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Abstract: Space missions are facing disruptive innovation since the appearance of small, lightweight,
and low-cost satellites (e.g., CubeSats). The use of commercial devices and their limitations
in cost usually entail a decrease in available on-board computing power. To face this change,
the on-board processing paradigm is advancing towards the clustering of satellites, and moving to
distributed and collaborative schemes in order to maintain acceptable performance levels in complex
applications such as hyperspectral image processing. In this scenario, hybrid hardware/software and
reconfigurable computing have appeared as key enabling technologies, even though they increase
complexity in both design and run time. In this paper, the ARTICo3 framework, which abstracts
and eases the design and run-time management of hardware-accelerated systems, has been used
to deploy a networked implementation of the Fast UNmixing (FUN) algorithm, which performs
linear unmixing of hyperspectral images in a small cluster of reconfigurable computing devices
that emulates a distributed on-board processing scenario. Algorithmic modifications have been
proposed to enable data-level parallelism and foster scalability in two ways: on the one hand, in the
number of accelerators per reconfigurable device; on the other hand, in the number of network
nodes. Experimental results motivate the use of ARTICo3-enabled systems for on-board processing
in applications traditionally addressed by high-performance on-Earth computation. Results also
show that the proposed implementation may be better, for certain configurations, than an equivalent
software-based solution in both performance and energy efficiency, achieving great scalability that is
only limited by communication bandwidth.

Keywords: hyperspectral imaging; linear unmixing; FPGAs; on-board processing; ARTICo3

1. Introduction

Hyperspectral imaging technology has been used in a wide range of applications in the field
of Earth observation, such as vegetation control, precision agriculture, or urban surveillance [1].
The continuous evolution of this technology is building a promising future and bringing the dawn
of new potential applications (e.g., future healthcare systems [2]). However, hyperspectral image
processing poses several challenges in terms of computing requirements and algorithm development,
especially when taking into account the need for increased spatial and temporal resolution in
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hyperspectral sensors. In fact, the traditional approach relies on the use of High-Performance
Computing (HPC) infrastructures to satisfy the required performance levels [3].

Hence, on-Earth processing has been the mainstream solution for remote-sensing applications
that use hyperspectral images, relying on supercomputing systems typically based on GPUs [4],
CPUs [5], heterogeneous CPU/GPU architectures [6], or even FPGAs [7]. In this scenario, on-board
data compression techniques are used to minimize the overhead of data transmissions between sensors
and processing facilities. These hyperspectral image compressors are usually implemented in large
and computationally powerful FPGAs due to the combination of flexibility and reliability that these
devices offer [8,9].

Nevertheless, the on-board sensing and processing paradigm has changed in the past few
years [10]. The appearance of SmallSats, and more specifically CubeSats, has fostered the emergence of
missions that target low-cost, -size, and -weight satellites and components. As a result, the overall
price of spatial missions has decreased significantly, enabling the possibility of launching dozens of
satellites in a single deployment. This approach was first envisioned for educational purposes and
low-cost technology demonstrations, due to the satellites being limited in size (10 × 10 × 10 cm3) and
power consumption (a few watts). This, in turn, allowed the deployment of low-cost Commercial
Off-The-Shelf (COTS) devices to evaluate their feasibility within space applications [11].

Although limited at the beginning, new research lines have boosted the computing capabilities
of CubeSat systems. An example can be found in satellite clustering [12], which is an attempt to
provide comparable or even greater performance than before [13]. In fact, this approach offers new
opportunities beyond the use of CubeSats as educational tools for low-cost science applications,
creating an ecosystem for forthcoming paradigm shifts in space applications. In this scenario, on-board
processing on the edge may see significant improvements, avoiding time-consuming data transmissions
from satellite to on-Earth processing facilities and thus increasing temporal resolution. However,
computing performance is not the only constraint, since severe restrictions in the available power
budget make energy efficiency another key factor to take into account when evaluating platforms and
applications for this kind of space missions [14].

Taking into account these restrictions, many devices have been evaluated [15], envisioning
hybrid and reconfigurable computing systems as the target fabrics. Moreover, the combination of
software- and hardware-based processing in a single board or even in a single device is hinted
as the optimal choice. In this regard, Systems on Programmable Chip (SoPCs) can be used, since
they provide multicore processing capabilities tightly coupled with dedicated hardware accelerators
in an FPGA fabric. Furthermore, Dynamic and Partial Reconfiguration (DPR) capabilities can be
exploited to provide not only functional adaptation, but also fault tolerance in the reconfigurable
fabric [16,17]. However, the use of DPR at run time to search for an adaptive working point trade-off
between performance, energy efficiency, and fault tolerance in low-cost COTS devices is something
not commonly found in the literature.

In this paper, a distributed and hardware-accelerated implementation of a linear unmixing
algorithm for on-board hyperspectral image processing is presented. Although hyperspectral image
unmixing is an application that has been following the classical execution flow (i.e., on-board
compression, and on-Earth decompression and processing), the use of a small and low-cost computing
cluster with SoPC-based nodes, emulating real satellite deployment, provides a competitive alternative
for distributed edge computing on CubeSats. Each node uses the ARTICo3 architecture [18],
a hardware-based processing architecture for high-performance embedded systems, and its DPR
infrastructure to support user-driven run-time adaptation of computing performance, energy
consumption and fault tolerance. In addition, the ARTICo3 toolchain has been used to automate
the implementation of the mixed hardware/software system, leveraging High-Level Synthesis (HLS)
engines, and thus rendering low development times, a key factor in CubeSat deployments. As entry
point for the design flow, a high-level description of the Fast UNmixing (FUN) algorithm [19] in C
code has been modified to fully exploit data-level parallelism and enable a two-way scalable execution
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pattern: on the one hand, in the number of ARTICo3 accelerators per computing node; on the other
hand, in the number of SoPC-based nodes involved in the processing stage. Although the data-parallel
extension of the FUN algorithm has been implemented and evaluated using the ARTICo3 architecture,
it is platform-agnostic and, thus, it can be deployed on any computing platform as long as the
parallelism holds. Moreover, the proposed block-based partitioning scheme can provide enhanced
fault tolerance to the final implementation, making it possible to extract nearly all endmembers from
an input dataset even if the data associated to one of the blocks get corrupted (e.g., due to radiation
in space).

In summary, the main contributions of this paper are:

• A data-parallel linear unmixing algorithm for on-board hyperspectral image processing based on
the FUN algorithm (originally conceived for on-Earth processing).

• A low-cost, networked, and hardware-accelerated implementation of that algorithm with two
scalability levels and run-time adaptation capabilities in terms of computing performance and
energy efficiency.

The rest of this paper is organized as follows. Section 2 presents an overview of the related work.
The FUN algorithm and the ARTICo3 framework, which constitute the technological foundations of the
presented work, are presented on Section 3. Section 4 gives an overview of the implementation details,
including algorithmic modifications, hardware-optimization techniques, and network-distribution
approaches. Section 5 shows the experimental validation and the obtained results, and Section 6
provides the conclusions and future work.

2. Related Work

This section is divided into two subsections. The first addresses the importance and continuous
development in unmixing algorithms for hyperspectral images, whereas the second addresses the
recent tendency for on-board processing based on distributed and scalable systems.

2.1. Unmixing of Hyperspectral Images

High spectral resolution in hyperspectral images makes it possible to identify materials by
analyzing the spectral signatures of each pixel. This analysis can be compromised if there is not enough
spatial resolution, a problem typically found in airborne and low-cost sensors. Hence, the spectral
unmixing of the pixels has proven to be necessary to address the aforementioned problem [20].

In remote-sensing scenarios, hyperspectral unmixing has been traditionally done in Earth facilities
after compression/decompression on the satellite link. In order to achieve real-time execution
performance, and due to high computational loads, High-Performance Computing systems are
commonly used [21,22]. In particular, CPUs, GPUs or CPU/GPU architectures have been used
in most solutions. For instance, a real-time implementation of endmember extraction was reported in
Reference [23], and, although part of the unmixing chain (i.e., abundance calculation) was not present, it
marked the path to follow. One year later, the same group presented the first real-time implementation
of the complete unmixing chain, using only one GPU and combining different algorithms for each
part of the chain [24]. However, one of the weak points of the proposed implementation was the
accuracy of the endmember extraction stage. In Reference [19], a new linear unmixing algorithm that
provided better accuracy and performance results than state-of-the-art alternatives was proposed.
Optimized implementations of the algorithm were presented in Reference [25] for GPUs and
Reference [26] for FPGAs. However, none of these implementations considers on-board processing.

In fact, the concept of on-board processing of hyperspectral images usually refers to data
compression on the edge. In this context, where flexibility and reliability become as important
as real-time execution, FPGAs have been the most-used devices. Many theoretical approaches have
proposed different compression algorithms, but their evaluation is not done on space-compliant
devices [27,28]. Hence, no experimental data or performance metrics under space constraints can be
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found in those works. However, it is also possible to find solutions throughout the literature using
GPUs or FPGAs showing potential real-time results [8,9,29–31].

In this work, as opposed to other state-of-the-art solutions, the data-parallel and scalable approach
of the modified FUN algorithm enables the implementation on a multi-SoPC cluster. As such, the
cluster emulates a satellite constellation, where the hyperspectral linear unmixing is done on the edge
(avoiding the downlink transmission overhead).

2.2. Distributed On-Board Processing

In the last few years, on-board processing has become a remarkable research trend, mainly
motivated by the limited bandwidth of the communication links between satellites and Earth facilities.
In parallel, the search for highly efficient and fast solutions for edge processing has also been a hot
spot in the field. Activities combining both research lines can be found in the literature. For instance,
a high-efficiency system based on Zynq SoPC devices for hyperspectral image classification was
presented in Reference [32]. Other on-board application scenarios have covered Synthetic Aperture
RADAR (SAR) image processing [33,34] or Support Vector Machines (SVM) for cloud detection [35].

The appearance of CubeSats can be also considered a major breakthrough in the field. The fact that
these devices are usually low-cost, and therefore limited in performance, has encouraged the research
around Space Information Networking (SIN), where on-board processing in satellite applications is
enhanced by the clustering of satellites [12]. With this approach, satellites operate as nodes of the same
network, sharing resources in a distributed-computing approach.

One of the main challenges in this type of solutions is to achieve scalable behavior when adding
more processing nodes to the system. In this regard, communications play an important role, since
their overheads may not be negligible. Different satellite network architectures have been proposed
taking into account efficiency and flexibility regarding new technologies, rendering overheads in the
order of nanoseconds [36,37]. Moreover, satellite communications have been also envisioned for FPGA
usage [38], being flexibility, reconfigurability and reliability the main parameters assessed.

Going back to the on-board processing capabilities of CubeSats, the use of hybrid and
reconfigurable computing has been found the most suitable, especially when taking into account
factors such as power consumption, price, reliability, and flexibility. In the literature, it is possible
to find many research works related to on-board processing in SmallSats, with applications ranging
in a wide spectrum that covers, for instance, signal processing for interferometric satellites using
FPGAs [39], or machine learning for image processing on a Xilinx FPGA [40]. Nevertheless, there is
still a need for scalable execution in satellite clusters.

With regard to alternative state-of-the-art solutions, the proposed implementation provides not
only low cost, reduced energy consumption, and flexibility, but also scalability at both the device and
node level. These features are required for the distributed on-board processing scenario, and have
been enhanced by using the ARTICo3 architecture, which provides a run-time adaptable working
point trading off between energy consumption, performance, and fault tolerance.

3. Technology Background

In this section, descriptions of both the linear unmixing algorithm and the hardware-based
processing architecture used in this work are presented.

3.1. FUN

Linear unmixing is a key processing technique for hyperspectral images. It assumes that the effect
of secondary reflections and scattering effects are negligible and, thus, each pixel in the image can
be represented as a linear combination of a subset of elements whose spectrum is considered pure.
These elements are called endmembers, and their presence in each pixel of the image is weighted
by the so-called abundances. The main purpose of linear unmixing algorithms is to obtain both the
endmembers and their abundances from a hyperspectral image.
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The Fast UNmixing (FUN) algorithm [19] allows the simultaneous estimation of the number of
endmembers and endmember extraction. The FUN algorithm selects the first endmember as the pixel of
the hyperspectral image with the largest orthogonal projection to the centroid pixel. The centroid pixel
is an artificial pixel that averages all the information present in the image. Afterwards, it sequentially
performs orthogonal projections of the hyperspectral image in the direction spanned by the last
extracted endmembers. This process is performed in such a way that information of the hyperspectral
image that can be represented by the already-extracted endmembers is subtracted from the image, and
the pixel with more remaining information is selected as the next endmember. After selecting each
endmember, the FUN algorithm estimates the percentage of information that cannot be represented
with the already selected endmembers using stop factor s. If the value obtained is smaller than input
threshold α, the algorithm finishes, thus obtaining the total number of endmembers present in the
image plus the extracted endmembers.

The orthogonal projections of the hyperspectral image can be obtained using different methods.
The FUN algorithm employs a modified version of the Gram–Schmidt method, which features low
computational complexity and allows the reuse of previously computed information, speeding up the
overall process, without using too-complex matrix calculations.

The FUN algorithm, as other geometrical approaches to hyperspectral unmixing (e.g., OSP [41],
N-FINDR [42], VCA [43]), selects highly characteristic pixels as endmembers. In the presence of
outliers, the set of extracted endmembers would contain actual endmembers (the algorithm would still
find them) and, most probably, the outliers. Although this situation can be avoided when processing
data in ground facilities (e.g., through direct supervision made by an expert), it becomes a critical issue
to be addressed in on-board processing scenarios. In this context, a preprocessing stage is required to
remove the outliers from input hyperspectral data (e.g., by using filtering or interpolation). In the rest
of this paper, it is assumed that no outliers are present in the input datasets and, thus, no preprocessing
stage is required.

The pseudocode shown in Algorithm 1 describes the process followed by the FUN algorithm
to extract the endmembers. Lines 1 to 9 of this pseudocode correspond to the initialization of the
algorithm by selecting the first endmember, e1. In Line 12, the information of each pixel of the image
that can be represented by the last extracted endmember is subtracted from the image. Hence, xi
contains the information of the i-pixel that cannot be represented by the already-extracted endmembers.
The amount of information remaining in each pixel, si

2, is measured in Line 13. The pixel with the
maximum amount of remaining information is the next candidate to be endmember. The index of
this pixel, imax, is calculated in Line 15 of this pseudocode. After doing so, the amount of remaining
information in this pixel is used for evaluating the stopping condition, as described in Line 16. If the
amount of remaining information is high according to the stopping condition, and more endmembers
are required, the imax-pixel is selected as the next endmember (Lines 19 to 22) and the process is
repeated. Otherwise, the process finishes (Line 17). Please note that the stopping condition is the same
as the one presented in Reference [19], but implemented in a more computationally efficient way, as
proposed in Reference [25].

After extracting the endmembers, the FUN algorithm computes their abundances. This process
is done by generating an orthonormal set of vectors using the obtained endmembers as the starting
point. The pseudocode shown in Algorithm 2 describes the process followed by the FUN algorithm
to obtain the abundances. Gram–Schmidt orthogonalization is performed P times (lines 5 to 19) over
the endmembers, using a different order each time, to fill the U matrix (line 16). Abundances are then
computed by projecting the hyperspectral image using the orthonormalized vectors contained in U
(line 20). It is important to highlight that not only Algorithm 1 (as seen in the previous paragraph), but
also Algorithm 2 corresponds to the computationally efficient implementation of the FUN algorithm
presented in Reference [25]. In this implementation, several functions were optimized to reduce the
number of complex and time-consuming mathematical operations. For instance, the indexing of the
endmembers in Line 9 is simplified using a linear access (i.e., x ← ek+j−1) instead of using integer
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division, even though it slightly increases memory overhead by replicating endmember matrix E in
Line 1.

Algorithm 1 FUN algorithm: endmember extraction

Inputs:

M = [m1 . . . mpixels] . Input hyperspectral image

α . Stop factor

Outputs:

E = [e1 . . . eP] . Endmembers

P . Number of endmembers

1: X ← M; X = [x1 . . . xpixels] . Auxiliary copy of the hyperspectral image

2: E← [] . Endmembers matrix

3: Q← [] . Gram Schmidt orthogonalization of Endmembers

4: U ← [] . Gram Schmidt orthogonalization (normalized) of Endmembers

5: e1 ← xinit; E← [E e1] . Select first endmember according to initialization criteria

6: q1 ← e1; Q← [Q q1]

7: u1 ← e1/(e1 • e1); U ← [U u1]

8: P← 1

9: exit← 0

10: while exit = 0 do

11: for i← 1 to pixels do

12: xi ← xi − (xi • qP) · uP

13: s2
i ← xi • xi

14: end for

15: (s2
max, imax)← GETMAX(S2); S2 = [s2

1 . . . s2
pixels]

16: if s2
max · 1002 ≤ α2 · (mimax •mimax) then

17: exit← 1

18: else

19: P← P + 1

20: eP ← mimax ; E← [E eP]

21: qP ← ximax ; Q← [Q qP]

22: uP ← ximax /(ximax • ximax); U ← [U uP]

23: end if

24: end while
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Algorithm 2 FUN algorithm: abundances computation

Inputs:

M = [m1 . . . mpixels] . Input hyperspectral image

E = [e1 . . . eP] . Endmembers

P . Number of endmembers

Outputs:

A = [a1 . . . apixels] . Abundances

1: E← [E E]

2: Q← []

3: U ← []

4: U∗ ← []

5: for k← 2 to P + 1 do

6: q1 ← ek; Q← [Q q1]

7: u∗1 ← ek/(ek • ek); U∗ ← [U∗ u∗1 ]

8: for j← 2 to P do

9: x ← ek+j−1

10: for i← 1 to j− 1 do

11: x ← x− (x • qi) · u∗i
12: end for

13: qj ← x; Q← [Q qj]

14: u∗j ← x/(x • x); U∗ ← [U∗ u∗j ]

15: end for

16: U ← [U u∗P]

17: Q← []

18: U∗ ← []

19: end for

20: A← Ut ·M

3.2. ARTICo3

ARTICo3 [18] is a hardware-based high-performance embedded processing architecture that
enables user-driven adaptation at runtime, creating a dynamic solution space in which tradeoffs
between computing performance, energy consumption, and fault tolerance can be established.
The architecture relies on the use of Dynamic and Partial Reconfiguration (DPR) in Xilinx FPGAs
to provide software-like flexibility while maintaining hardware-like performance during execution.
The top-level block diagram of the ARTICo3 architecture is shown in Figure 1.

ARTICo3-based computing platforms work in a processor–coprocessor scheme, where the
application code is executed in the host microprocessor, and only those program sections that exhibit
significant levels of data parallelism (called kernels) are offloaded to the hardware accelerators.
This execution model, based on data independences between blocks, provides transparent scalability
in terms of computing performance when coupled with DPR-based hardware replication, since the
available number of processing elements (i.e., hardware accelerators) for a given kernel can be altered
on demand even during application execution. In addition, the architecture can benefit from module
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replication not only to increase computing performance (different blocks working on different data,
SIMD-like execution), but also to increase fault tolerance using DMR or TMR (different blocks working
on the same data, with an embedded voter unit to mask faults).

The ARTICo3 architecture is part of a framework that also includes a toolchain to transparently
generate dynamically reconfigurable systems from the descriptions of both hardware accelerators
and host application. The design-time support of the framework requires users to provide an already
partitioned hardware/software system, where host code is specified in C/C++ and kernels are specified
in low-level HDL (VHDL, Verilog) or C/C++ to be used with High-Level Synthesis (HLS) tools.
Using these elements as inputs, the toolchain automatically performs three tasks: instantiates the
user-defined kernel logic in a standard wrapper, generates the on-chip DMA-powered communication
infrastructure, and builds both hardware and software components to obtain the required binaries that
are used in the target platform.

From the programming point of view, user code interfaces with the accelerators using a runtime
library, which transparently handles (and thus, hides from the user) two complex processes: FPGA
reconfiguration, and parallel execution management. This is supported by the ARTICo3 programming
model, which is based on a reduced API to favor user-friendly reconfigurable computing.
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Figure 1. Top-level block diagram of the ARTICo3 architecture.

4. Implementation Details

As stated in previous sections, ARTICo3-based high-performance embedded computing relies
on user-driven application partitioning in sequential host code and data-parallel hardware kernels.
As a result, the first step that needs to be addressed is the profiling of the application in order
to identify and extract potential data-level parallelism. A sequential C-based and single-core
implementation of the original FUN algorithm has been developed and analyzed in a Zynq-7000
device. The obtained results can be seen in Table 1, and show that, among the two parts of the linear
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unmixing algorithm (i.e., endmember extraction and abundances computation), endmember extraction
is the most time-consuming (75%).

Table 1. FUN-based hyperspectral image unmixing: application profiling (Zynq-7000 ARM Cortex-A9
core @ 666.67 MHz).

Endmember Extraction Abundance Computation
Execution Time (ms) 1723.31 552.44

Execution Fraction (%) 75.4 24.6

Taking these results as starting point, it seems reasonable to focus on optimizing the endmember
extraction process. The rest of this section details the proposed modifications to the algorithm to exploit
data-level parallelism (as required by ARTICo3 itself), the design-time decisions made to balance
data precision, execution performance, and area overhead in the generated HLS-based hardware
accelerators (to fit in resource-constrained ARTICo3 slots and still provide accurate results), and the
extension from single-node to networked multi-FPGA solutions (to add a second level of scalability to
the hardware-accelerated deployment).

4.1. Parallelization Approach

The original FUN algorithm uses the full hyperspectral image to extract the underlying
endmembers. In the reference C code, this fact generates huge overheads in terms of processing
latency (clock cycles), since several operations are implemented as nested loops that depend on the size
of the input hyperspectral cube. Moreover, this dependency also imposes huge memory requirements
that, for large hyperspectral images, may result in nonfeasible hardware-accelerated solutions that do
not fit within the available FPGA resources.

In order to not only mitigate these problems, but also to enable data-level parallelism (and thus
potentially scalable execution), a reduction-based parallelization approach has been proposed for the
original algorithm, and it is one of the main contributions of this paper. First, the input hyperspectral
image is split in fixed-size hyperspectral subimages. The total number of subimages may change, since
it depends on the size of the input image. Then, the FUN algorithm is used independently in each
of those subimages to extract partial endmembers. An iterative process follows in which fixed-size
artificial hyperspectral subimages are made up from the pool of resulting partial endmembers, and the
FUN algorithm is used again to achieve dimensional reduction, up to the point where only one
fixed-size artificial subimage remains, and the actual endmembers are obtained. In summary, the main
idea of the proposed approach is to iteratively extract endmembers from the endmembers in the partial
subimages until all the actual ones have been found.

The pseudocode of the reduction-based FUN algorithm for endmember extraction can be seen
in Algorithm 3. Notice that, when the same endmembers are extracted in two consecutive rounds
(i.e., there is no dimensional reduction), the algorithm forces the generation of artificial subimage
blocks with double the size while keeping the maximum number of endmembers that have to be
extracted per block. This failsafe mechanism, which is meant to solve situations where the same
endmembers are present in two or more data-independent subimages, ensures no deadlocks occur
during the reduction process. Note also that, in any other situation and in order to avoid information
loss, the maximum number of endmembers that can be extracted from each subimage block during the
reduction process equals the number of pixels in that subimage. To better understand this, consider
a scenario where all endmembers are present in one of the initial subimages: the algorithm needs to
allow all these pixels to reach the final reduction round.
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Algorithm 3 Reduction-based FUN algorithm: endmember extraction

Inputs:

M = [m1 . . . mpixels] . Input hyperspectral image

Pmax . Maximum number of endmembers to extract

α . Stop factor

pixelsblock . Number of pixels per parallel block

Outputs:

E = [e1 . . . eP] . Endmembers

P . Number of endmembers

1: P← 0

2: [X1 ... XN ]← SPLIT(M, pixelsblock) . Divide input image in subimages

3: while N > 1 do . Repeat until there is only one subimage block remaining

4: E← []

5: for i← 1 to N do

6: Eaux ← ENDMEMBERS(Xi, pixelsblock, α) . Extract endmembers from subimage

7: E← [E Eaux] . Generate artificial image

8: end for

9: Paux ← SIZE(E)

10: if Paux = P then . Avoid deadlock (no dimensional reduction)

11: [X1 . . . XN ]← SPLIT(E, 2 · pixelsblock) . Divide artificial image in subimages

12: else

13: [X1 . . . XN ]← SPLIT(E, pixelsblock) . Divide artificial image in subimages

14: end if

15: P← Paux

16: end while

17: E← ENDMEMBERS(E, Pmax, α) . Extract actual endmembers

18: P← SIZE(E) . Get number of actual endmembers

The accuracy of the proposed algorithm has been evaluated in two scenarios: on the one
hand, using synthetic hyperspectral images (256 bands, 128 lines, 128 samples) with different noise
levels, number of endmembers, and abundance distributions (see Table 2); on the other hand, using
well-known real hyperspectral datasets [44] (see Table 3). In both scenarios, pixelsblock has been set to
32, which is the maximum number of pixels that can be stored in the local memory inside ARTICo3

accelerators. An experimental evaluation (see Table 4) shows that the impact of pixelsblock on the
extraction effectiveness is negligible when this parameter is large enough (i.e., when pixelsblock ≥ 16).
The distance between extracted and real endmembers has been measured using the spectral angle,
which can be calculated using Equation (1):

Spectral Angle = arccos
ereal • eextracted
‖ereal‖ · ‖eextracted‖

(1)

where ereal represents known endmembers (a pixel with all its spectral bands) and eextracted represents
endmembers obtained with the algorithm. Perfect matches between real and extracted endmembers
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would render a spectral angle of 0o, whereas for completely unrelated pixels, the spectral angle
would tend to 90o. It is important to note that, for real hyperspectral images, if the algorithm finds P
endmembers and the image is known to have only Preal, with Preal < P, the spectral angle is computed
as the minimum value from all possible combinations (i.e., the extracted Preal endmembers that are
closer to the real ones).

As it can be seen, the reduction-based endmember extraction provides results that are close to the
ones obtained using the original FUN algorithm, which in turn are not far from the actual endmembers
present in the image. A comparison with state-of-the-art alternatives (Table 3) shows that deviations
in the spectral angle are acceptable either because it is still below the value obtained with some of
the most widely used unmixing algorithms (e.g., VCA or NMF), or because (even with comparable
results) the algorithm is too complex to enable a runtime adaptive hardware implementation as the
one presented in this work (e.g., DgS-NMF).

Table 2. Endmember extraction accuracy (synthetic hyperspectral images with known endmembers).

Image Characteristics Mean Spectral Angle (o)

SNR (dB) Endmembers Abundances FUN Reduction-Based FUN

20

4
Gauss Spheric 1.5115 2.6709

Legendre Polynomial 1.5433 1.4739
Dirichlet 3.7219 2.0508

8
Gauss Spheric 2.8381 2.4991

Legendre Polynomial 3.6176 3.8983
Dirichlet 2.5348 2.7655

12
Gauss Spheric 3.7033 5.4387

Legendre Polynomial 5.3731 5.4038
Dirichlet 2.8855 4.3962

40

4
Gauss Spheric 0.0798 0.2163

Legendre Polynomial 0.3327 0.1521
Dirichlet 0.1254 0.4491

8
Gauss Spheric 0.4679 0.3806

Legendre Polynomial 0.6072 0.8048
Dirichlet 0.3019 1.2459

12
Gauss Spheric 0.4252 1.1471

Legendre Polynomial 0.3992 0.3853
Dirichlet 0.3895 0.8428

60

4
Gauss Spheric 0.0658 0.0726

Legendre Polynomial 0.0367 0.2022
Dirichlet 0.0682 0.0895

8
Gauss Spheric 0.0459 0.0936

Legendre Polynomial 0.0737 0.0975
Dirichlet 0.1463 0.1672

12
Gauss Spheric 0.0876 0.0860

Legendre Polynomial 0.1705 0.1953
Dirichlet 0.1384 0.2409

Table 3. Endmember extraction accuracy (real hyperspectral images with known endmembers).

Image Endmembers Mean Spectral Angle (o)

FUN Reduction-Based FUN VCA [44] NMF [44] DgS-NMF [44]

Samson 3 3.7004 2.6444 4.8301 5.1337 2.8934
Jasper Ridge 4 7.5999 7.0384 19.8759 10.1069 3.0997

Urban 4 4.4637 7.6292 23.2564 10.8633 4.8988
Cuprite 12 5.9887 5.637 – 7.5401 5.9931
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Table 4. Impact of partitioning depth (pixelsblock) on endmember-extraction accuracy (evaluation based
on synthetic images with 256 bands, 256 lines, 256 samples, and 60 dB of SNR).

Image Characteristics Mean Spectral Angle (o)

Endmembers Abundances 4 8 16 32 64 128 256

4
Gauss Spheric 0.2329 0.1933 0.1933 0.1933 0.1933 0.1933 0.1933

Legendre Polynomial 3.3223 1.0612 0.1554 0.0682 0.0547 0.0546 0.0543
Dirichlet 0.0595 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592

16
Gauss Spheric – – 0.0838 0.0871 0.1374 0.1374 0.0875

Legendre Polynomial – – 0.7113 0.703 0.7154 0.7149 0.6541
Dirichlet – – 0.0838 0.0852 0.0852 0.085 0.085

4.2. Hardware Tradeoffs

The reduction process detailed in Algorithm 3 has a sequential component (i.e., dimensional
reduction) and a data-parallel section (i.e., endmember extraction for each subimage, Lines 5 to 8),
which has been selected as the functionality to be moved to hardware. As a consequence of this
decision, the transparent scalability provided by the ARTICo3 architecture, and enabled by the use of a
configurable number of hardware accelerators, can be used to dynamically adapt the loop unrolling
depth during application execution.

While the ARTICo3 toolchain supports both HDL and C/C++ descriptions of the kernels, only
the HLS-based entry point has been used to implement the FUN endmember extraction, since a
C-based version of the whole linear unmixing chain was already available (i.e., the one used during
the initial application profiling stage). As stated in the previous section, low-level FPGA limitations
make it mandatory to develop resource-constrained, yet performance-oriented, hardware accelerators.
In the following, two different HLS-based solutions are analyzed taking into account their execution
latency and resource utilization. Both solutions have been implemented using Vivado HLS with the
configuration parameters shown in Table 5.

The first solution uses single-precision (i.e., 32-bit) floating-point arithmetic, and relies on
tool-based automatic optimizations (mainly, datapath pipelining). The second solution, on the
other hand, uses half-precision (i.e., 16-bit) floating-point arithmetic, and relies on tool-based
automatic optimizations to improve performance (datapath pipelining) as well as on user-driven
code optimization techniques to improve the performance/area ratio (manual loop unrolling).
Experimental results showed no functional difference between both solutions when processing
normalized input subimages (i.e., whose pixel values range from 0 to 1), since the same endmembers
were obtained as output.

Table 6 shows the accelerator latency bounds for both solutions. It is important to highlight that
the latency of the accelerator is data-dependent (although it will always be between the reported
bounds), since the algorithm contains a loop whose trip count depends on the number of pixels with
relevant information. Hence, the results shown in Table 6 refer either to an execution that finds one
endmember (minimum value) or to an execution that finds pixelsblock endmembers (maximum value).
Table 7, on the other hand, shows the resource-utilization reports. Note that these reports include:
combinational logic expressed as Look-Up Tables (LUTs); sequential logic expressed as Flip-Flops (FFs);
dedicated logic for arithmetic operations, expressed as Digital Signal Processing blocks (DSPs); and
memory elements, expressed as Block RAM (BRAMs). When comparing both alternatives, it is possible
to see that the combination of half-precision floating-point arithmetic and manual loop unrolling
reduces the memory footprint, but increases the rest of the resources. However, both implementations
can fit in regular ARTICo3 slots, and the slightly superior resource utilization of the half-precision
implementation is an affordable cost given the performance increase that can be achieved (roughly
speaking, 2× resources generate 4× performance).
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Table 5. High-Level Synthesis (HLS)-Based hardware accelerator: configuration parameters.

Parameter Description Value

pixelsblock Number of input pixels 32
Nz Number of bands per pixel 256

Pmax Maximum number of endmembers to extract 32
α Stop factor 1.0

Table 6. Accelerator latency: single-precision versus half-precision floating-point implementations.

Implementation #1 Implementation #2

Precision Single—32 bits Half—16 bits
Optimization Automatic (directives) Automatic (directives) + Manual (code)

Latency (cycles) 200331—1 endmember 50917—1 endmember
1588512—32 endmembers 384509—32 endmembers

Table 7. Resource utilization: Single precision versus Half precision floating point implementations.

Implementation #1 Implementation #2

Precision Single—32 bits Half—16 bits
Optimization Automatic (directives) Automatic (directives) + Manual (code)

LUTs 3089 4296
FFs 2612 4172

DSPs 10 18
BRAMs 8.5 4

4.3. Network Infrastructure

The ARTICo3 architecture provides performance scalability on a single node, relying on the
application developer to decide how many accelerators to load for a given kernel. In order
to extend the scalability to a multi-FPGA context, thus enabling a two-way scalable system, a
networked approach has been implemented. The proposed solution is built upon a small cluster
of parallel-processing elements, referred to as nodes, in a master/slave(s) approach (see Figure 2),
where data-level parallelism can be further exploited by dividing the computational workload between
all available nodes.

In this work, data distribution and execution synchronization are made using MPI, a well-known
parallel programming API used in high-performance systems with distributed memory, which has also
been used in the past to prototype communications in space [45]. However, it is important to highlight
that the proposed distribution methods can be implemented using any other type of communication
primitives. Regarding data distribution, two different methods have been proposed and evaluated: the
application developer can decide on whether to maximize parallelism, or to minimize data transactions
(communication packets). Both alternatives start with the master dividing the input hyperspectral
image in as many blocks as slaves are involved in the processing stage, but they differ in the next steps.

In the maximum parallelization approach, each slave further divides the image in blocks whose
size can be directly processed by the core reduction algorithm (pixelsblock). Then, partial endmembers
are extracted from each of these blocks. The whole set of partial endmembers are then sent back to the
master, which regroups them before sending new artificial image blocks to the slaves for another round
of endmember extraction. This procedure continues until one block remains and all endmembers are
finally obtained. In the minimum data transactions approach, on the other hand, each slave performs a
local reduction on its own, only sending back to the master the reduced endmembers contained in the
corresponding input subimage. The master then performs a final reduction round to obtain the actual
endmembers present in the original hyperspectral image.
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Although the maximum parallelization approach should ideally be better, communication latency
discourages its use due to the excessive data traffic over the network. As it can be seen in Figure 3,
the approach that targets minimum data transactions between master and slave nodes has provided
better experimental results (100 ms faster on average). All network experiments performed in this
work use the MPICH implementation of the MPI API, since it has already been proven that it renders
better communication performance than other alternatives such as OpenMPI [46].
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Figure 2. Network setup: ARTICo3-based computing cluster.
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Figure 3. MPI-based communication overheads (four nodes, hyperspectral images with 128 samples,
128 lines and 256 bands). The top graph shows maximum parallelization, whereas the bottom graph
shows minimum data transactions (i.e., communication). The cluster operates on a private network
with a dedicated Ethernet switch (1 Gbps).

5. Experimental Results

Two experimental setups have been used to evaluate the runtime scalability of the ARTICo3-based
endmember extraction. Single-node scalability has been tested using an in-house custom Zynq-7000
board (XC7Z020-1CLG484) with integrated power measurement circuitry and thus, energy efficiency
metrics have also been obtained. Multi-FPGA scalability, on the other hand, has been evaluated
only in terms of computing performance using up to 8 commercial MicroZed development boards
(XC7Z020-1CLG400) arranged in a small Ethernet-based computing cluster. Both scenarios implement
the reduction-based FUN endmember extraction using half-precision floating point hardware
accelerators and, in the multi-FPGA setup, the data distribution approach for minimum communication
over the network.

In addition, all tests reported in this section have been performed using three synthetic hyperspectral
images, since they enable the evaluation of a wider range of scenarios (e.g., different number of
endmembers, different input sizes, etc.) than any of the represented by the real hyperspectral datasets
used to validate the parallelization approach (see Section 4.1): one with a size of 256× 128× 128 and
10 endmembers, one with a size of 256× 256× 256 and 16 endmembers, and a final one with a size
of 256× 512× 512 and 16 endmembers. The size of the input hyperspectral images is expressed as
Nz × Ny × Nx, being z bands, y lines, and x samples.

Table 8 reports the resource utilization for the ARTICo3 infrastructure (per node), as well as for
the final ARTICo3 kernel (FUN + wrapper logic per accelerator). Since this kernel does not require



Remote Sens. 2018, 10, 1790 16 of 21

any configuration register, the overhead introduced by wrapping the HLS-generated HDL is almost
negligible in terms of LUTs and FFs, while there is a sharp increase in the BRAM count due to the local
memory inside the hardware accelerator.

Table 8. Resource utilization: ARTICo3 infrastructure overhead versus FUN kernel.

Component ARTICo3 FUN Kernel

Info –
64 KiB memory

0 registers
C + HLS

LUTs 4158 4502
FFs 2366 4207

DSPs – 18
BRAMs – 20

5.1. Standalone ARTICo3

The ARTICo3 solution space for single-node deployments represents all possible combinations
of computing performance, energy consumption, and fault-tolerance level (i.e., hardware
redundancy) when changing the number of accelerators and their configuration for a given kernel.
However, the results presented in this section are only focused on computing performance and
energy consumption.

Table 9 shows the obtained results for the single-node scenario, where a single-core software
version of the reduction-based FUN algorithm has also been implemented to complement the
analysis. As it can be seen, for small hyperspectral images, the software version is equivalent
(in terms of computing performance) to the ARTICo3-powered one using a single hardware accelerator.
However, energy consumption is almost 50% less for the hardware-accelerated solution. For large
hyperspectral images, on the other hand, the ARTICo3-based solution outperforms the software in
terms of computing performance (even when having only one accelerator), while maintaining a good
energy-efficiency ratio.

Although execution time is reduced when increasing the number of hardware accelerators
for a fixed input image, it is possible to notice that the scalability factor is not linear. This is due
to the combination of kernels changing from computing- to almost memory-bounded behavior
(in the solution space), and the memory-management overheads introduced by the ARTICo3 runtime.
Nevertheless, energy consumption is also reduced, a fact that would still motivate the use of more
hardware accelerators for processing in a real-world scenario.

Table 9. Execution performance and energy consumption—ARTICo3 (single node @ 166.67 MHz)
versus software-based implementation (single-node, 1 ARM core @ 666.67 MHz).

Nz × Ny × Nx Execution Time (s) Energy Consumption (J)

SW 1 acc 2 accs 3 accs 4 accs SW 1 acc 2 accs 3 accs 4 accs

256 × 128 × 128 1.05 1.05 0.75 0.66 0.58 1.44 0.98 0.79 0.76 0.75
256 × 256 × 256 4.33 4.35 3.11 2.66 2.38 5.88 3.95 3.09 2.85 2.65
256 × 512 × 512 69.44 46.4 29.12 22.97 19.75 92.99 38.42 27.17 23.16 21.2

5.2. Networked ARTICo3

In this second scenario, the small-size high-performance embedded computing cluster has been
used. The cluster has eight nodes, each of them able to host one ARTICo3 instance with up to four
hardware accelerators. As a result, it is possible to evaluate the two-way scalability of the system
(changing the number of nodes, or changing the number of hardware accelerators per node). Figure 4
shows a picture of the Ethernet-based multi-FPGA embedded computing cluster.
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Figure 4. ARTICo3-based multi-FPGA computing cluster. This high-performance embedded
computing setup features eight MicroZed boards with a XC7Z020-1CLG400C device.

The first set of tests performed with the cluster aims to show the aforementioned two-way
scalability of the system. Table 10 reports the execution times for different configurations of input
image sizes, number of ARTICo3 nodes, and number of hardware accelerators per node. It also
reports, for each image size, the overall improvement of each configuration with respect to the solution
with one node and one hardware accelerator (1×). These results show that, for the same number
of hardware accelerators, it is preferable to favor scalability in the number of nodes rather than in
the number of accelerators per node, since the per-node memory-management overhead is slightly
larger than the internode communication overhead. Notice that execution times when using one node,
a scenario that should be similar to the one reported in the previous section, are slightly larger due to
the overhead generated by the communication API.

Table 10. Execution performance—ARTICo3 (multiple nodes @ 166.67 MHz).

Nz × Ny × Nx # Nodes Execution Time (s)

1 acc 2 accs 3 accs 4 accs

256 × 128 × 128

1 1.18 (1×) 0.84 (1.4×) 0.73 (1.6×) 0.67 (1.8×)
2 0.72 (1.6×) 0.56 (2.1×) 0.49 (2.4×) 0.44 (2.7×)
4 0.46 (2.6×) 0.41 (2.9×) 0.37 (3.2×) 0.34 (3.5×)
8 0.38 (3.1×) 0.31 (3.8×) 0.29 (4.1×) 0.27 (4.4×)

256 × 256 × 256

1 4.72 (1×) 3.35 (1.4×) 2.87 (1.6×) 2.66 (1.8×)
2 2.83 (1.7×) 2.12 (2.2×) 1.88 (2.5×) 1.85 (2.6×)
4 1.99 (2.4×) 1.51 (3.1×) 1.38 (3.4×) 1.45 (3.3×)
8 1.4 (3.4×) 1.35 (3.5×) 1.15 (4.1×) 1.11 (4.3×)

256 × 512 × 512

1 49.04 (1×) 30.67 (1.6×) 24.29 (2×) 21.14 (2.3×)
2 25.88 (1.9×) 16.9 (2.9×) 14.17 (3.5×) 12.37 (4×)
4 14.69 (3.3×) 10.18 (4.8×) 8.56 (5.7×) 7.8 (6.3×)
8 9.12 (5.4×) 6.78 (7.2×) 6.52 (7.5×) 5.55 (8.8×)



Remote Sens. 2018, 10, 1790 18 of 21

The second set of tests performed with the multi-FPGA setup has been devised with a twofold
objective: on the one hand, to compare the hardware-accelerated solution with a software-based
alternative; on the other hand, to quantify the communication overheads in the system.

Using MPI terminology, the hardware version uses one slave process with up to four ARTICo3

accelerators per node (with a master process running in one of the nodes), while the software version
uses two slave processes per node to maximize the number of processing elements working potentially
in parallel (although one node has the master process and one slave process instead). In addition,
processing is carried out completely in the slave processes for the hardware version, while for the
software version the master process also performs computations (again, to maximize the number
of processing elements working potentially in parallel, and perform a fairer comparison against the
hardware-based implementation). As a result, total execution times in Table 11 equal communication
time plus processing time for software, but not for hardware (ARTICo3 finishes processing in each
slave while the master is still sending or receiving data through the network). This phenomenon
resembles the memory-bounded behavior in single-node deployments, where the memory bandwidth
sets the maximum performance boundary for accelerators where DMA-enabled data transfers are
more time-consuming than actual kernel execution.

Results from Table 11 show that, for small hyperspectral images, the ARTICo3-based solution is
slower than the software-based alternative. However, this behavior is inverted when processing large
images, even if communication time is still longer for the hardware-based solutions. It is important to
highlight that, when only considering processing time, performance scales almost linearly for both
ARTICo3-powered and software versions. This, together with the partitioning that generates smaller
images to be processed in each node, makes it better to scale in the number of nodes than in the number
of accelerators per node.

Table 11. Execution performance—ARTICo3 (multiple nodes, four accelerators @ 166.67 MHz per node)
versus software-based implementation (multiple nodes, two ARM cores @ 666.67 MHz per node).

Nz × Ny × Nx # Nodes ARTICo3 Software

Comm. (s) Exec. (s) Total (s) Comm. (s) Exec. (s) Total (s)

256 × 128 × 128

1 0.06 0.59 0.65 0.08 0.35 0.43
2 0.18 0.27 0.46 0.15 0.21 0.36
4 0.29 0.14 0.34 0.22 0.09 0.31
8 0.27 0.07 0.28 0.24 0.04 0.28

256 × 256 × 256

1 0.22 2.41 2.64 0.19 1.6 1.79
2 0.74 1.12 1.83 0.64 0.83 1.47
4 1.15 0.59 1.32 0.82 0.45 1.27
8 1.07 0.3 1.09 0.91 0.26 1.17

256 × 512 × 512

1 0.89 19.36 21.25 0.44 25.93 26.37
2 2.87 9.77 12.36 1.4 13.8 15.2
4 4.52 4.94 7.87 3.69 6.63 10.32
8 5.51 2.42 5.58 3.45 3.45 6.9

6. Conclusions and Future Work

In this paper, a two-way scalable and runtime-adaptive implementation of a linear unmixing
algorithm for on-board hyperspectral image processing has been presented. This implementation
deploys a modified version of the FUN algorithm with explicit data-level parallelism over a low-cost
cluster of ARTICo3-powered SoPC that emulates a collaborative constellation of CubeSats.

Regarding the algorithm, the proposed modifications enable seamless parallelization without
compromising functional correctness, as demonstrated by experimental evaluation. In addition,
the hardware-oriented optimizations applied to the algorithm itself do not affect the functionality of
the algorithm either.
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From an architectural point of view, the proposed implementation scheme provides transparent
hardware acceleration and management, with two degrees of freedom to dynamically adapt the
working point in a solution space defined by computing performance, energy efficiency and fault
tolerance. These three elements are key aspects in low-cost deployments of COTS-based CubeSats,
making the proposed solution highly relevant in this context.

Experimental results demonstrate the feasibility of the proposed approach and widen the solution
space of the accelerated application, providing an additional degree of freedom (number of network
nodes used for processing) that can be used to maintain performance levels, while also enabling fault
tolerance by means of hardware redundancy.

The communication infrastructure has proven to be one of the major bottlenecks in the proposed
approach. Thus, an optimized communication infrastructure, paired with efficient data-transmission
mechanisms, is envisioned as future activity to further enhance system performance. In the long run,
and after optimizing network communications, the goal is to generalize the proposed platform to
support general-purpose computing in constellation-based on-board processing. To this end, intelligent
load balancing and distribution algorithms are to be implemented to transparently manage the system
from the application developer’s point of view.
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