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Abstract: The study considers a forest inventory for the mean volume, basal area, and coniferous/
deciduous mapping of a large territory in central Siberia (Russia), employing a camera relascope
at arbitrary sized sample plots and medium resolution satellite imagery Landsat 8 from the leaf-on
and leaf-off seasons. The research bases are on field plots and satellite data that are acquired for
the real operational forest inventory, performed for industrial purposes during summer–fall 2015.
Sparse Bayesian regression was used to estimate linear regression models between field-measured
variables and features derived from satellite data. Coniferous/deciduous mapping was done,
applying maximum likelihood classification. The study reported the root mean square error for the
mean volume and basal area under 25% for both the plot level and compartment level. The overall
accuracy of the forest-type classification in coniferous, mixed coniferous/deciduous, and deciduous
classes was 71.6%. The features of Landsat 8 images from both seasons were selected in almost
every model, indicating that the use of satellite imagery from different seasons improved the
estimation accuracy. It has been shown that the combination of camera relascope-based field data and
medium-resolution satellite imagery gives accurate enough results that compare well with previous
studies in that field, and provide fast and solid data about forests of large areas for efficient investment
decision making.

Keywords: remote sensing; Operational Land Imager (OLI); Trestima; forest classification; Sparse
Bayesian Regression

1. Introduction

Assessment and monitoring of forests’ growing stock is important for sustainable use of
forest resources, planning investments in forest sector and mitigating effects of climate change.
Forests’ growing stock is systematically monitored with different kinds of forest inventory methods.
For model based forest inventory using remotely sensed data, there are different sources of data
that could be applied, such as satellite imagery, aerial photography, airborne laser scanning (ALS)
or a combination of these. The choice of the data source used is application-dependent. It depends
on the required accuracy and the level of detail in the resulting data and outcomes. The methods
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based on airborne data are rather complex in terms of practical arrangements, since they require a
mission-specific data acquisition campaign. Due to their relatively high accuracy and detailed data
deliverables, airborne data are convenient for the purpose of operational, detailed forest management
planning. A forest inventory based on satellite imagery is economical for large area mapping, as in the
general case, medium-resolution satellite imagery such as Landsat 8 Operational Land Imager (OLI) is
freely available. However, a forest inventory based on medium resolution satellite images has lower
accuracy than one that is based on airborne measurements [1], but its accuracy can still be adequate for
general forest growing stock assessment at a low spatial resolution. For a concise but comprehensive
overview of the relative merits of different remote sensing modalities and estimation methods, please
see the review [2] and references therein.

According to the National Forest inventory guidelines of Russia [3], the period of repetitive forest
data observations is set to 10–15 years. For some of Russia’s forested areas, this recommendation is not
always followed, due to remoteness, lack of transport infrastructure, high field work costs, and the
low economic value of the forests, considering the overall forest industry development level in such
regions. In practice, this means that some of the existing official forest data are extremely outdated,
being acquired, e.g., in the 1980s–90s of the 20th century, and they do not consider, for example, recent
forest fire events and growth increments. At the very same time, there are a number of forest industry
development initiatives that currently require information about the state of the forests, in order to
provide efficient investment decisions both on the level of private investors and the government.
In most cases, forest industry projects in Russia consider large-size forest concessions, ranging from
hundreds of thousands to millions of hectares of forestland. Due to the financial structuring of such
projects, it is often required that forest assessment results for an entire area under consideration are
delivered in a short time frame, with accurate and objective results. From that point of view, one
possible approach is the use of satellite imagery-based forest inventory.

Satellite imagery-based forest inventory is indeed already a rather old technique; the fundamentals
of the approach were introduced already in the 90s; see, e.g., [4,5]. However, despite the fact that
satellite imagery-based forest inventory techniques have been well elaborated, one of the most critical
phases of the estimation process, field data acquisition, has not been changing much over time.
Field data measurements, on the one hand, influence the quality of the forest inventory results, but
on the other hand, a field campaign carries a large portion of the forest inventory campaign’s costs.
Typically, employing conventional tools such as calipers and a hypsometer/clinometer in field data
acquisition has been rather labor intensive. Furthermore, the approach using conventional tools, in
some specific cases, suffers from low objectivity and demands field data cross-validation by revisiting
a certain number of sample plots, in order to independently confirm field data quality. Modern-type
calipers and hypsometers/clinometers are indeed rather sophisticated tools nowadays; see e.g., [6],
possessing Global Positioning System (GPS) readings that improve the objectivity of the measurements.
Also, the accuracy and precision of measurements is expected to be high when trained mensurationists
are using the tools [7]. Even though such tools are advanced equipment, and even though they can
provide high accuracy and precision, it is known from their practical application that they remain
complex and time consuming, as well as requiring well-trained and experienced field crews. In that
specific context, there is a need to employ a field sampling tools that enable faster field campaigns,
maintaining a good level of acquired data accuracy, and providing a high level of data objectivity
in harsh conditions. Objectivity requirement of the data acquisition can be achieved by automated
non-contact field data collection methods. These include terrestrial laser scanning (TLS) [8–10] and
close-range photogrammetry [11,12]. These methods, however, require purpose-built equipment and
computationally heavy post-processing, and their performance is related to the complexity of the forest
structure, and their measurement accuracy in field tests has not always been convincing. Mobile phone
technology offers an alternative to automated field data collection, with a more generally available
platform. Mobile devices and applications have been successfully tested in participatory projects for
collecting data for forest fuel estimation [13], in forest monitoring [14], and in creating forest cover
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maps [15]. Besides their use as a data collection device designed for professional and non-professional
users, mobile phones can be used as measuring devices. The camera relascope [16] is an alternative
method to automate and streamline field data collection, and to allow non-professionals to participate
in data acquisition campaigns.

The idea of using data collected using mobile applications as training data in satellite-based
mapping of forest related variables has been introduced in [13,15,16]. In this study, we push the idea
forward by testing a commercially available camera relascope tool, Trestima (www.trestima.com/w/
en/) [17], in collecting field sample data at arbitrary sized sample plots, and we use the collected
field data as training data in Landsat 8 OLI based forest inventory in a large area in central Siberia
(Russia). Trestima differs from another camera relascope tool, Relasphone, described in [16] in its level
of automatization. While in Relasphone, the user must count the measured trees and define the species
for each tree, Trestima detects the species and delivers the basic metrics of a forest stand as basal area,
number of stems, and diameter distribution, based on automatic image interpretation.

The way in which this article uses Landsat 8 OLI data is relatively simple. We apply satellite
images from two seasons, leaf-on (summer) and leaf-off (spring/autumn) seasons. By this, we aim at a
better separation of tree species. However, we would expect further improvements of the results to
be obtainable from modern methods that use a time series of satellite images (see e.g., [18]), or even
the difference of heights derived from different space-born instruments, such as the method proposed
in [19].

This study considers the forest inventory for mean volume, basal area, and coniferous/deciduous
mapping of a large area in central Siberia, approaching 2.6 million hectares (ha), employing modern
camera relascope-based field measurements at arbitrary sized sample plots and medium-resolution
freely sourced satellite imagery from Landsat 8 OLI. The applied camera relascope tool was Trestima,
which is a commercial and operationally used forest inventory system used mainly in stand-level
assessments. The assessment accuracy is evaluated earlier in Finnish conditions for stand-level
mapping [20]. However, the data collected with the tool has not been used for training data in
satellite-based inventory.

The objective of the study was to validate the applicability of camera relascope measurements
in field plots in the environment of the large-scale forest inventory, and to test the suitability of these
field data in medium-resolution satellite-based forest inventory. Also, the study validates the use of
Landsat 8 OLI images from different seasons, with the aim to improve estimation accuracy.

2. Materials and Methods

This section and its subsections describe the materials used, and the methods divided in the
characterization of the study area, acquisition and processing of input data, data analysis and modeling,
and finally the description of the validation methods. Figure 1 presents a workflow diagram of the
whole process.

2.1. Study Area

The forest inventory took place in the summer–fall season of 2015. The study area, later the area
of interest (AOI), is located in central Siberia (Krasnoyarsk region, Russia); see Figure 2.

The dimensions of the AOI are approximately 450 km along and 350 km across. In total, the AOI
comprises 2,691,316 ha. The AOI is featured by lack of road infrastructure, and mainly represents
intact forests (taiga). The AOI consists of forest units, the majority of which has a rectangular form
of so-called forest kvartals scattered in either large or small groups and/or lying all along over the
territory (see [21] for the definition of a kvartal). Geographically, the AOI is located in the proximity of
the Yenisei river on its west and east banks.

Forests on both banks of the river were represented by the coniferous species of Scots pine
(Pinus sylvestris L.), Norway spruce (Picea abies L.), Fir (Abies Mill.), Larch (Larix sibirica Lebed.),
Siberian pine (Pinus sibirica Du Tour), and by the deciduous species of Birch (Betula L.) and Aspen

www.trestima.com/w/en/
www.trestima.com/w/en/
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(Populus tremula L.), all being of different ages at the different parts of the AOI. The most southern part
of the AOI differs from the rest of the area. It has been under exploitative forest use, and deciduous
species are more dominant. At the time of the study, actual dominance and distribution of species
over the area were not well known. Some parts of the AOI have undergone recent severe forest fires.
The environment on the west bank is characterized by a flat terrain of lowlands and widespread
swamps. The environment on the east bank of the river is rather mountainous, with elevations of up
to 700–900 m above sea level, and characterized by frequent large tributaries of the Yenisei river that
penetrate deep into the territory over many kilometers.
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Figure 2. Location and delineation of the study area (green area). Rivers (blue) and roads (grey) are
illustrated in the image at higher scale. Background map data source and copyright DeLorme/ESRI.

2.2. Remote Sensing Data

The remote sensing data employed in the study were cloud-free Landsat 8 OLI imagery of both
leaf-on (summer) and leaf-off (autumn) seasons for the entire AOI. Processing level-1 images were
obtained from the U.S. Geological Survey, Earth explorer service [22]. The image search was first
conducted for images from 2015 with less than 10% cloud cover; however, the search criteria were later
adjusted to include images with higher cloud cover percentages, and the search was expanded to also
include the years 2013 and 2014. Leaf-off images were searched from both autumn and spring seasons.
Mountainous areas was problematic because of snow cover: suitable leaf-off images were not detected
for that area. The downloaded imagery was first analyzed visually using LandsatLook images as
aids. This was done to identify the most suitable images, possible mosaicking the order of images,
and checking that the images covered the entire area, and also after masking out the clouds. The total
number of images used was 18 and 9 for leaf-on and leaf-off mosaics, respectively. Acquisition dates for
leaf-on images were 1 July 2014, 12 July 2014, 4 August 2014, 13 August 2014, 6 June 2015, 15 June 2015,
22 June 2015, 25 August 2015, and 1 September 2015. Acquisition dates for leaf-off images were
29 September 2013, 28 September 2014, and 30 September 2014. For further processing, the original
12 bit images were resampled to 32 bit images, because the ArboliDAR tools [23] used for feature
calculation required 32 bit raster data as an input.

The mosaicking of images was done in ArcGIS 10.0 software. Due to variation in satellite image
acquisition conditions, the same ground object on two overlapping images can result in different
spectral values [24]. Because of this, radiometrically uniform mosaics using multi-temporal scenes
should be created prior to employing the satellite imagery into image analysis. To overcome radiometric
differences between the multi-temporal scenes, relative normalization by pre-processing of the input
images was performed. Relative radiometric normalization is based on the assumption that the
difference between two satellite images from different dates but from the same area can be explained
by a linear relationship [25]. To resolve this problem, we used the variance-preserving mosaic (VPM)
algorithm that minimizes the overall error of the normalization, and aims to preserve the average
variance of input scenes [26]. Normalization was done using the VPM algorithm implemented into the
ArboLIDAR toolbox, developed by Arbonaut Ltd., Finland [23]. The normalization procedure utilizes
overlapping portions of the images, and prior to normalization, clouded and shadowed areas as well
as image edges with black or clearly abnormal pixel values were delineated. Portions of the image
that do not contain relevant information and that might affect the normalization negatively, need to
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be masked out; i.e., pixel values need to be set as No Data. Polygon shapefiles were used as masks.
The AOI was buffered by 50 km. Areas further than 50 km from AOI were set as No Data. The black
edges of each image needed to be set to No Data. In addition to the black edges, some pixels on the
edge of the scenes had abnormal values. Worldwide Reference System (WRS-2) scene boundaries
downloaded from U.S. Geological Survey Earth explorer service [22] were used to remove areas on
the edges of composite images. Other masks were created mostly with manual editing. Images were
analyzed visually to detect clouds and shadows, or other areas with inferior quality, and then these
areas were delineated by hand. For some of the Landsat scenes, LandsatLook quality images were
further processed to mask out very scattered small clouds and their shadows. If there were clouds
outside the AOI, they needed to be masked out as well, so that they would not affect the normalization
result negatively. Several images adjacent to each other had no visible image borders. This was the
case, for example, for when the images were from the same date. Based on visual analysis, it was
decided that several of the masked composite images could be mosaicked without normalization.
These mosaics and other individual composite images were then normalized and mosaicked into one
image mosaic covering the entire AOI (Figure 3).
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2.3. Sample Design Plan

Initially, the sample plot design was an L-shaped cluster format with four plots in each cluster.
The distance between center coordinates of plots was 200 m. The AOI defined by the rectangular
planning compartment, kvartal boundaries, which were preliminarily digitized in GIS shape file
format, was divided into two areas—on the west bank and on the east bank of Yenisei, respectively.
The forested area was defined by delineating out non-forest areas based on Hansen tree cover data [27],
as well as rivers and roads, with a 100 m buffer. The accessible forest was defined by using roads
and rivers (at the field campaign the rivers were also used as transport lines) that were preliminarily
evaluated in terms of their usability. The maximum distance from a usable road to a plot was 2000 m,
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and no rivers could be crossed on the way to the plot. Cluster locations were randomly sampled in
accessible forest area. Each initial sample plot was of Landsat 8 OLI -pixel size of 30 × 30 m.

Next, the initial sample plots were compared over the forest area of AOI variation. The aim was
to have field data representing the variation of the whole AOI, in order to obtain good estimation
accuracy and precision with a low number of field plots; see e.g., [28–30]. The representativeness of
the initial sample was analyzed by comparing and plotting green, red and NIR (near infrared) band
values and NDVI (normalized difference vegetation index) image values from the initial sample plots,
and from the whole forested area of the AOI. The values for the whole forest area of AOI were from a
large random sample (n = 15,355). The materials used for the analysis were cloud-free image mosaics
produced from the best available summer season Landsat 8 OLI images that were obtained before
August 2015. Image parts with cloud or cloud shadow were removed and supplemented with data
from other images.

Arbitrary sized forest patches around the plot center coordinates were then drawn manually.
A patch was not allowed to be in a road or a river and the land use/land cover class, tree species
composition and volume were to be visually assessed as being homogeneous inside the patch. When it
comes to the volume, the assessment was done in the sense that, provided the land use/land cover
class, tree species composition is the same, and then if the patch of forest seemed visually homogeneous,
it was assumed that the forest is also similar in volume. Thus, in manual segmentation, a plot could
be moved to a more homogeneous location, or removed if it could not be moved. The manual
segmentation was performed based on the visual interpretation of Landsat 8 OLI imagery, with the
support of satellite imagery available on Google Earth. On average, an arbitrary-sized plot area
was set to be approximately 0.5–1 ha (6–12 Landsat 8 OLI pixels), which could vary depending on
the homogeneity.

The size of the initial sample was 848 plots, with 424 plots on each side of the river Yenisei. Some of
the plots from the initial sample were removed because they were not accessible after reviewing them,
based on the information from the field team. After the removal of the inaccessible plots, the revised
sample consisted of a total of 792 plots. All in all, 392 and 400 plots were left at the east and west banks
of the river Yenisei, respectively. The representativeness of the revised sample against Landsat 8 OLI
satellite image spectral values is presented in in Table 1.

Table 1. Mean, standard deviation (std), and minimum (min) and maximum (max) of Landsat 8
Operational Land Imager (OLI) bands and normalized difference vegetation index (NDVI) values from
random sample presenting whole AOI and from revised field sample locations (n = 792) for the east
and the west bank of the river.

Satellite Imagery Values East Bank of Yenisei West Bank of Yenisei

Inventory Area Initial Sample Inventory Area Initial Sample

Green mean 7380 7245 7530 7470
Green std 382 279 316 284
Green min 6802 6887 6895 7025
Green max 22,388 9071 9865 9606
Red mean 6509 6361 6564 6443

Red std 438 340 324 275
Red min 6041 6092 6096 6148
Red max 23,393 9013 8982 8654

NIR mean 12,848 12,894 14,677 17,074
NIR std 1580 1761 2782 4348
NIR min 5855 7071 8590 9970
NIR max 23,684 18,600 26,962 31,418

NDVI mean 0.324 0.334 0.373 0.432
NDVI std 0.055 0.062 0.078 0.108
NDVI min −0.188 0.039 0.061 0.192
NDVI max 0.558 0.503 0.620 0.654
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The analysis showed that on the east bank of the river, the revised sample well represented the
variation of the whole inventory area. There were some extreme values (e.g., in green and red bands)
that were not covered in the sample. It was assumed that these extremes did not represent the forests,
but some other land use classes. On the west bank of the river, the sample covered the variation
well; however, the means were shifted towards high NIR and NDVI values. Also, the variation of the
inventory area differed significantly, compared to the areas on the east bank of the river. The most
southern planning compartments (kvartals) were well-represented in the sample, and the rest of the
kvartals on the west bank of the river Yenisei were underrepresented. The reason for this was that the
accessible area on the west bank was quite limited.

Finally, during manual segmentation, the number of sample plots was reduced to 385 and 399
at the west and east banks of the river Yenisei, respectively, due to some inaccessible plots found in
visual interpretation. An average area of a forest patch was 0.8 ha, with a minimum area of 0.4 ha and
a maximum area of 1.8 ha. The representativeness of the final sample was investigated by calculating
NIR and NDVI values as the mean of pixel values in the patch. This slightly averaged the values
compared to the pixel-based method used in analyzing the revised sample. However, the averaging
effect was minor, since the patches were segmented in homogeneous areas. The representativeness of
the final sample was checked again against the random sample. Scatter plots in Figure 4 show how
NIR and NDVI values of the final sample compared with the random sample presenting the variation
in AOI.
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Figure 4. Scatter plots of NDVI and NIR values of random samples representing the variation of the
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2.4. Field Plot Data Acquisition

The fieldwork took place in the period between late August and early October 2015. The Trestima
camera relascope system was used to measure the field plots. The Trestima camera relascope is a new
generation of terrestrial forest inventory tools, which is based on using a mobile application. As input
data, Trestima uses terrestrial imagery of two types: basal area images and individual tree images,
captured with the mobile application. Trestima automatically detects species and delivers such basic
metrics of a forest stand such as basal area, the number of stems, and diameter distribution, which is
defined as the number of trees in each diameter class, as well as detecting diameter and height, when
trees are measured individually [31,32]. Because there was no assured information available on the
accuracy of the automatic species detection in the study area, each image at each sample plot was
reviewed manually, and if the tree species was wrong, it was changed.
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The field work was performed using the mobile phones Sony Xperia Z3 (Android) and Nokia
Lumia 720 (Microsoft). Prior to field measurements, each sample plot was covered with a systematic
net of points (30 × 30 m). The net was visible on each mobile device. The points in the mobile
devices served as navigation orienteers for the field crew. The assignment was to approach to as
near as possible at each such point, taking into consideration the local environment and the mobile
device’s GPS accuracy, and to capture two sample images of basal area in approximately perpendicular
directions inward a sample plot (Figure 5). On a typical plot, there were seven points, which resulted
in 14 basal area images (7 × 2 images). Simultaneously, at each sample plot, the field crew selected a
minimum of two model trees per each tree species, and measured the individual trees’ diameter and
height (see Figure 6). This means that the number of model tree images was dependent on how many
tree species were present on the plot. The average value of basal area from basal area images was used
as the field measured basal area of the plot. Model trees were used for estimating the height–diameter
curve. All in all, 16,516 sample images of either type, i.e., the basal area image or the model tree image,
were taken from a total of 599 field plots.

Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 22 

 

distribution, which is defined as the number of trees in each diameter class, as well as detecting 
diameter and height, when trees are measured individually [31,32]. Because there was no assured 
information available on the accuracy of the automatic species detection in the study area, each image 
at each sample plot was reviewed manually, and if the tree species was wrong, it was changed. 

The field work was performed using the mobile phones Sony Xperia Z3 (Android) and Nokia 
Lumia 720 (Microsoft). Prior to field measurements, each sample plot was covered with a systematic 
net of points (30 × 30 m). The net was visible on each mobile device. The points in the mobile devices 
served as navigation orienteers for the field crew. The assignment was to approach to as near as 
possible at each such point, taking into consideration the local environment and the mobile device’s 
GPS accuracy, and to capture two sample images of basal area in approximately perpendicular 
directions inward a sample plot (Figure 5). On a typical plot, there were seven points, which resulted 
in 14 basal area images (7 × 2 images). Simultaneously, at each sample plot, the field crew selected a 
minimum of two model trees per each tree species, and measured the individual trees’ diameter and 
height (see Figure 6). This means that the number of model tree images was dependent on how many 
tree species were present on the plot. The average value of basal area from basal area images was 
used as the field measured basal area of the plot. Model trees were used for estimating the height–
diameter curve. All in all, 16,516 sample images of either type, i.e., the basal area image or the model 
tree image, were taken from a total of 599 field plots. 

 
Figure 5. Image capture from the Trestima web service interface showing an example of a field sample 
plot shape and the samples’ visualization (green arrows correspond to basal area samples, and red 
arrows correspond to model tree diameter and height samples). The example plot includes several 
tree species, and therefore the number of model tree samples (red arrows) is large. 

By default, Trestima calculates the sample plot volume automatically, based on the basal area 
sample images from the plot, as well as the height and diameter measurements of subjectively 
selected trees per tree species. The volumes are calculated using volume models per tree species, 
configured in Trestima [31]. However, as the default Trestima volume models were not tailored to 
this project, the estimation of the forest volume per each sample plot was done using Trestima 
diameter distribution from each plot, which defined the number of trees on each diameter class by 

Figure 5. Image capture from the Trestima web service interface showing an example of a field sample
plot shape and the samples’ visualization (green arrows correspond to basal area samples, and red
arrows correspond to model tree diameter and height samples). The example plot includes several tree
species, and therefore the number of model tree samples (red arrows) is large.

By default, Trestima calculates the sample plot volume automatically, based on the basal area
sample images from the plot, as well as the height and diameter measurements of subjectively selected
trees per tree species. The volumes are calculated using volume models per tree species, configured in
Trestima [31]. However, as the default Trestima volume models were not tailored to this project, the
estimation of the forest volume per each sample plot was done using Trestima diameter distribution
from each plot, which defined the number of trees on each diameter class by species. Heights were
estimated with height–diameter models (h(d)-models) generated from the model tree data, and tree
level allometric volume functions specific to the forest region of the AOI were used to calculate
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diameter class level volumes. The height per tree species was estimated for each diameter class by
using h(d)-models estimated for the southern part, and the rest (western, south-western, and eastern)
separately. The models were created in the statistical program R [33] and in the package nlme [34]
using nonlinear mixed-effects modeling. The mixed-effects models were applied for modeling the
relationship between tree height and tree diameter, because the variables were clustered and thus
spatially correlated, see e.g., [35]. The plot was used as the random variable in the modeling, assuming
that different plots have somewhat different growth conditions, and thus plot affects the h(d)-model
curve. The h(d)-models were created separately for each major tree species of the following areas:
in the southern part pine, spruce, birch, and aspen each had their own models, and in the western,
southwestern, and eastern parts, cedar and other (deciduous) tree species each had their own, in
addition to those mentioned before. Some minor tree species data were combined to suitable major
tree species groups: in the western, southwestern, and eastern parts larch and fir were merged with
spruce, in the southern part, cedar and other species with pine. All h(d)-models were made with the
Näslund function [36] after testing several options.
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Finally, the volume of the growing stock per each sample plot was estimated by summing up
the volumes of the diameter classes per tree species, which were calculated based on tree-specific
allometric volume models [37], taking as the input data the estimated quantity of the trees of each
respective diameter class.

2.5. Land Use Classification

Maximum Likelihood Classification tool in ArcGIS 10.0 toolbox Spatial Analyst was used to
classify a Landsat 8 OLI mosaic with supervised maximum likelihood method. The area was classified
into nine land use classes (Conifer forest, Mixed conifer forest, Deciduous forest, Swamp, Grass,
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Harvested, Regrowth, Open land, Water and Burnt area). Training areas consisted of field plots
measured with Trestima, and additional training areas established based on visual interpretation
by creating several polygons for each land use class. RapidEye satellite imagery and satellite
imagery available on Google Earth were used as ancillary information for establishing training areas.
An independent random sample of 207 visually interpreted plots was acquired for validation.

2.6. Estimation of Forest Volume and Basal Area

All in all, data from a total of 599 plots were delivered from the field campaign. Of the 599 plots,
544 were used for further modeling. Some plots were left outside modeling, due to poor satellite image
quality on the plot region, or due to problems in measurements. The highest possible model quality
was assured by not using plots with some quality issues that might distort the models. The forest
volume modeling was done separately for the four major parts of the AOI: South, West, Southwest,
and East parts (Figure 7). The division was based on satellite imagery and forest characteristics,
i.e., the modeling area was the area with homogenous satellite data and similar forest types (lowlands,
mountainous).

The area of each respective part is estimated as follows:

• South—ca. 50,000 ha.
• West—ca. 1,000,000 ha;
• Southwest—ca. 175,000 ha;
• East—ca. 1,100,000 ha.
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At the estimation, different field plot combinations were used in the different areas. By default,
both leaf-on and leaf-off Landsat 8 OLI images were used in models, except for the mountainous
area of the east bank, where different image compositions were applied because good quality leaf-off
images were not available for the whole area. Also, because of mountains, the East area had large
shadowed areas, and therefore, separate shadow area models were estimated. Field data statistics for
the modeling areas are presented in Table 2. The used field plot and Landsat 8 OLI combinations were:

• South area (both leaf-on and leaf-off imagery):

- 228 plots (all plots from the Southern part);

• West area (both leaf-on and leaf-off imagery):

- 119 plots (all plots from the Western part);

• Southwest area (both leaf-on and leaf-off imagery):

- 217 plots (119 of plots from the Western and 76 of plots from the Southern part);

• East area:

- Leaf-on and leaf-off imagery (model 1): 160 plots;
- Leaf-on imagery only (model 2): 160 plots;
- Shadowed leaf-on and leaf-off imagery (model 3): 43 plots;
- Shadowed leaf-on imagery (model 4): 43 plots.

Table 2. Field data statistics for modeling areas. MV = mean value, Std = standard deviation,
n = number of plots. D = mean diameter at breast height, H = mean tree height, V = mean volume,
G = basal area, Vc = mean volume of the coniferous forest class, Vd = mean volume of the deciduous
forest class, Vm = mean volume of the mixed coniferous forest class.

Modeling
Area D, cm H, m V, m3 ha−1 G, m2 ha−1 Vc, m3

ha−1
Vd, m3

ha−1
Vm, m3

ha−1

MV Std MV Std MV Std MV Std MV Std MV Std MV Std
South 21.1 5.6 18.8 3.3 169.9 69.9 20.2 7.8 249.9 64.0 140.1 54.6 192.6 69.3
West 21.2 4.3 17.2 2.9 195.5 50.3 24.1 5.2 187.9 53.1 169.3 65.6 202.0 46.9

Southwest 21.1 5.0 17.6 3.5 186.7 61.6 22.8 6.7 202.8 62.7 141.9 51.0 201.6 54.6
East 19.8 3.7 16.1 2.7 223.5 44.3 26.4 4.7 231.4 32.2 210.3 41.3 226.8 47.6
East,

shadow 1 21.1 5.0 15.9 3.0 205.0 41.7 NA NA NA NA NA NA NA NA

1 Forest class specific models were not estimated.

Models for volume and basal area estimation were built using field plot data and satellite image
features calculated for sample plots using Sparse Bayesian Regression (SBR) method [38,39]. SBR is a
linear regression method, which automatically selects the needed covariates from the set of candidate
covariates to estimate a forest variable. By default, in SBR, a specific set of covariates is employed in
order to estimate each forest variable.

The modeling and estimation were done for totals and for different forest classes (coniferous,
mixed-coniferous, and deciduous) separately, meaning that deciduous and coniferous forest classes
had different models. In the case of forest class-based modeling, all models except East area models
3 and 4, had different models for each forest class (coniferous, mixed-coniferous, and deciduous).
East area models 3 and 4 were mainly coniferous, and therefore, forest class-specific models were not
possible to estimate. The modeling was executed in the statistical program “R”, and in ArcMap 10.0
with the ArboLIDAR toolbox developed by Arbonaut Ltd., Finland [23]. Results were calculated for a
grid with a cell size of 0.81 ha (90 × 90 m), which is 3 × 3 Landsat pixels, and corresponded close to
the average size of the field sample plot.
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The list of satellite image features derived from remote sensing data used as candidate covariates
in SBR and their description is presented in Appendix A. Features such as the mean and standard
deviation of band values were calculated from Landsat 8 OLI bands 2–6. Features based on NDVI
images were calculated from both leaf-on and leaf-off images. NDVI images were used for calculating
14 Haralick textural features to capture the textural variation of images [40].

2.7. Accuracy Assessment

The accuracy assessment of volume and basal area estimations was conducted with plot-level
leave-one-plot-out validation, and additionally at the compartment level for each respective modeling
area (see Figure 7).

There were no independent reference data for compartment-level estimates. In the distribution
of forest variables, there is very often a significant spatial correlation [41]. Although the field plots
in each cluster were not necessarily inside the same stand, we can expect that forest variables tend
to be more similar when they are spatially closer together. We merged the field plots in clusters, and
compartment-level accuracies were calculated by comparing the estimated and field measurements
values at the cluster level. The clusters had on average, an area of around 3 ha, and this emulates the
size of an average compartment.

An accuracy assessment was performed using the root mean square error (RMSE), which shows
the probability of an estimate to deviate from the observed (measured) value (Equation (1)):

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
, (1)

and relative RMSE (Equation (2)):

RMSE% =
100 ∗ RMSE

y
, (2)

where ŷi is an estimated value for the variable y in sample plot i, yi is a measured value for the variable
y in sample plot i, y is an average of the measured variables y, and n is the number of field sample plots.

Simultaneously, bias—the difference of the predicted mean and the measured mean, which
indicates a systematic error in the estimation, was calculated using Equation (3):

Bias = ∑n
i=1(ŷi − yi)

n
, (3)

and relative bias with Equation (4):

Bias% =
100 ∗ Bias

y
. (4)

The accuracy assessment of land use classification was done using separate random sample plot
data with N randomly sampled plots. From the original sample, the plots with sufficient reference
imagery were used in the accuracy assessment process only. Each sample plot was given a land use
class from the land use classification map, based on the 30 × 30 m map cell that the sample point fell in.
The correct class was then given to each point visually. Accuracies were calculated for all nine classes
found from the project area, for forest classes only, and for forest–non-forest classification.



Remote Sens. 2018, 10, 1796 14 of 22

Overall accuracy (OA) and Cohen’s Kappa coefficient (Kappa) were calculated from the error
matrix to express the accuracy of the land use classification (Equation (5)):

OA =
Ncorrect

N
, (5)

and (Equation (6)):

Kappa =
po − pe

1 − pe
, (6)

where Ncorrect is the number of correct observations, N is the total number of observations, p0 is the
relative number of correct observations, and pe is the relative number of correct observations that
would be expected by the relative frequency of each class. Kappa value can range from −1 to 1.
A Kappa value of 1 implies complete agreement, and Kappa values of less than 0.4 imply a less than
moderate agreement.

3. Results

Plot-level validation results show low and relatively similar RMSE and bias values for total value
estimates in all modeling areas (Table 3). Also, forest class-based estimates show similar accuracy levels
in terms of relative RMSE (Tables 4–6). However, absolute RMSE values indicate that the estimation
error for the deciduous forest class is smaller in the South area than in other modeling areas. Based on
field plot data, the South area is dominated by the deciduous forest class, whereas in other areas,
coniferous and mixed coniferous classes represent the majority of forests.

Table 3. Summary of plot-level validation results (total values). RMSE = root mean square error,
RMSE% = error relative to mean value of plots, n = number of plots used in validation.

Modeling
Area/Model

n Basal Area, m2 ha−1 Volume, m3 ha−1

RMSE RMSE% Bias Bias% RMSE RMSE% Bias Bias%

South 210 4.1 20.3 −0.3 −1.3 39.2 23.6 −1.2 −0.7
West 110 4.3 18.0 0.1 0.3 40.3 20.6 2.4 1.2

Southwest 176 4.3 19.0 0.6 2.5 42.6 22.8 6.1 3.3
East, model 1 1 155 4.6 17.2 0.9 3.2 42.2 18.9 10.7 4.8
East, model 2 2 155 4.6 17.5 0.7 2.5 43.5 19.5 8.1 3.6
East, model 3 3 16 3.8 16.0 1.4 4.6 34.5 16.8 3.7 1.8
East, model 4 4 16 4.3 18.2 −0.3 −1.1 40.0 19.5 −0.2 −0.1

1 Model with leaf-on and leaf-off images. 2 Model with leaf-on images. 3 Model with leaf-on and leaf-off images in
shadow area. 4 Model with leaf-on images in shadow area.

Table 4. Summary of plot-level validation results in the coniferous forest class. RMSE = root mean
square error, RMSE% = error relative to mean value of plots, n = number of plots used in validation.

Modeling
Area/Model

n Basal Area, m2 ha−1 Volume, m3 ha−1

RMSE RMSE% Bias Bias% RMSE RMSE% Bias Bias%

South 21 5.1 17.3 −0.8 −2.7 48.2 19.3 −4.7 −1.9
West 39 4.6 19.5 −0.7 −2.9 43.0 22.9 −3.3 −1.8

Southwest 47 4.5 18.2 −0.8 −3.2 41.7 20.6 −3.0 −1.5
East, model 1 1 26 3.2 12.1 −0.0 −0.1 32.8 14.2 −1.8 −0.8
East, model 2 2 26 3.1 11.8 0.0 0.1 32.4 14.0 −2.4 −1.0

1 Model with leaf-on and leaf-off images. 2 Model with leaf-on images.
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Table 5. Summary of plot-level validation results in the mixed coniferous forest class. RMSE =
root mean square error, RMSE% = error relative to mean value of plots, n = number of plots used
in validation.

Modeling
Area/Model

n Basal Area, m2 ha−1 Volume, m3 ha−1

RMSE RMSE% Bias Bias% RMSE RMSE% Bias Bias%

South 59 4.9 20.6 −0.7 −2.8 48.6 25.2 −4.6 −2.4
West 66 4.1 16.5 0.4 1.8 36.8 18.2 5.3 2.6

Southwest 84 4.6 18.9 1.3 5.2 46.7 23.2 12.2 6.0
East, model 1 1 91 4.5 17.0 0.9 3.5 42.8 18.8 13.4 5.9
East, model 2 2 91 4.6 17.5 0.6 2.2 42.6 18.8 8.7 3.8

1 Model with leaf-on and leaf-off images. 2 Model with leaf-on images.

Table 6. Summary of plot-level validation results in the deciduous forest class. RMSE = root mean
square error, RMSE% = error relative to mean value of plots, n = number of plots used in validation.

Modeling
Area/Model

n Basal Area, m2 ha−1 Volume, m3 ha−1

RMSE RMSE% Bias Bias% RMSE RMSE% Bias Bias%

South 130 3.5 20.4 0.0 0.0 32.2 23.0 0.9 0.6
West 5 5.5 24.9 1.2 5.3 59.3 35.0 8.9 5.2

Southwest 45 3.5 20.0 0.7 3.8 34.8 24.5 4.3 3.0
East, model 1 1 38 5.5 20.2 1.3 4.9 46.5 22.1 12.6 6.0
East, model 2 2 38 5.5 20.2 1.3 4.9 51.6 24.6 13.9 6.6

1 Model with leaf-on and leaf-off images. 2 Model with leaf-on images.

Satellite features from leaf-on images were selected in all models, except the South area, with the
mixed coniferous model (Appendix A). Features from leaf-off images were selected in 11/13 models
for which Landsat 8 OLI images from both seasons were available. The features were not selected in
the West area coniferous and southwest mixed coniferous models.

Coefficients of determination (R2) for timber volume vary between 0.55–0.13, 0.65–0.012, and
0.53–0.22 for coniferous, deciduous, and mixed coniferous classes, respectively. The highest R2

values were in the South area, with the highest number of field plots. The lowest values were in the
mountainous East area. The scatter plot in Figure 8 presents the measured field plot values against the
estimated values in forest class-based estimation.

Remote Sens. 2018, 10, x FOR PEER REVIEW  16 of 22 

 

 
Figure 8. Scatter plot of field-measured and estimated mean volume at plot level. 

On the compartment level, the validation demonstrated smaller RMSE values than on the plot 
level (Table 7). 

The maximum likelihood classification of different land use classes resulted in an overall 
accuracy of 66.2% and a Kappa coefficient of 0.55, which indicates moderate agreement with ground 
truth classes (Table 8). Classification results between forest and non-forest classes were slightly better, 
yielding an overall accuracy of 90.3% and a Kappa coefficient 0.66, which indicates a good agreement 
with ground truth classes. Results between three forest classes were 71.6% for overall accuracy and 
0.56 for the Kappa coefficient, indicating moderate agreement with the ground truth. 

Table 7. Summary of compartment-level validation results. RMSE = root mean square error, RMSE% 
= error relative to mean value of compartments, n = number of plots used in validation. 

Modeling Area n 
Basal Area, m2 ha−1 Volume, m3 ha−1 

RMSE RMSE% Bias Bias% RMSE RMSE% Bias Bias% 
South 56 2.7 13.4 0.6 2.9 24.4 14.8 5.9 3.6 
West 32 3.2 13.3 0.4 1.8 24.9 13.1 3.3 1.7 

Southwest 80 3.9 17.7 0.8 3.7 36.3 20.3 6.6 3.7 
East 43 2.4 9.3 0.6 2.3 22.4 10.1 7.1 3.2 

Table 8. Land use/land cover error matrix for maximum likelihood classification. Reference values in 
horizontal and mapped values in vertical. 

Land 
Use/Land 

Cover Class 
Conifer 

Mixed 
Conifer 

Deciduous 
Swamp 
Grass 

Harvested Regrowth 
OPEN 
LAND 

Water 
Burnt 
Area 

Conifer 26 15 0 1 0 0 0 0 0 
Mixed conifer 13 51 5 1 0 0 1 0 0 

Deciduous 0 13 39 0 0 0 1 0 0 
Swamp grass 0 0 0 7 0 0 0 0 0 

Harvested 0 0 1 0 0 0 0 0 1 
Regrowth 0 1 2 0 0 5 0 0 0 
Open land 4 1 1 0 0 0 4 0 0 

Figure 8. Scatter plot of field-measured and estimated mean volume at plot level.



Remote Sens. 2018, 10, 1796 16 of 22

On the compartment level, the validation demonstrated smaller RMSE values than on the plot
level (Table 7).

The maximum likelihood classification of different land use classes resulted in an overall accuracy
of 66.2% and a Kappa coefficient of 0.55, which indicates moderate agreement with ground truth classes
(Table 8). Classification results between forest and non-forest classes were slightly better, yielding an
overall accuracy of 90.3% and a Kappa coefficient 0.66, which indicates a good agreement with ground
truth classes. Results between three forest classes were 71.6% for overall accuracy and 0.56 for the
Kappa coefficient, indicating moderate agreement with the ground truth.

Table 7. Summary of compartment-level validation results. RMSE = root mean square error, RMSE% =
error relative to mean value of compartments, n = number of plots used in validation.

Modeling
Area

n Basal Area, m2 ha−1 Volume, m3 ha−1

RMSE RMSE% Bias Bias% RMSE RMSE% Bias Bias%

South 56 2.7 13.4 0.6 2.9 24.4 14.8 5.9 3.6
West 32 3.2 13.3 0.4 1.8 24.9 13.1 3.3 1.7

Southwest 80 3.9 17.7 0.8 3.7 36.3 20.3 6.6 3.7
East 43 2.4 9.3 0.6 2.3 22.4 10.1 7.1 3.2

Table 8. Land use/land cover error matrix for maximum likelihood classification. Reference values in
horizontal and mapped values in vertical.

Land
Use/Land

Cover Class
Conifer Mixed

Conifer Deciduous Swamp
Grass Harvested Regrowth OPEN

LAND Water Burnt
Area

Conifer 26 15 0 1 0 0 0 0 0
Mixed conifer 13 51 5 1 0 0 1 0 0

Deciduous 0 13 39 0 0 0 1 0 0
Swamp grass 0 0 0 7 0 0 0 0 0

Harvested 0 0 1 0 0 0 0 0 1
Regrowth 0 1 2 0 0 5 0 0 0
Open land 4 1 1 0 0 0 4 0 0

Water 0 0 0 0 0 0 0 1 0
Burnt area 3 1 2 0 0 3 0 0 4

4. Discussion

Satellite imagery-based forest inventories have been studied extensively and used for forest
inventories all over the world for several decades. The camera relascope field measurement technique
in turn has already been in use for some years as a forest inventory tool, e.g., at pre-harvesting
inventory, measuring at specific forest compartments, and at other small- or medium-sized forest
inventories [42]. The concept of using a camera relascope for measuring field reference plots in
satellite-based inventory was introduced few years ago (also [16]). This research is unique in the
sense that the data was acquired in a real operational large-scale forest inventory (ca. 2.6 million ha)
conducted for industrial purposes. Also, it is the first study where camera relascope measurements
based on automatic image interpretation are used in combination with satellite-based forest inventory.

Nevertheless, when it comes to similar studies in boreal forests, the results of such studies
concerned with satellite imagery-based forest inventories over large areas have shown quite large
variations in prediction accuracy, depending on the mean compartment size, study area, field reference
data, and satellite data used. For example, [43] achieved an RMSE of 36% at the compartment level
when using national forest inventory field reference plots and medium-resolution satellite data with
rather large average compartment sizes (19 ha) in Sweden. Ref [44] reported a RMSE of 48% for
the compartment-level total mean volume by using Landsat TM images with compartment-level
field inventory data as the reference data in Finland. Ref [45] used Landsat ETM+ and field sample
plots in Alberta, Canada to estimate above-ground biomass and volume. The plot level RMSE in the
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modeling data was 40% when the volume was estimated using forest structural parameters (height
and crown closure estimates), and 59% when direct estimation was used. The reported R2 values,
0.71 and 0.30 for estimation through forest structural parameters and direct estimation, respectively,
were significantly high [45]. Unfortunately, compartment-level RMSEs were not reported. As [46]
points out in a discussion paper, the relative RMSE tends to decrease, when the reference area size
increases. According to [46], the RMSE of the total volume in satellite-based forest inventories has
been between 40% and 60% at typical Finnish compartment levels (average compartment size 1–2 ha).
More recent studies applying Sentinel-2 satellite images in the estimation of total volume have reported
promising accuracies, although in small study areas. Research carried out in Norway in forest areas
dominated by coniferous forests reported a relative RMSE of 30.1% and a R2 of 0.48 when using
field plots measured using traditional field methods [47]. In the same study, training plots based on
analyzing point cloud data from an unmanned aerial vehicle resulted in a relative RMSE of 37.5% and
a R2 of 0.30. The study was carried out in a small research area of 7330 ha, and field data comprised
33 plots of size 500 m2. Similar results were reported in research done in Eastern Poland from a study
area of 7800 ha dominated by Scots pine [1]. Studies reported a relative RMSE for a volume of 35.1%
and a R2 of 0.24. The number of field plots were 94, and the size of the plot was 400 m2. In that respect,
the results of the present study, with RMSE being reported for both the plot level and the compartment
level (with mean size of approximately 3 ha) in all major parts of the AOI (South, West and East) under
25%, have shown that they compare well to previous satellite-based forest inventories in coniferous
forests of the boreal zone.

It is important to have a good spatial match between the field reference data and the corresponding
satellite features. Ref [45] presented a somewhat similar method to our study in improving the match
between the field reference data and satellite image features. They used automatic segmentation to
remove the spectrally uncharacteristic pixels from the 3 by 3 pixel window surrounding the field
plot. In their case, the field plot size was only about half of the image pixel size. However, the
segmentation improved the correlations between the image features, and the field measurements
consistently compared with the full 3 by 3-pixel window. We used manual segmentation to delineate
the plot and camera relascope to measure the sample plots. The camera relascope approach made it
possible to measure larger reference plots, and not only one sample plot inside the segment, compared
to manual field measurement methods with the given budget. However, it would have been interesting
to compare the results between the manually measured smaller samples plot and camera relascope
plots with the use of the segmentation method. This was unfortunately not possible, due to the budget
limitations in our field campaign. Ref [20] reported RMSEs of 19.7 to 29.7% for the plot level (plot
size 32 by 32 m) basal area when comparing Trestima measurements with accurate manual field
measurements. The most accurate results were achieved when the images were taken toward plot
center. In [20], the increase from four images per plot to eight images per plot improved the results only
marginally. The mean diameter and height were measured more accurately: 5.2–11.6 and 10.0–13.6 for
mean diameter and height, respectively, depending on the tree species [20]. We measured larger plots
in different conditions so that the results from [20] are only directive for the measurement accuracy for
our study.

Our results strengthen the findings of earlier studies concerning the suitability of camera relascope
data in satellite-based forest inventory. Ref [16] reported a RMSE of 29.7% for the basal area when
comparing basal area measured with a Relasphone application and accurate field measurements in a
small study area in Finland. The plot size in their data was between 0.2 and 1.0 ha, and on average,
two Relasphone sample plots were measured in each plot. In the same study, the RMSE of the basal
area in a test carried out in Durango, Mexico, was 17.2% and 18.0% for two observers. The reference
plot size was 0.25 ha. Furthermore, the field plot data measured in Durango with a Relasphone was
used as training data in a Landsat 8-based mean volume model. The standard error of the model
estimate was 34% of the mean measured stem volumes [16]. The reported RMSEs in [16] cannot be
used as a reference for the accuracy of our study; the Relasphone application uses a different sampling
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technique, and field plot size used was smaller. Despite the challenges in comparing the results of
different studies, applying a camera relascope in measuring field training plots for satellite-based
forest inventory seems to produce estimation accuracies that are comparable with methods applying
manual field measurement methods for the same purpose, i.e., estimating the volume in boreal forests.

Applying multi-seasonal satellite data proved to be useful. Satellite features from Landsat 8
OLI images of both seasons were selected for almost every model. This indicates that multi-seasonal
satellite images have more information than the imagery from one season in the context of the forest
inventory. Thus, when applicable, it is recommended to search for multi-seasonal imagery, and to test
case-by-case if leaf-on, leaf-off or a combination of these produced the best results.

The presented concept and methodology was very promising for being used in large areas of
satellite-based forest inventory and mapping projects. Future research and testing were still needed to
validate the methodology against other field measurement techniques, and to fine tune the optimal
plot type and image sample design. Also, the applicability in more challenging environments with
more heterogenous forest structures and a wider variety of species should be tested.

5. Conclusions

The results obtained in this research effort demonstrated that it was possible to attain useful
and accurate forest estimation results, and to produce the corresponding forest maps for planning
the use of forest resources, applying a combination of camera relascope field measurements and
medium-resolution satellite imagery in inaccessible northern boreal forests. Using the camera relascope
in measuring the training data allowed for measuring substantially larger field plots, compared to
manual field measuring methods. The achieved compartment level accuracy (average compartment
size 3 ha) was 11.8–24.9% and 14.0–35.0%, in terms of RMSE, relative to the measured mean value for
the basal area and mean volume, respectively. These can be considered as good results compared to
satellite-based forest inventory studies in general. The method needs further testing and validation in
finding the optimal field plot type, including the size of the field plot and the number of mobile phone
images per plot. Also, manual field measurements should be carried out in the same study area to
compare the accuracy and efficiency of different field measurement methods more carefully.
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Appendix A

Table A1. List of satellite image features used for respective areas and forest types. D = deciduous,
M = mixed coniferous, C = coniferous, S = shadow.

Feature
South West Southwest East Leaf-On East Leaf-On and

Leaf-Of

D M C D M C D M C D M C S D M C S

Lon_B2_MEAN x x x x

Lon_B2_SD x x x

Lon_B3_MEAN x x x x x x x x

Lon_B3_SD x x x x

Lon_B4_MEAN x x

Lon_B4_SD x x

Lon_B5_MEAN x x x x x

Lon_B6_MEAN x

Lon_B6_SD x

Loff_B2_SD x

Loff_B3_MEAN x x x x x x

Loff_B3_SD x

Loff_B4_MEAN x

Loff_B5_MEAN x x x x x x

Loff_B5_SD x x x

LOff_B6_MEAN x x

Loff_B6_SD x x

NDVI_On_HR_01 x x

NDVI_On_HR_03 x

NDVI_On_HR_04 x

NDVI_On_HR_05 x x x

NDVI_On_HR_07 x

NDVI_On_HR_09 x

NDVI_On_HR_10 x

NDVI_On_HR_11

NDVI_On_L8_SD x

NDVI_Off_HR_01 x

NDVI_Off_HR_03 x x

NDVI_Off_HR_05 x

NDVI_Off_HR_06 x

NDVI_Off_HR_10 x

NDVI_Off_HR_12 x

NDVI_Off_HR_13 x

NDVI_Off_HR_14 x

NDVI_OffL8_MEAN x

Loff_B4_SDˆ0.4 x

LOff_B5_SDˆ0.2 x

LOn_B2_MEAN/
Lon_B3_MEAN x
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Table A2. Description of the satellite features.

## Feature Description

1 Lon_BX_MEAN Mean value of band x from Leaf-on Landsat 8 OLI image
2 Lon_BX_SD Standard deviation of band x from leaf-on Landsat 8 OLI image
3 Loff_BX_MEAN Mean value of band x from Leaf-off Landsat 8 OLI image
4 Loff_BX_SD Standard deviation of band x from leaf-off Landsat 8 OLI image
5 NDVI_On/Off_HR_01 Angular second moment from leaf-on/leaf-off NDVI image
6 NDVI_On/Off_HR_02 Contrast from leaf-on/leaf-off NDVI image
7 NDVI_On/Off_HR_03 Correlation from leaf-on/leaf-off NDVI image
8 NDVI_On/Off_HR_04 Sum of squares from leaf-on/leaf-off NDVI image
9 NDVI_On/Off_HR_05 Inverse difference moment from leaf-on/leaf-off NDVI image
10 NDVI_On/Off_HR_06 Sum average from leaf-on/leaf-off NDVI image
11 NDVI_On/Off_HR_07 Sum variance from leaf-on/leaf-off NDVI image
12 NDVI_On/Off_HR_08 Sum entropy from leaf-on/leaf-off NDVI image
13 NDVI_On/Off_HR_09 Entropy from leaf-on/leaf-off NDVI image
14 NDVI_On/Off_HR_10 Difference variance from leaf-on/leaf-off NDVI image
15 NDVI_On/Off_HR_11 Difference Entropy from leaf-on/leaf-off NDVI image
16 NDVI_On/Off_HR_12 Information Measure of correlation
17 NDVI_On/Off_HR_13 Information Measure of correlation
18 NDVI_On/Off_HR_14 Maximal correlation Coefficient
19 NDVI_On/OffL8_MEAN Mean of Leaf-on/Leaf-off NDVI indexes
20 NDVI_On/OffL8_SD Standard deviation of Leaf-on/Leaf-off NDVI indexes
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