-priori probabilities for each of the two classes of SRCG.

For the SVM, two different classifiers have been developed, one based on a linear kernel function
(SVM-L) and the other one on a Gaussian model (SVM-G).

A graphical example of the classification performed through FL, QDA, and SVM methods is
provided in Figure 6. This figure shows the distribution of ∆Hmax

40dBZ,−20◦C vs. VIImax for the SRCG > 0
cases and SRCG = 0 samples while keeping A40-dBZ,−10◦C constant to 1.0 km2. The boundary functions
derived after training the classification methods are superimposed to the scatter plot of Figure 6.
A clear overlap between the two SRCG classes is noted, although this is partially due to both the 2D
representation of a 3D plot and to the numerous meteorological scenarios that were included in our
dataset, which reflect different mechanisms of convection triggering and hence a great variety of
atmospheric electrification conditions. In particular, some electrification conditions may be not always
adequately represented by the considered radar-based proxies of stroke events. From a qualitative
perspective, the trained decision functions do not exhibit relevant discrepancies, although those that
are based on QDA and SVM-G seem to better mimic the separation between the two classes.
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Figure 6. Scatter plot of VIImax against ∆Hmax
40dBZ,−20◦C for the training dataset, which includes 2580

convective cells. The SRCG > 0 and SRCG = 0 classes are highlighted as red filled-in circles and blue
filled-in circles, respectively. A two-dimensional (2D) rendering of the boundary decision functions is
provided, by keeping the A40dBZ,−10◦C parameter constant to 1.0 km2. The yellow, black, green, and
magenta curves show the quadratic classifier obtained from Quadratic Discriminant Analysis (QDA)
method, the decision function determined from Support Vector Machine-Gaussian model (SVM-G)
and Support Vector Machine-linear kernel function (SVM-L), and the boundary function for the fuzzy
logic (FL) technique, respectively.
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6. Results

The robustness of the trained single and multi-parameters method for SRCG detection has been
evaluated trough the test dataset, using a metric that includes the CSI, the ETS, the FBI, the HSS,
the KSS, and the AUC score. These indexes take into account at least three of the four contingency
table categorical events and, therefore, we believe they provide a robust and objective assessment of
each proposed method skills.

The verification analysis outcomes are summarized in Table 6. It lists the score indexes when
the variables x1 = ∆Hmax

40dBZ,−20◦C, x2 = VIImax, and x3 = A40dBZ,−10◦C are used independently from
each other (single variable approach) or merged using various classification techniques (multi-variable
approach). Firstly, it is important to highlight that the QDA-based method outperforms the other
detection criteria, showing a CSI of 0.53, an ETS of 0.34, a FBI of 1.00, a KSS of 0.42, and an AUC
score of 0.78. On the other hand, the SVM-G technique exhibits the best performance in terms of HSS
(0.43). Thus, none of the single-parameter criteria is able to maximize the considered statistical scores,
even when the detection thresholds of each single variable approach are optimized using the training
dataset. This result is important, because it justifies the multi-variable approach and encourages the
use of different radar-based predicting variables, since they may bring benefits in the detection of
stroke activity that is associated to convective cells.

Table 6. Statistical scores indexes resulting from verification analysis using seven different detection
criteria. The first three methods use a single-parameter approach (∆H40dBZ,−20◦C, VIImax, and
A40dBZ,−10◦C, respectively), whereas the other four involve a multi-parameter approach, through
the FL, the QDA, the SVM-L, and the SVM-G membership function. Bold numbers indicate the
criterion showing the best results for the five different score indexes. The last two columns show,
for each score index, the minimum and maximum improvements (in percentage) introduced by QDA
methods with respect to the worst and best single-parameter approach. The score indexes that were
adopted in the verification analysis are defined in Appendix A.

Score
Index

Detection Methodology
Improvement of QDA wrt.

Single Variable Approach (%)Single-Variable Stroke Detection Approach Multi-Variable Stroke
Detection Approach

∆H40dBZ,−20◦C
= −2.3 (km)

VIImax = 0.9
(kg m−2)

A40dBZ,−10◦C
= 0.7 (km2)

FL QDA SVM-L SVM-G Max Min

CSI 0.50 0.48 0.46 0.49 0.53 0.42 0.46 +15.0 +6.0
ETS 0.29 0.20 0.24 0.21 0.34 0.25 0.27 +70.0 +17.0
FBI 1.19 1.39 0.98 1.41 1.00 0.63 0.77 +23.1 +2.0
HSS 0.35 0.33 0.39 0.35 0.42 0.41 0.43 +27.0 +7.0
KSS 0.36 0.36 0.38 0.37 0.42 0.38 0.41 +16.0 +10.5
AUC 0.63 0.73 0.73 0.76 0.78 0.78 0.75 +25.8 +6.8

A quantitative evaluation of the improvements introduced by the QDA method with respect
to the worst and the best single-variable criterion is presented in the last two columns of Table 6.
The improvement has been expressed in percentages, computed from the normalized difference
between the score obtained with the QDA method and the best and worst score among the single
variable methods. The improvement percentage varies between 2% and 70%, depending on the
specific skill score and the stroke radar-based proxy parameter considered. It is worth emphasizing
the improvement that is obtained for HSS increasing from 7.0% to 27.0%, as well as that observed for
KSS, varying between 10.5% and 16.0%. The HSS, in fact, may be considered a form of generalized
skill score [62], evaluating the accuracy of detection with respect to a random choice. The KSS score
gives equal emphasis to the ability of the detection method in identifying both the correct and correct
negative of SRCG (see Appendix A for details). Therefore, when considering HSS and KSS indexes,
the use of the multi-parameter approach enhances the SRCG detection capability with respect to a
random choice.
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The scatter diagram in Figure 7 provides a further evidence of the QDA method performance,
showing a comparison between ground-based LINET observations and radar-based estimates, in terms
of daily number of convective cells that produce SRCG > 0. LINET and radar data exhibit a
good agreement, synthetized by the linear correlation coefficient, whose value is 0.95. However,
the radar-based algorithm generally underestimates the number of SRCG > 0 events, especially in
thunderstorm days that are characterized by a strong atmospheric electrification, i.e., by a great number
of stroke-producing convective cells. Such a result may be related to a residual influence of radar
issues discussed in Section 2.1, whose quantitative impact on detection scores is discussed in the
next paragraph.
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The results of our study may be compared, with some caution because of the difference in weather
radar systems and in climatic contexts, only to previous works, including a number of convective cells
of the order of 103, which is the case of four studies [5,29,31,32], and only in terms of CSI score (Table 1).
In [29], 1164 rain cells have been analyzed using the occurrence of 40 dBZ at −10 ◦C updraft level as
proxy of stroke activity; this work found a CSI of 0.86, which is much higher than CSI determined in our
study and in [5,31,32]. As highlighted in [31], such discrepancy may be explained by local convection
features, which, in some climatic contexts, may better fit the radar-based proxies of stroke events.
Moreover, the difference with [29] may be also related to the radar system and to the scan strategy
used to design the stroke detection algorithm. The CSI index that is yielded by our multi-parameter
algorithm is very similar to the one achieved by the IRT-based methods developed in [31,32], which
ranges from 0.44 to 0.56. In [31,32], a method that is based on VII has been also proposed, resulting in
a CSI score of 0.68 and 0.47, respectively. In our study, the single-parameter detection method based
on VII shows a CSI of 0.48 for an optimal threshold of 0.9 kg m−2. This result is not very different from
the best values found in the two previous studies (0.42 kg m−2 and 0.58 kg m−2 for [31] and 0.84 kg
m−2 for [32]), although it corresponds to a higher percentile level (45th) than the ones that are found
in literature (the 10th and the 15th for [31] and 30th for [32]). It is interesting to point out that our
results are better that those achieved in [5], where a significantly more efficient and advanced radar
system (C-band, dual polarization) has been used. Although it cannot be generalized, this finding may
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be attributed to the very high number (of order 105) of convective cells considered in [5] and to the
difference in the method adopted for the stroke activity detection. In fact, in [5], the maximum height
of 20 dBZ reflectivity core has been used, but this variable is not necessarily well correlated with the
presence of deep riming precipitation ice within convective clouds, and hence, to lightning.

Sensitivity Analysis

As previously discussed, the quality of the data obtained by WR-10X radar may be adversely
affected by some impairments. In order to evaluate the quantitative impact of such issues on
stroke detection scores, a comprehensive sensitivity analysis has been performed. This additional
investigation focuses on the QDA-based criterion, which has given the best performance among
the multi-variable approaches tested in this study. To examine the consequences of the considered
challenges, various subsets of convective cells have been extracted from the test dataset. Those subsets
reproduce some “ideal” sampling scenarios, allowing for characterizing the impact of the following
issues:

• attenuation along the path. In the framework of this study, the impact of attenuation issue has
been properly characterized and quantified, by testing the performance of the proposed algorithm
for stroke detection for two different cases of non-attenuated and attenuated rain cells. We have
defined as non-attenuated rain cells, those not showing any precipitating structure along the line
of sight between the radar position and the rain cell itself. All the other rain cells are labeled
as attenuated rain cells. The number of non-attenuated and attenuated cells is 1418 and 1756,
respectively. Obviously, for the set of “non-attenuated rain cells”, we cannot exclude residual
path attenuation effects within each single rain cell.

• Radar beam obstruction from Volcano Vesuvio (40.8226◦N, 14.4292◦E). This challenge has been
investigated by a test subset, devoid of convective cells in the azimuthal directions ranging
between 89.95◦ and 107.95◦, which are in the blind zone of the radar due to Vesuvio relief. Such a
subset includes 3005 rain cells; and,

• radar beam width. To analyze the impact of such issue, the behavior of the score indexes has been
analyzed in relation to the range (i.e., distance from the radar site). More specifically, four different
subsets have been considered, including the rain cells located within a certain distance interval,
i.e., 30–40 km, 40–50 km, 50–60 km, and >60 km. The number of convective cells belonging to
such subsets is 987, 959, 677, and 551, respectively.

The results of sensitivity analysis for all considered sampling scenarios (including the one in
which the entire test dataset is employed) are listed in Table 7. It highlights, in first instance, that the
attenuation does not exert a relevant influence on score values. As expected, in the non-attenuated
scenario, a slight improvement of the indexes is observed, especially for HSS and KSS scores.
The results also point out that Vesuvio does not negatively affect the radar ability to correctly sample the
mixed-phase region of a thunderstorm, where lightning activity mostly originates, typically sampled
at antenna elevation angles larger than 3◦. Furthermore, three of the five scores, CSI, HSS, and KSS,
exhibit an opposite behavior as a function of the distance from the radar site. The CSI index maximizes
in the scenario that takes into account only the convective cells occurring at a distance greater than
60 km. The positive trend of CSI index with increasing distance from radar site can be attributed to
the improvement in mixed-phase region radar sampling. The latter results in a growth of hits (i.e.,
number of times that a stroke event is detected by a radar and is observed by LINET network) and
in the decrease of false alarms (i.e., number of times that a stroke event is observed by radar, but not
detected by LINET network), which lead to an improvement of CSI. Conversely, the HSS, KSS, and
AUC scores get worse with increasing distance, because of the increase of misses (i.e., instances of
stroke event occurring despite not being detected by radar) and to the decrease of correct negatives (i.e.,
instances of stroke event not identified by radar and not observed by LINET network). At long ranges,
in fact, the relatively broad beam width (<3◦ at 3 dB) of WR-10X radar and the beam blockage induced
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by orography in some azimuthal directions, may have a negative impact on the vertical sampling of
convective clouds.

Table 7. Statistical scores for QDA-based criterion obtained with respect to eight different sampling
scenarios. The first one (“All cells”) refers to the entire test dataset of convective cells. The others
allow evaluating the sensitivity of the multi-parameter algorithm to the impact of some potential issues
(details are provided in the text). Bold numbers indicate the scenario showing the best results for the
five different score indexes.

Score Indexes

Sensitivity Analysis—Sampling Scenario

All
Cells

Attenuated
Cells

Non-
Attenuated

Cells

No cells in the
Southern
Azimuth

Cells
between 30
and 40 km

Cells
between 40
and 50 km

Cells
between 50
and 60 km

Cells over
60 km

CSI 0.53 0.51 0.55 0.53 0.49 0.51 0.54 0.60
ETS 0.34 0.32 0.35 0.33 0.34 0.33 0.31 0.31
FBI 1.00 1.08 1.06 1.08 1.08 1.06 0.97 1.18
HSS 0.42 0.38 0.45 0.41 0.45 0.42 0.36 0.34
KSS 0.42 0.38 0.46 0.42 0.46 0.42 0.36 0.33
AUC 0.78 0.76 0.79 0.77 0.77 0.77 0.76 0.75

Number of cells 3174 1756 1418 3005 987 959 677 551

7. Conclusions

This study presents a multi-parameter criterion for CG stroke detection, based, for the first time,
on the measurements of a single-polarization X-band weather radar. The architecture of the proposed
method is structured into two different steps: (i) rain cell identification and stroke predicting variable
extraction and (ii) Stroke rate estimation using single variable or multi variable classification techniques.
After a training procedure and objective analysis on a large dataset that was collected in the area
of Naples, Italy, we have identified three radar-based predicting variables that are more related to
strokes detected by the LINET network: the difference between the maximum 40 dBZ height and the
−20 ◦C level, the vertically integrated reflectivity in the ice layer of the cloud, and the total area where
reflectivity values larger than 40 dBZ at the −10 ◦C isotherm level are found.

The stroke detection results highlight that the multi-parameter approach based on
Quadratic Discriminant Analysis classification produced an improvement with respect to classical
single-parameter criteria, which varies between 6% and 70%, depending on the specific statistical score
and the stroke radar-based proxy parameter considered. The QDA-based algorithm also outperforms
the other multi-parameter methods that were developed in this study (relying on Fuzzy Logic and
Support Vector Machine techniques) for all considered scores, except for the HSS index, whose
value maximizes in Support Vector Machine approach with Gaussian kernel function. Moreover,
a further examination has been carried out by comparing, for each of the thunderstorm days analyzed,
the number of rain cells producing strokes as observed by LINET network, and the one detected
by the radar-based algorithm. This analysis points out that ground-based observations and radar
estimates are highly correlated over a time period of 24 h, although the proposed algorithm generally
underestimates the number of rain cells with lightning activity.

It is important to highlight that the performances of X-band weather radars are notoriously
affected by beam attenuation along the path. In order to quantify the impact of such issue, a sensitivity
analysis has been carried out. The results show that the incidence of attenuation on the performance of
the proposed algorithm is relatively low. This is likely because the methodology that was developed
in this work has been trained and tested on small spatial scales, i.e., within a maximum range of
about 70 km. However, a range-dependent behavior of statistical score indexes has been detected.
More specifically, lower HSS and KSS values (with an increase of misses and a decrease of corrective
negatives) are observed for convective cells that are located more than 60 km away from the radar site.
This is compensated by higher CSI (increase of hits). These potential biases in the estimation of SRCG
produced by rain cells may arise from the large antenna beam width of the weather radar involved in
this study, which adversely affects the sampling of convective structure at long range.
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In the light of the findings of this work, the radar-based schemes designed for the detection of CG
stroke events may benefit from a multi-parameter approach, including different radar proxies that well
represent the processes that occur in the mixed-phase region of a thunderstorm. Future work will be
primarily devoted to test the methodology that is introduced in this study in other areas, particularly
in contexts where a network of X-band weather radar is used for monitoring and nowcasting
needs. Such evolution of research activities can also have relevant meteorological and climatological
implications, involving the tuning of radar-based predictors into environments characterized by
different microphysical and kinematic properties that are critical for cloud electrification. Moreover,
forthcoming studies will be also focused on the development of radar-based CG stroke detection
algorithm based on different classification schemes, such as decision trees and random forest. Finally,
additional studies will be carried out to examine, from physical and microphysical points of view,
the relationships among the various radar-based stroke predictors that are involved in this study and
their linkages with other atmospheric parameters (e.g., convective available potential energy, lifted
index, wind shear, etc.) that are potentially very useful for stroke detection and/or forecast.
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Appendix A

Table A1. For each of the thunderstorm days considered in this study, the following information is
presented: the number of analyzed radar scans, the number of identified convective cells and the
number of observed CG strokes, with the last two partitioned in terms of training and test dataset.

Date (dd/mm/yyyy) Number of Radar Scans Number of Identified Convective Cells Number of Observed CG Strokes

Total Training Test Total Training Test

17/04/2012 3 1 1 0 0 0 0
23/07/2012 67 323 148 175 529 313 216
24/07/2012 10 31 18 13 22 19 3
31/08/2012 26 55 25 30 650 185 465
13/09/2012 59 285 124 161 283 134 149
01/10/2012 37 225 93 132 159 56 103
12/10/2012 33 116 53 63 167 96 71
26/10/2012 12 58 26 32 318 152 166
27/10/2012 77 380 161 219 758 303 455
28/11/2012 55 249 106 143 273 106 167
01/12/2012 41 114 46 68 59 29 30
02/12/2012 46 159 71 88 215 87 128
08/12/2012 25 106 45 61 75 32 43
17/12/2012 26 125 56 69 90 35 55
13/01/2013 42 153 75 78 87 48 39
16/01/2013 15 48 20 28 17 5 12
17/01/2013 12 23 11 12 24 7 17
23/01/2013 55 143 73 70 256 144 112
02/02/2013 9 44 24 20 18 7 11

https://www.nowcast.de/
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Table A1. Cont.

Date (dd/mm/yyyy) Number of Radar Scans Number of Identified Convective Cells Number of Observed CG Strokes

Total Training Test Total Training Test

22/07/2014 32 86 38 48 69 27 42
01/09/2014 69 310 141 169 1621 887 734
04/09/2014 9 20 11 9 46 40 6
06/09/2014 44 162 82 80 786 340 446
04/12/2014 61 212 100 112 670 303 367
16/12/2014 59 253 115 138 816 391 425
04/01/2015 18 40 17 23 58 29 29
18/01/2015 30 73 34 39 145 55 90
30/01/2015 20 51 25 26 37 15 22
01/02/2015 30 119 54 65 122 54 68
03/02/2015 36 81 35 46 137 70 67
04/02/2015 14 88 35 53 98 16 82
05/04/2015 22 44 21 23 75 29 46
07/06/2015 42 165 84 81 1387 848 539
08/06/2015 33 143 58 85 795 337 458
09/06/2015 21 61 27 34 499 242 257
10/06/2015 13 55 21 34 410 141 269
23/07/2015 31 89 42 47 548 225 323
11/08/2015 53 214 103 111 1839 773 1066
04/09/2015 18 38 17 21 959 514 445
05/09/2015 24 49 23 26 714 425 289
20/09/2015 19 69 27 42 122 25 97
23/09/2015 32 120 52 68 1285 415 870
07/10/2015 42 130 53 77 407 145 262
10/10/2015 41 83 35 48 167 39 128
14/10/2015 39 149 67 82 985 616 369
15/10/2015 30 101 38 63 840 154 686
29/10/2015 35 95 43 52 869 553 316
03/03/2016 8 16 6 10 74 28 46

Total 1575 5754 2580 3174 20,580 9494 11,086

Appendix B

The four usual entries of the contingency table have been defined as follows:

• Hits (H): account for the number of times that a stroke event is detected by a radar-based
methodology and is observed by LINET network;

• False alarms (F): represents the occasions in which a stroke event is observed by radar but not
detected by LINET network;

• Misses (M): account for the instances of stroke event occurring despite not being detected by radar;
• Corrective negatives (N): represents the number of times that a stroke event is not identified by

radar and not observed by LINET network.

The outcomes of the 2-by-2 contingency table allow to determine the following statistical
scores, that have been used as reference metric to evaluate the performance of the proposed stroke
detection algorithm.

• Critical Success Index (CSI) = H
H+F+M ;

(Range: 0 to 1; Perfect Score: 1.0)

• Equitable Threat Score (ETS) = H−( (H+F)(H+M)
n )

H+F+M−( (H+F)(H+M)
n )

;

(Range: −1/3 to 1; Perfect Score: 1.0)
• Frequency Bias Index (FBI) = H+F

H+M ;

(Range: 0 to ∞; Perfect Score: 1.0)
• Heidke Skill Score (HSS) = 2×(H×N−F×M)

[(H+M)×(M+N)+(H+F)×(F+N)] ;

(Range: −∞ to 1; Perfect Score: 1.0)



Remote Sens. 2018, 10, 1797 23 of 26

• Hanssen−Kuiper Skill Score (KSS) = (H×N−F×M)
[(H+M)×(F+N)]

(Range: −1 to 1; Perfect Score: 1.0)
• Area under the ROC curve (AUC): It is a measure of the two-dimensional area underneath the ROC

curve. The ROC curve is the curve in the plane of the probability of detection as a function of
false alarm rate (POD = H/(H + M) and FAR = F/(F + N), respectively)

(Range: 0 to 1; Perfect Score: 1.0)
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