
remote sensing

Article

Semantic Interpretation of Mobile Laser Scanner
Point Clouds in Indoor Scenes Using Trajectories

Shayan Nikoohemat 1,* , Michael Peter 2 , Sander Oude Elberink 1 and
George Vosselman 1

1 Department of Earth Observation Science, Faculty ITC, University of Twente, P.O. Box 217, 7514 AE Enschede,
The Netherlands; s.j.oudeelberink@utwente.nl (S.O.E.); george.vosselman@utwente.nl (G.V.)

2 Independent Researcher, 46397 Bocholt, Germany; michael-peter@windowslive.com
* Correspondence: s.nikoohemat@utwente.nl; Tel.: +31-53-489-6667

Received: 28 September 2018; Accepted: 1 November 2018; Published: 7 November 2018 ����������
�������

Abstract: The data acquisition with Indoor Mobile Laser Scanners (IMLS) is quick, low-cost and
accurate for indoor 3D modeling. Besides a point cloud, an IMLS also provides the trajectory of the
mobile scanner. We analyze this trajectory jointly with the point cloud to support the labeling of
noisy, highly reflected and cluttered points in indoor scenes. An adjacency-graph-based method
is presented for detecting and labeling of permanent structures, such as walls, floors, ceilings, and
stairs. Through occlusion reasoning and the use of the trajectory as a set of scanner positions, gaps
are discriminated from real openings in the data. Furthermore, a voxel-based method is applied
for labeling of navigable space and separating them from obstacles. The results show that 80% of
the doors and 85% of the rooms are correctly detected, and most of the walls and openings are
reconstructed. The experimental outcomes indicate that the trajectory of MLS systems plays an
essential role in the understanding of indoor scenes.

Keywords: mobile laser scanner; trajectory; occlusion reasoning; semantic labeling; indoor point clouds

1. Introduction

Due to recent improvements, mobile laser scanners (MLS) became an effective means of data
collection in urban and indoor scenes. Indoor mobile laser scanners (IMLS) are capable of quick data
collection at a lower cost than terrestrial laser scanners (TLS). Three types of common IMLS devices
can be distinguished: Handheld devices (e.g., Zeb-Revo), push-cart systems (e.g., NavVis Trolley) and
backpack sytems (e.g., Leica Pegasus). Thanks to the MLS mobility, these devices can achieve a more
complete coverage of cluttered scenes in a shorter time.

In addition to generating point clouds, IMLS systems generate a trajectory of the sensor positions,
which is a valuable source for the scene understanding. The trajectory can be linked to the point clouds
through the time stamp. In robotics, some researchers have exploited the robot’s trajectory to classify
indoor places from both the trajectory and point clouds [1,2]. However, the trajectory can be more useful
in understanding indoor scenes. In our research, the trajectory is used for the detection of openings,
separating building floors and the detection of stairs. For example, the trajectory as a set of scanner
positions is used for occlusion reasoning to discriminate between openings and occlusions. Furthermore,
wall planes that are intersected by the trajectory can be used to detect doors. Points that belong to stairs
can be extracted by using the trajectory of the stairs. Obviously, detecting stairs by trajectory analysis is
only applicable for laser scanners that are operable on stairs, i.e., for backpack and handheld systems.

In addition to using the trajectories, our research introduces a method for detecting the
permanent structure, such as walls, floors, ceilings, and stairs from point clouds. Most current indoor
reconstruction methods are limited by assuming vertical walls and a Manhattan World [3–5] to reduce

Remote Sens. 2018, 10, 1754; doi:10.3390/rs10111754 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-7102-4446
https://orcid.org/0000-0001-9477-9905
https://orcid.org/0000-0002-4511-2095
https://orcid.org/0000-0001-8813-8028
http://www.mdpi.com/2072-4292/10/11/1754?type=check_update&version=1
http://dx.doi.org/10.3390/rs10111754
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2018, 10, 1754 2 of 23

the complexity of 3D space. Few works deal with arbitrary wall layouts [6–8], but they are restricted to
vertical walls and horizontal ceilings. Our method detects slanted walls and sloped ceilings exploiting
the adjacency of permanent structures, based on the assumption that there is less clutter near the ceiling
in indoor environments. Additionally, the arbitrary arrangements of walls (non-Manhattan-World)
will be handled in this work. Our pipeline for semantic labeling of permanent structure uses detection
of planar primitives labelled as wall, floor and ceiling, and their topological relations.

Room segmentation is another research problem in large-scale indoor modeling. In the literature,
different approaches, such as Voronoi graphs, cell decomposition, binary space partitioning and
morphology operators [9] are suggested for 2D and 3D room segmentation. Some of these methods
have limitations, such as Manhattan-World constraints and vertical walls. Most of the room
segmentation methods rely on the viewpoint [8,10] and require scanning with a TLS in each room [7].
However, as opposed to one scanning location per room, mobile laser scanning systems produce a
continuous trajectory and assigning points per room based on the scan location is not possible. Similar
to our method for trajectory analysis, refs. [11,12] exploit the trajectory for space subdivision. Although
their focus is only on space subdivision and simple structure, their results support our motivation of
using the trajectory for interpretation of point clouds.

In our pipeline, a novel method is suggested for partitioning interior spaces based on voxels and
exploiting unoccupied space. Besides knowing the room layout, information about the doors, walkable
space and stairs supports navigation planning. Therefore, voxels are used to identify the walkable
space and the trajectory to identify the stairs and doors.

Reflective surfaces, such as glass, complicate the analysis of indoor point clouds. Such surfaces
cause the appearance of “ghost walls” in the data that do not exist in the real building. Ghost
walls may incorrectly be detected as part of the room layout and sometimes result in an incorrect
room segmentation. The problem of transparent and specular surfaces is addressed in robotics
applications [13,14]. We tackle this problem by comparing the time stamps of points with the time
stamp of the nearest trajectory parts before starting the wall detection process. Using our method,
some of the noise caused by the reflective surfaces can be corrected.

The contribution of this work is introducing methods for using the sensor trajectory as a valuable
source for semantic labeling of IMLS points clouds. The result is not a watertight model, although
it extracts a coarse 3D model from heavily cluttered data with the presence of noise. Some of the
methods presented in this work (e.g., door detection) are limited to mobile laser scanner data because
of use of the trajectory. Most of our methods are applicable to TLS point clouds as well. For example
methods for the wall, floor, and ceiling detection can be implemented on both RGBD data and TLS
point clouds. The proposed methods are tested on three types of mobile laser scanner data: Backpack
systems, trolley systems (push-cart), and handheld devices. The rest of the paper explains the related
work, and data collection, followed by the methodology for permanent structure detection, space
partitioning and door detection in Sections 4–6, respectively. The results, evaluation and conclusion
are described in Sections 7 and 8.

2. Related Work

In this work, several known problems are addressed in the domain of indoor modeling, such as
detection of permanent structures, room segmentation, opening detection and dealing with noise and
reflective surfaces. For each of the cases, the state of the art is reviewed in the following subsections.

Data acquisition: The first step in any indoor modeling pipeline from real data is collecting
data and preprocessing to clean up the data. The main sources of the data for indoor modeling in
large scale are point clouds from LiDAR Systems or RGBD Systems. LiDAR systems could be TLS
devices, such as RIEGEL VZ [15], FARO FOCUS [16], or MLS devices, such as the Google Cartographer
backpack [17], Leica Pegasus backpack [18], NavVis M3 Trolley [19], VIAMETRIS iMS3D [20] and
Zeb-Revo and Zeb-1 [21]. RGBD cameras, such as Matterport [22] and Google Tango [23], are another
source of data for indoor modeling. However, RGBD cameras have less accuracy in comparison with

Remote Sens. 2018, 10, 1754 3 of 23

TLS or MLS. Lehtola et al. [24] present a thorough review of various indoor mobile laser scanners
based on Simultaneous Localization And Mapping (SLAM). According to their study, TLS systems
have the highest accuracy, but less flexibility, than MLS for indoor data acquisition. Backpack and
handheld systems have the most mobility, but at the cost of a lower accuracy than trolley and TLS
devices. The trolley devices are constrained to near-flat surfaces; they cannot be used on staircases
and steep slopes. RGBD cameras are accurate enough for indoor 3D modeling purposes and scene
understanding, but not surveying goals. In our research, we only use the point clouds from laser
scanner systems, such as the data from NavVis M3 Trolley, handheld Zeb-1, Zeb-Revo and a prototype
backpack system (ITC Backpack) based on the proof of concept of 6DOF SLAM [25].

Reflective Surfaces: The first step after data acquisition is dealing with noise and artefacts. Often
these artefacts come from transparent and specular surfaces. Koch et al. [14] investigate this problem
to identify specular and transparent surfaces during scanning with a SLAM robot. Their goal is to
identify and purge the corrupted points from the data on the fly or by post-processing. The intensity
of the reflected laser pulse and the material of the surface (e.g., aluminum surfaces, glass, and mirror)
often have unique distribution for discrimination of the transparent and reflective surfaces. However,
the detection of transparent surfaces is more challenging because of the characteristic of the material.
In another study by Foster et al. [13] the authors employ both the geometry and the angle of incidence
between the laser and the surface during scanning. They suggest that in a particular angle of incidence,
specular and glass surfaces are visible to LiDAR and glass can be detected.

Approaches to indoor reconstruction either from LiDAR point clouds or RGBD images can be
categorized to three following categories:

Indoor Volumetric Reconstruction: These approaches involve volumetric primitive detection
(e.g., cuboid) and are often computationally more expensive than grammar-based and Binary
Space Partitioning (BSP) methods. However, volumetric methods have a better representation of
non-Manhattan-World structures, slanted and rounded walls and sloped ceilings. Xiao et al. [26]
employ inverse constructive solid geometry (Inverse CSG) to build the 3D model. A 3D CSG is
generated by iteratively stacking 2D CSG models. Each 2D CSG model is produced with many line
segments that form various rectangle primitives. Their approach cannot model rounded walls because
their hypothesis is based on extracting rectangles. Mura et al. [10] apply the piecewise-planar detection
and encode the adjacency of planar segments into a graph that represents the scene.

Indoor grammar-based Reconstruction: One popular modeling approach, especially in regular
environments, is adopting a (shape) grammar [27–29], Lindenmayer Systems (L-systems) [30] or
(inverse) procedural modeling [31–34] approaches for interiors. Becker et al. [5] use a combination of
split grammar and L-system to reconstruct a 3D model for as-built BIM (Building Information Model).
Their approach has a different view of the indoor space, since it divides the building into two main
partitions as corridors and rooms. In another innovative approach, Ikehata et al. [3] introduce an indoor
structure grammar consisting of eight rules. Their approach is limited to Manhattan-World structures
and 2.5D space. In [29,35,36] authors apply simple examples of shape grammar to reconstruct indoor
models that are clutter free.

Binary Space Partitioning (BSP) or cell decomposition: In the domain of indoor reconstruction,
many researchers use BSP to tackle the problem of room segmentation. In indoor space partitioning,
BSP is a piecewise-planar approach that subdivides the space in 2D cells and as an output generates a
2.5D model [4,7,37,38]. In using BSP, 2D approaches have the assumption of both vertical walls and
horizontal ceilings, which is a shortcoming of the 2D-BSP. If BSP is implemented in 3D, it results in
a 3D reconstructed model [10,39,40], where the limitations of vertical walls and horizontal ceilings
can be lifted. Additionally, BSP methods are able to assign the 2D or 3D cells of space partitions to
the rooms based on the viewpoint and ray-casting. However, it requires scan positions per room with
enough overlap to make the room labeling process possible. The main problems of BSP approaches are
the restriction of viewpoints, the emergence of ghost primitives and the computation cost for labeling
the cells as inside and outside.

Remote Sens. 2018, 10, 1754 4 of 23

Opening Detection: Among the work for the indoor reconstruction of points clouds, some of
them [3,7,41–46] consider the problem of opening detection (doors and windows) and in their final
model reconstruct the openings. Doors are essential elements for route planning and space subdivision.
In our definition openings are not just limited to doors, but any opening in the wall that could be
passed by individuals and connect two spaces. However, in cluttered environments and because
of the presence of the furniture and obstacles, many walls could have data gaps that can be falsely
considered as openings. Adan and Huber [41] propose an occlusion test to detect windows in the
walls. Ikehata et al. [3] use a grammar rule to add a door in the wall between two separate rooms such
that the walls are connected through a doorway. Therefore, in their pipeline, the addition of the doors
is after reconstruction of the room. In a recent work Diaz-Vilarino et al. [44] use the trajectory for door
detection followed by an energy minimization to separate rooms with the known location of the doors.
However, their example is a simple and clutter-free dataset. Another approach for door detection
especially in the robotic domain is using images besides point clouds for detection of semi-open doors
and closed doors. Quintana et al. [45] and Diaz-Vilarino [46] present such techniques for detecting
closed doors from images and point clouds.

Similar to our approach, authors of [11,47] use the trajectory for semantic enrichment of indoor
spaces. The authors exploit the fact that doors are the connecting elements of two spaces. By detecting
the doors using the trajectory, it is possible to partition the trajectory and the space. This approach is
only suitable for interiors with low level of transparent surfaces. Similarly, Zheng et al. [12] analyze the
scanlines to find local geometric regularities and to detect openings. By using extracted information,
such as doors from scan lines, it is possible to segment the trajectory to associated spaces and subdivide
the space. Both approaches may have poor results in environment with a large number of transparent
surfaces or when the operator of the laser scanner has inconsistent behavior.

There is a large body of literature regarding scene understanding in small-scale indoor spaces, such
as the detection of objects in a kitchen [48,49] for robot operation or in a bedroom [50,51]. In large-scale
there are works by Armeni et al. [52] for scene parsing, Mattausch et al. [53] using a similarity matrix in
cluttered environment and Qi et al. [54] using deep learning for object classification. Some other works
in the domain of indoor 3D reconstruction from point clouds use semi-automatic approaches to generate
BIM models [55–57] or stochastic methods to make a hypothesis on generating floor plans [58].

Our work is innovative in terms of dealing with glass reflection problems using mobile laser
scanners and exploiting the potential of trajectories as a supplementary data produced by MLS systems.
This work can be further improved to reconstruct a complete 3D indoor model from complex structures.
Furthermore, the generated navigable space can be used for route planning in 2D (e.g., pedestrians,
wheelchair and robots) and 3D space (drones).

3. Data Collection and Preprocessing

The data for this research is captured with three different mobile laser scanner systems.
Each system has advantages and disadvantages in terms of mobility and accuracy. The data is
collected by means of NavVis Trolley [19], Zeb-1 [59], ZebRevo, and ITC Backpack, a backpack system
that is developed in our department and is in the stage of proof of concepts [25], see Figure 1. All three
systems use Hokuyo UTM-30LX as the laser rangefinder sensor.

According to the Hokuyo UTM 30LX specification [60], the accuracy of the sensor in indoor
environments for the range between 0.1 to 10 m is ±30 mm, and in the range of 10 to 30 m is ±50 mm.
Backpack and handheld systems have more mobility than push-cart systems (trolley) and are able to
scan stairs, while push-cart systems deliver a better quality of point clouds in comparison to handheld
systems [24].

In Section 3.1, the data and the trajectory from various MLS devices used in this research are
presented. In Section 3.2 and 3.3, the process of identifying corrupted points caused by reflective
surfaces and then the segmentation process are explained.

Remote Sens. 2018, 10, 1754 5 of 23
Remote Sens. 2017, 9, x FOR PEER REVIEW 5 of 23

Figure1. From left to right: Our prototype backpack system (ITC backpack), NavVis Trolley, Zeb-1
and Zeb-Revo.

3.1. Point Clouds and the Trajectory

One advantage of MLS systems over TLS devices is that in addition to the point clouds, they
provide the laser scanner trajectory. The trajectory is a dataset containing a discrete suite of the
device’s location during data acquisition and is synchronized with the point cloud. Therefore, by
means of time stamps stored in the trajectory and point clouds, it is possible to know which points
are collected from which location in the trajectory. In our experiment, a 0.01 second time resolution
is used to group points from each scanner position. Figure 2 shows the trajectories of various MLS
devices. The z-value of the points in the trajectory varies depending on both the scanning system and
the height of the operator for a backpack or a handled device. Because mobile devices are moving in
the environment, there would be less occlusion, but more artefacts caused by glass surfaces. The next
section explains how to deal with such corrupted points in the data.

Figure 2. The trajectory of various mobile laser scanners that are colored by the time. From left to
right: ITC Backpack, NavVis Trolley, Zeb-1 and Zeb-Revo.

3.2. Identifying the Artefacts from Reflective Surfaces

In addition to the noise introduced by SLAM, another source of the noise is reflective and
transparent surfaces, such as glass and specular metals. The MLS devices that are used in our
experiments do not use a multi-echo sensor similar to the one is used in Koch et al. [14]. In our process,
the trajectory and ray casting are exploited to detect and remove these artefacts. According to Foster
et al. [13], when a laser beam strikes a glass surface three cases will happen: (i) Most of the light
(almost 92%) is transmitted through the glass; (ii) some light is reflected back under a specular angle;
and (iii) a small percentage of the light is scattered. If part of the glass surface appears in the point
cloud it is because the incidence angle of the beam is near the perpendicular angle to the surface.
Therefore, in the presence of a lot of glass surfaces in environments, three types of objects would be
present in the data:

1. Objects behind the glass if the laser beam is transmitted. Since almost 92% of the light is
transmitted through the glass, a lot of objects behind a glass surface are measured through the
glass. However, these points are less reliable than a directly measured object.

Figure 1. From left to right: Our prototype backpack system (ITC backpack), NavVis Trolley, Zeb-1
and Zeb-Revo.

3.1. Point Clouds and the Trajectory

One advantage of MLS systems over TLS devices is that in addition to the point clouds, they
provide the laser scanner trajectory. The trajectory is a dataset containing a discrete suite of the device’s
location during data acquisition and is synchronized with the point cloud. Therefore, by means of
time stamps stored in the trajectory and point clouds, it is possible to know which points are collected
from which location in the trajectory. In our experiment, a 0.01 second time resolution is used to group
points from each scanner position. Figure 2 shows the trajectories of various MLS devices. The z-value
of the points in the trajectory varies depending on both the scanning system and the height of the
operator for a backpack or a handled device. Because mobile devices are moving in the environment,
there would be less occlusion, but more artefacts caused by glass surfaces. The next section explains
how to deal with such corrupted points in the data.

Remote Sens. 2017, 9, x FOR PEER REVIEW 5 of 23

Figure1. From left to right: Our prototype backpack system (ITC backpack), NavVis Trolley, Zeb-1
and Zeb-Revo.

3.1. Point Clouds and the Trajectory

One advantage of MLS systems over TLS devices is that in addition to the point clouds, they
provide the laser scanner trajectory. The trajectory is a dataset containing a discrete suite of the
device’s location during data acquisition and is synchronized with the point cloud. Therefore, by
means of time stamps stored in the trajectory and point clouds, it is possible to know which points
are collected from which location in the trajectory. In our experiment, a 0.01 second time resolution
is used to group points from each scanner position. Figure 2 shows the trajectories of various MLS
devices. The z-value of the points in the trajectory varies depending on both the scanning system and
the height of the operator for a backpack or a handled device. Because mobile devices are moving in
the environment, there would be less occlusion, but more artefacts caused by glass surfaces. The next
section explains how to deal with such corrupted points in the data.

Figure 2. The trajectory of various mobile laser scanners that are colored by the time. From left to
right: ITC Backpack, NavVis Trolley, Zeb-1 and Zeb-Revo.

3.2. Identifying the Artefacts from Reflective Surfaces

In addition to the noise introduced by SLAM, another source of the noise is reflective and
transparent surfaces, such as glass and specular metals. The MLS devices that are used in our
experiments do not use a multi-echo sensor similar to the one is used in Koch et al. [14]. In our process,
the trajectory and ray casting are exploited to detect and remove these artefacts. According to Foster
et al. [13], when a laser beam strikes a glass surface three cases will happen: (i) Most of the light
(almost 92%) is transmitted through the glass; (ii) some light is reflected back under a specular angle;
and (iii) a small percentage of the light is scattered. If part of the glass surface appears in the point
cloud it is because the incidence angle of the beam is near the perpendicular angle to the surface.
Therefore, in the presence of a lot of glass surfaces in environments, three types of objects would be
present in the data:

1. Objects behind the glass if the laser beam is transmitted. Since almost 92% of the light is
transmitted through the glass, a lot of objects behind a glass surface are measured through the
glass. However, these points are less reliable than a directly measured object.

Figure 2. The trajectory of various mobile laser scanners that are colored by the time. From left to right:
ITC Backpack, NavVis Trolley, Zeb-1 and Zeb-Revo.

3.2. Identifying the Artefacts from Reflective Surfaces

In addition to the noise introduced by SLAM, another source of the noise is reflective and
transparent surfaces, such as glass and specular metals. The MLS devices that are used in our
experiments do not use a multi-echo sensor similar to the one is used in Koch et al. [14]. In our
process, the trajectory and ray casting are exploited to detect and remove these artefacts. According
to Foster et al. [13], when a laser beam strikes a glass surface three cases will happen: (i) Most of the
light (almost 92%) is transmitted through the glass; (ii) some light is reflected back under a specular
angle; and (iii) a small percentage of the light is scattered. If part of the glass surface appears in the
point cloud it is because the incidence angle of the beam is near the perpendicular angle to the surface.
Therefore, in the presence of a lot of glass surfaces in environments, three types of objects would be
present in the data:

1. Objects behind the glass if the laser beam is transmitted. Since almost 92% of the light is
transmitted through the glass, a lot of objects behind a glass surface are measured through the
glass. However, these points are less reliable than a directly measured object.

Remote Sens. 2018, 10, 1754 6 of 23

2. Objects in the front of a glass surface which are reflected in the glass. In this case, the glass is
acting like a mirror or a specular surface. Therefore, in the point clouds a mirrored object will
appear exactly at the same distance from the glass and with the same size as the real object.
We call these virtual objects “ghost walls”. They are problematic because it could happen that the
whole room is mirrored to the other side of the specular surface. This artefact occurs when the
laser scanner is moving in a specific angle toward the glass surface, naturally the same angle that
objects could be seen in the glass.

3. Objects that represent the glass surface itself. If the laser beam is almost perpendicular or there
is dust and other features on the glass, then part of the glass surface will be present in the
point cloud.

Knowing above facts, it is possible to analyze the behavior of LiDAR systems in interaction with
glass surfaces. Ghost walls could happen outside the building layout, where the façades are made of
glass and the laser scanner is moving alongside a corridor. In this case, some of the indoor spaces are
mirrored outside the building. Highly problematic ghost walls are those that occur inside the main
structure. In such cases, detecting and removing them is challenging, but also important.

In our pipeline, ghost walls are detected and purged based on segments. Our method for semantic
interpretation is a planar segmentation approach. Therefore, the point clouds are segmented with a
surface growing algorithm [61]. To detect ghost walls, the time stamps of the points are compared
with the time of the closest trajectory point. Logically, because ghost walls are mirrored, they often
have a time stamp, which differs from the time stamps of their neighboring points (which were not
mirrored), as well as from the time stamp of the nearest trajectory point. Each point in the data is
labeled as reflected point for which the time Tpoint is more than ∆t before or after the time Ttraj of
the nearest trajectory location. ∆t is the time lag between the points in a ghost wall surface and the
closest trajectory time. ∆t is obtained empirically, and is obtained by checking such artefacts in the
data. After labeling the points, the segments of which the majority of the points are labeled as reflected,
are selected as ghost walls. In the next step, these ghost segments are projected back to their correct
location. This is a relatively simple process, because they are in the same distance of the glass surface
that the real object is located. But first, the glass surface should be detected. The glass surface is
located between the real wall and the ghost wall. To detect the glass surface, a ray is reconstructed
from a point on the ghost wall to the corresponding trajectory (see the purple line in the Figure 3c).
This ray intersects a segment which almost has an equal distance to the real wall and ghost wall.
The intersected segment is the glass surface. After detecting the glass surface, the points on the ghost
wall are mirrored back relative to the glass surface to the other side (white points in the Figure 3d).
Finally, after correcting the data from the ghost walls, it is ready to be applied for further processing.

Remote Sens. 2017, 9, x FOR PEER REVIEW 6 of 23

2. Objects in the front of a glass surface which are reflected in the glass. In this case, the glass is
acting like a mirror or a specular surface. Therefore, in the point clouds a mirrored object will
appear exactly at the same distance from the glass and with the same size as the real object. We
call these virtual objects “ghost walls”. They are problematic because it could happen that the
whole room is mirrored to the other side of the specular surface. This artefact occurs when the
laser scanner is moving in a specific angle toward the glass surface, naturally the same angle
that objects could be seen in the glass.

3. Objects that represent the glass surface itself. If the laser beam is almost perpendicular or there
is dust and other features on the glass, then part of the glass surface will be present in the point
cloud.

Knowing above facts, it is possible to analyze the behavior of LiDAR systems in interaction with
glass surfaces. Ghost walls could happen outside the building layout, where the façades are made of
glass and the laser scanner is moving alongside a corridor. In this case, some of the indoor spaces are
mirrored outside the building. Highly problematic ghost walls are those that occur inside the main
structure. In such cases, detecting and removing them is challenging, but also important.

In our pipeline, ghost walls are detected and purged based on segments. Our method for
semantic interpretation is a planar segmentation approach. Therefore, the point clouds are segmented
with a surface growing algorithm [61]. To detect ghost walls, the time stamps of the points are
compared with the time of the closest trajectory point. Logically, because ghost walls are mirrored,
they often have a time stamp, which differs from the time stamps of their neighboring points (which
were not mirrored), as well as from the time stamp of the nearest trajectory point. Each point in the
data is labeled as reflected point for which the time Tpoint is more than Δt before or after the time Ttraj
of the nearest trajectory location. Δt is the time lag between the points in a ghost wall surface and
the closest trajectory time. Δt is obtained empirically, and is obtained by checking such artefacts in
the data. After labeling the points, the segments of which the majority of the points are labeled as
reflected, are selected as ghost walls. In the next step, these ghost segments are projected back to their
correct location. This is a relatively simple process, because they are in the same distance of the glass
surface that the real object is located. But first, the glass surface should be detected. The glass surface
is located between the real wall and the ghost wall. To detect the glass surface, a ray is reconstructed
from a point on the ghost wall to the corresponding trajectory (see the purple line in the Figure 3c).
This ray intersects a segment which almost has an equal distance to the real wall and ghost wall. The
intersected segment is the glass surface. After detecting the glass surface, the points on the ghost wall
are mirrored back relative to the glass surface to the other side (white points in the Figure 3d). Finally,
after correcting the data from the ghost walls, it is ready to be applied for further processing.

Figure 3. (a) The perspective view and (b) the top view of the reflection situation. (c) The purple line
is the incident line from the sensor to the glass and then to the reflected point on the other side of the
glass surface. The brown line shows the specularly reflected line from the glass surface to the exact

Figure 3. (a) The perspective view and (b) the top view of the reflection situation. (c) The purple line is
the incident line from the sensor to the glass and then to the reflected point on the other side of the glass
surface. The brown line shows the specularly reflected line from the glass surface to the exact position
of the object. (d) Shows the correct situation after the back projection of the ghost wall. The white
points are corrected wall.

Remote Sens. 2018, 10, 1754 7 of 23

3.3. Segmentation and Generalization

Since most indoor environments are composed of planar structures, extracting and labeling of
planar faces is faster and more reliable than processing individual points. Because of the clutter
and noise in the data the result of a segmentation cannot directly be used for semantic labeling and
reconstruction. To generate planar patches that represent permanent structures, such as walls, floors
and ceilings, a generalization method will be applied to the segments. For this purpose, we build on a
method described by Kada [62] for generalization of 3D building models. Our adopted generalization
method aims at merging segments based on their co-planarity, angle between normal vectors and their
distance. First, all the segments are sorted by their size in terms of the number of points. Starting with
the largest segment three criteria are considered to merge a candidate segment into the current segment:
(i) A generalization distance (=D) should be satisfied to accept or reject the candidate segment for
merging; (ii) the parallelism of two segments by comparing their plane normal vectors; (iii) bounding
boxes of two segments should be within a certain distance (=d). The proximity is checked alongside
two segments planes. For example, two coplanar segments alongside a corridor should be within a
threshold d. We refer to the result of generalization as “surface patches (S)” and for each surface patch a
plane is fitted to its point cloud using a least squares method. The generalization method decreases the
number of segments to be analyzed significantly. Additionally, small segments will not disturb the
process of semantic interpretation. For detecting permanent structures, described in the next section,
surface patches will be used instead of segments.

4. Permanent Structure Detection

For the detection of walls, floors and ceilings, the surface patches that are generated in the
previous step are further processed. An adjacency graph is constructed from the patches and is further
analyzed to induce the correct class of each patch (Section 4.2). For the detection of openings, an
occlusion reasoning method is applied to discriminate between real openings and gaps that are caused
by occlusion (Section 4.3). The occlusion test is also used to remove points that are outside the building
layout and could be disturbing the reconstruction process. To start with detecting the permanent
structure, the building levels are separated and then each level is processed separately (Section 4.1).

4.1. Separation of Building Levels and Stairs

The typical solution in the literature [10,37,63] for separating building levels in indoor point
clouds is using a height histogram of points. A level in a building is a horizontal section that extends
over the floor space. Using the histogram is straightforward and gives an initial separation of the
building levels. However, it is not applicable to buildings where a building level is extended vertically
in the space to other levels (see Figure 4a) or a building with sub-levels. To overcome this problem in
complex architectures, first the trajectory is separated to several levels and staircases. If the trajectory
belongs to a handheld or a backpack system, the separation should be done where the operator enters
the stairs. Therefore, the flat trajectory can be split from a sloped trajectory on the staircase. If the
trajectory belongs to a push-cart scanner, then the trajectory of the levels are already separated, because
the device does not move up or down the stairs.

To separate the levels, the process starts with the segmentation of the trajectory to the horizontal
and sloped segments. A surface growing segmentation is used and points on the same horizontal or
sloped plane are segmented together. Figure 4b shows that the trajectory points in the upper level
(blue segment) belong to the same level and points on the staircases are segmented together. However,
this segmentation needs a modification to make sure staircases are separated correctly. For example, if
in the same level of the trajectory, there are several segments with a height difference of fewer than two
meters (see Figure 4c, the orange and purple segments in the first floor) they will be merged. This is
done because trajectories belonging to different levels typically have a height difference more than
the ceiling height (at least two meters). After separating the trajectory to meaningful building levels,

Remote Sens. 2018, 10, 1754 8 of 23

for each segment in the trajectory, the associated points from the point clouds will be selected using
the timestamp.

Near the staircases, the laser scanner measures points from other levels; to modify the level of
these points to their correct level, the two dominant horizontal planes are detected as floor and ceiling
of the current level and the label of the points is changed to the corresponding levels. Figure 4d
shows the first and third level of the building. After separation of levels, each level will be processed
individually for detection of walls, floors, and ceilings.

Remote Sens. 2017, 9, x FOR PEER REVIEW 8 of 23

difference more than the ceiling height (at least two meters). After separating the trajectory to
meaningful building levels, for each segment in the trajectory, the associated points from the point
clouds will be selected using the timestamp.

Near the staircases, the laser scanner measures points from other levels; to modify the level of
these points to their correct level, the two dominant horizontal planes are detected as floor and ceiling
of the current level and the label of the points is changed to the corresponding levels. Figure 4d shows
the first and third level of the building. After separation of levels, each level will be processed
individually for detection of walls, floors, and ceilings.

Figure 4. (a) In complex buildings, part of one building level can be extended vertically to other levels.
To separate levels, a height histogram approach is not working on this type of buildings. (b)
Segmentation of the trajectory to horizontal and sloped segments. (c) After correction of segmented
trajectory, for example, the purple and orange segments in the first floor are merged into one segment.
(d) The separation of first (blue) and third levels (red) using the trajectory. The intermediate floor is
removed for better visualization. (e) The stairs are extracted using the trajectory on stairs. Each color
belongs to a segment of stair’s trajectory.

The point clouds of the stairs are extracted using the trajectory segments of stairs and the
associated timestamp. Figure 4e shows four different stairs datasets colored based on four segments
of the trajectory. Because a large portion of other levels may be seen from stairs, it is sometimes

Figure 4. (a) In complex buildings, part of one building level can be extended vertically to other
levels. To separate levels, a height histogram approach is not working on this type of buildings.
(b) Segmentation of the trajectory to horizontal and sloped segments. (c) After correction of segmented
trajectory, for example, the purple and orange segments in the first floor are merged into one segment.
(d) The separation of first (blue) and third levels (red) using the trajectory. The intermediate floor is
removed for better visualization. (e) The stairs are extracted using the trajectory on stairs. Each color
belongs to a segment of stair’s trajectory.

The point clouds of the stairs are extracted using the trajectory segments of stairs and the
associated timestamp. Figure 4e shows four different stairs datasets colored based on four segments of
the trajectory. Because a large portion of other levels may be seen from stairs, it is sometimes inevitable
to have an overlap between point clouds of the stairs and the floors. For example, in Figure 4e part of
the floors are also scanned from the stairs.

Remote Sens. 2018, 10, 1754 9 of 23

4.2. Wall Detection

The wall detection process includes detecting the permanent structures, such as walls, floors and
ceilings. This process starts by making an adjacency graph (G) from surface patches (S). An adjacency
graph is presented by G = (V, E) where nodes (V) are surface patches and edges (E) are connecting two
adjacent nodes. Each node is associated with the point clouds of a surface patch S. When a label (l) is
assigned to a surface patch, all the associated points obtain that label. The label shows the class of the
surface, such as wall, floor, ceiling, door, and window.

Two nodes (V) are adjacent if their corresponding surface patches are within a specific distance
from each other. This distance is set to dadj = 0.1 meter in all of our experiments. Note that the
coplanar or parallel segments are already merged. Therefore, two adjacent surface patches could meet
under any arbitrary angle, which means our method is not limited to Manhattan-World. To deal with
slanted walls and non-horizontal ceilings an angle threshold (α) should be specified to separate the
candidate walls and ceilings before proceeding with the analysis of the graph. Each node in the graph
is labeled as almost-vertical or almost-horizontal based on a threshold α. By default, this threshold is set
to α = 45 degrees to make a primary separation between candidate ceilings and walls. Considering
this threshold, the node V in the graph G will be categorized to Vh and Vv for almost-horizontal and
almost-vertical. By comparing a pair of surface patches out of nodes V(v1, v2), three principal labels
will be assigned to each edge e ε E of adjacent nodes v1, v2:

1. E obtains the label wall-wall iff v1 and v2 are both almost-vertical and adjacent.
2. E obtains the label wall-ceiling iff v1 and v2 are almost-vertical and almost-horizontal respectively

and the center of v2 is higher than the center of v1.
3. E obtains the label wall-floor iff v1 and v2 are almost-vertical and almost-horizontal respectively

and the center of v2 is lower than the center of v1.

After labeling the edges, each node in the graph will be analyzed based on the connected edges
and the respective labels. Three main rules are applied to each node v ε V to decide for the label:

Rule 1. V obtains the label wall iff the count of wall-ceiling edges is equal or more than one and V is
almost-vertical. This means every wall should be at least once connected to the ceiling.

Rule 2. V obtains the label ceiling iff the count of wall-ceiling edges is more than two and the count
of wall-wall is equal to zero. This means an almost-horizontal surface with wall-ceiling edges
should be connected more than two times to the walls to get the ceiling label.

Rule 3. V obtains the label floor iff the count of wall-floor edges is more than two and the count of
wall-wall is equal to zero. This means an almost-horizontal surface with wall-floor edges should
be connected more than two times to the walls to get the floor label.

Note that in Rule1, the connection of the wall candidates to the floor is not checked because of
possibly heavy occlusions near the floor.

During the processing of the rules, further considerations as soft rules need to be applied.
For example, during applying second and third rule on the ceilings and floors, each almost-horizontal
surface cannot be a floor or a ceiling candidate. This happens especially in the case of horizontal
surfaces of shelves and tables. Therefore, the average z-value of a horizontal patch is compared with an
estimation of the floor and ceiling height to decide if it is near the floor or ceiling. In this way, horizontal
surfaces of objects, such as tables and boxes, could be discarded. However, some of the horizontal
surfaces that are near the floor and ceiling disturb the correct semantic labeling. For example, the
top of shelves and cabinets that are near the ceiling could be labeled as the ceiling (see Figure 5b).
As a drawback, the attached vertical surfaces that are connected to them may be also mislabeled as
walls. To avoid this problem, the overlap of projection of almost-horizontal surfaces in the xy-plane
is checked before starting with the rules. If the 2D projection of two horizontal surfaces has overlap
(considering a small buffer), the upper surface is preserved as a ceiling candidate and then the process

Remote Sens. 2018, 10, 1754 10 of 23

with the rules will follow. Since, the topological relations of the surfaces are exploited in our method,
it is not limited to regular manmade structures or Manhattan-World.

Remote Sens. 2017, 9, x FOR PEER REVIEW 10 of 23

then the process with the rules will follow. Since, the topological relations of the surfaces are exploited
in our method, it is not limited to regular manmade structures or Manhattan-World.

Figure 5. (a) The segments of surfaces patches, (b) permanent structures, the wall in green, the ceiling
in red and the floor is in orange color. The solid black circle shows the top part of the book shelf that
is mislabeled as the ceiling. Hence, the bookshelf (yellow rectangle) is mislabeled as wall. Likewise,
near the floor some horizontal segments are mislabeled (circles with dashed line). (c) After checking
the intersection of vertical projection for each pair of surfaces and correction, the result is shown as
the wall (green), the ceiling (red) and the floor (orange). The blue object is a clutter. Angle threshold
is α= 50 degrees. Notice that the dormer and attached walls are labeled correctly in our method. The
data is obtained from Mura et al. [10].

In the permanent structure detection method, a ceiling or floor will be distinguished from a wall
by the angle threshold which is by default α = 45 degrees. By applying rules 1, 2, and 3, a slanted
surface could be labeled to a wall or ceiling (floor) depending on its normal angle. In our method, a
slanted surface is distinguished by this angle threshold defined by the user. Figure 6 shows two
different cases when α is set to 40 and 50 degrees. However, there is a special case where the slanted
surface is distinguished as a wall and is supported by another vertical wall that is connected to the
floor (see Figure 6b). Such a case happens when a slanted wall and a vertical wall are not segmented
in the same surface patch since they have different normal angles during the generalization.
Therefore, an extra check is required to see if the almost-vertical surface that is not connected to the
ceiling is a wall or not. This check could be done by means of support and adjacency relation between
a slanted surface and a vertical surface. Let v1 and v2 represent the two almost-vertical surfaces and
one of them is not connected to the ceiling, then the lower one (with a lower center) is called supporter
(v1) and the upper one is called the supported (v2). Furthermore, the condition max-z(v1) < min-z(v2)
including a buffer should be satisfied. Notice that checking the support relation is necessary,
otherwise objects attached to the wall could be labeled as a slanted wall. Respecting this explanation,
the corresponding edge (E) of two adjacent wall candidates (v1, v2) could obtain the following label:E
obtains the label wall-slantedwall iff v1 and v2 are both almost-vertical and the intersection line is
almost-horizontal and one surface is supporting the other one.

The following rule is applied to define the label of a node V: Rule 4. V obtains the label
slantedwall iff the count of wall-slantedwall edges is more than zero and the count of wall-wall edges
is more than zero and V is almost-vertical.

Figure 6. (a) Shows the permanent structure, ceiling (red), wall (cyan), blue (slanted walls) and green
(floor). The angle threshold is 50 degrees. (b) Shows the permanent structure, with the same angle
threshold (α = 50), but the slanted walls algorithm is off. Consequently, supporting walls are not

Figure 5. (a) The segments of surfaces patches, (b) permanent structures, the wall in green, the ceiling
in red and the floor is in orange color. The solid black circle shows the top part of the book shelf that is
mislabeled as the ceiling. Hence, the bookshelf (yellow rectangle) is mislabeled as wall. Likewise, near
the floor some horizontal segments are mislabeled (circles with dashed line). (c) After checking the
intersection of vertical projection for each pair of surfaces and correction, the result is shown as the
wall (green), the ceiling (red) and the floor (orange). The blue object is a clutter. Angle threshold is
α = 50 degrees. Notice that the dormer and attached walls are labeled correctly in our method. The
data is obtained from Mura et al. [10].

In the permanent structure detection method, a ceiling or floor will be distinguished from a wall
by the angle threshold which is by default α = 45 degrees. By applying rules 1, 2, and 3, a slanted surface
could be labeled to a wall or ceiling (floor) depending on its normal angle. In our method, a slanted
surface is distinguished by this angle threshold defined by the user. Figure 6 shows two different
cases when α is set to 40 and 50 degrees. However, there is a special case where the slanted surface is
distinguished as a wall and is supported by another vertical wall that is connected to the floor (see
Figure 6b). Such a case happens when a slanted wall and a vertical wall are not segmented in the same
surface patch since they have different normal angles during the generalization. Therefore, an extra
check is required to see if the almost-vertical surface that is not connected to the ceiling is a wall or
not. This check could be done by means of support and adjacency relation between a slanted surface
and a vertical surface. Let v1 and v2 represent the two almost-vertical surfaces and one of them is
not connected to the ceiling, then the lower one (with a lower center) is called supporter (v1) and the
upper one is called the supported (v2). Furthermore, the condition max-z(v1) < min-z(v2) including a
buffer should be satisfied. Notice that checking the support relation is necessary, otherwise objects
attached to the wall could be labeled as a slanted wall. Respecting this explanation, the corresponding
edge (E) of two adjacent wall candidates (v1, v2) could obtain the following label: E obtains the label
wall-slantedwall iff v1 and v2 are both almost-vertical and the intersection line is almost-horizontal and
one surface is supporting the other one.

The following rule is applied to define the label of a node V: Rule 4. V obtains the label slantedwall
iff the count of wall-slantedwall edges is more than zero and the count of wall-wall edges is more than
zero and V is almost-vertical.

Remote Sens. 2017, 9, x FOR PEER REVIEW 10 of 23

then the process with the rules will follow. Since, the topological relations of the surfaces are exploited
in our method, it is not limited to regular manmade structures or Manhattan-World.

Figure 5. (a) The segments of surfaces patches, (b) permanent structures, the wall in green, the ceiling
in red and the floor is in orange color. The solid black circle shows the top part of the book shelf that
is mislabeled as the ceiling. Hence, the bookshelf (yellow rectangle) is mislabeled as wall. Likewise,
near the floor some horizontal segments are mislabeled (circles with dashed line). (c) After checking
the intersection of vertical projection for each pair of surfaces and correction, the result is shown as
the wall (green), the ceiling (red) and the floor (orange). The blue object is a clutter. Angle threshold
is α= 50 degrees. Notice that the dormer and attached walls are labeled correctly in our method. The
data is obtained from Mura et al. [10].

In the permanent structure detection method, a ceiling or floor will be distinguished from a wall
by the angle threshold which is by default α = 45 degrees. By applying rules 1, 2, and 3, a slanted
surface could be labeled to a wall or ceiling (floor) depending on its normal angle. In our method, a
slanted surface is distinguished by this angle threshold defined by the user. Figure 6 shows two
different cases when α is set to 40 and 50 degrees. However, there is a special case where the slanted
surface is distinguished as a wall and is supported by another vertical wall that is connected to the
floor (see Figure 6b). Such a case happens when a slanted wall and a vertical wall are not segmented
in the same surface patch since they have different normal angles during the generalization.
Therefore, an extra check is required to see if the almost-vertical surface that is not connected to the
ceiling is a wall or not. This check could be done by means of support and adjacency relation between
a slanted surface and a vertical surface. Let v1 and v2 represent the two almost-vertical surfaces and
one of them is not connected to the ceiling, then the lower one (with a lower center) is called supporter
(v1) and the upper one is called the supported (v2). Furthermore, the condition max-z(v1) < min-z(v2)
including a buffer should be satisfied. Notice that checking the support relation is necessary,
otherwise objects attached to the wall could be labeled as a slanted wall. Respecting this explanation,
the corresponding edge (E) of two adjacent wall candidates (v1, v2) could obtain the following label:E
obtains the label wall-slantedwall iff v1 and v2 are both almost-vertical and the intersection line is
almost-horizontal and one surface is supporting the other one.

The following rule is applied to define the label of a node V: Rule 4. V obtains the label
slantedwall iff the count of wall-slantedwall edges is more than zero and the count of wall-wall edges
is more than zero and V is almost-vertical.

Figure 6. (a) Shows the permanent structure, ceiling (red), wall (cyan), blue (slanted walls) and green
(floor). The angle threshold is 50 degrees. (b) Shows the permanent structure, with the same angle
threshold (α = 50), but the slanted walls algorithm is off. Consequently, supporting walls are not

Figure 6. (a) Shows the permanent structure, ceiling (red), wall (cyan), blue (slanted walls) and green
(floor). The angle threshold is 50 degrees. (b) Shows the permanent structure, with the same angle
threshold (α = 50), but the slanted walls algorithm is off. Consequently, supporting walls are not
detected (dashed circle). Only walls (cyan color) that are connected to the ceiling are correctly detected.
(c) The angle threshold is set to 40 degrees, and slanted walls are labeled as the ceiling.

Remote Sens. 2018, 10, 1754 11 of 23

Since a real dataset with slanted walls from a MLS system was not available, our algorithm is
tested on a part of the penthouse dataset from Mura et al. [10]. We assumed the slanted surfaces once
as the non-horizontal ceiling (α = 40) and once as slanted walls (α = 50). Figure 6 demonstrates the
results on a part of the penthouse building. This experiment shows the robustness of the algorithm in
case of non-horizontal ceiling or slanted walls. In the next section, a method is presented for detecting
the openings by using the trajectory and applying occlusion-test.

4.3. Opening Detection Using the MLS Trajectory

After detecting the walls, floor and ceilings, the point clouds are enriched with more semantics,
such as openings (doors and windows). Reasonably, it is expected that doors and windows are located
on the walls. Furthermore, openings are represented as holes or gaps in the data because where there
is an open door or a window the laser rays go through the wall surface. The same gaps happen in
the data, if part of the scene is not captured by the laser scanner, e.g., because of occlusion. Therefore,
one problem of opening detection is to discriminate between data gaps and real openings in the data.
We exploit the fact that a laser beam, crossing a wall surface with the opening, hits the objects behind
the surface. Hence, from each location on the trajectory a ray is reconstructed to the measured laser
point. Note that here the time attribute of the points plays an important role. Because from every
point on the trajectory only the measured points at that specific time are evaluated for the ray casting.
This process is named occlusion-test and is implemented as the following (see Figure 7): First, each
surface patch Si with the wall label would be enveloped by a 3D voxel grid (grid size of 10 cm). Second,
a ray is constructed from t1 on the trajectory to the corresponding point p1 in the point cloud. If the
ray intersects a surface s1 ε Si, the intersection point of the ray and the surface corresponds to one of
the voxels of the s1. The incident voxel obtains one of the four labels: Occupied, occluded, open or
unknown. The incident voxel is occupied if the measured point p1 belongs to the s1, occluded if p1 is
in front of the s1, opened if p1 is behind the s1 and is unknown otherwise. If the ray does not intersect
the surface the labels remain unchanged.

Remote Sens. 2017, 9, x FOR PEER REVIEW 11 of 23

detected (dashed circle). Only walls (cyan color) that are connected to the ceiling are correctly
detected. (c) The angle threshold is set to 40 degrees, and slanted walls are labeled as the ceiling.

Since a real dataset with slanted walls from a MLS system was not available, our algorithm is
tested on a part of the penthouse dataset from Mura et al. [10]. We assumed the slanted surfaces once
as the non-horizontal ceiling (α = 40) and once as slanted walls (α = 50). Figure 6 demonstrates the
results on a part of the penthouse building. This experiment shows the robustness of the algorithm
in case of non-horizontal ceiling or slanted walls. In the next section, a method is presented for
detecting the openings by using the trajectory and applying occlusion-test.

4.3. Opening Detection Using the MLS Trajectory

After detecting the walls, floor and ceilings, the point clouds are enriched with more semantics,
such as openings (doors and windows). Reasonably, it is expected that doors and windows are
located on the walls. Furthermore, openings are represented as holes or gaps in the data because
where there is an open door or a window the laser rays go through the wall surface. The same gaps
happen in the data, if part of the scene is not captured by the laser scanner, e.g., because of occlusion.
Therefore, one problem of opening detection is to discriminate between data gaps and real openings
in the data. We exploit the fact that a laser beam, crossing a wall surface with the opening, hits the
objects behind the surface. Hence, from each location on the trajectory a ray is reconstructed to the
measured laser point. Note that here the time attribute of the points plays an important role. Because
from every point on the trajectory only the measured points at that specific time are evaluated for the
ray casting. This process is named occlusion-test and is implemented as the following (see Figure 7):
First, each surface patch Si with the wall label would be enveloped by a 3D voxel grid (grid size of 10
cm). Second, a ray is constructed from t1 on the trajectory to the corresponding point p1 in the point
cloud. If the ray intersects a surface s1 ϵ Si, the intersection point of the ray and the surface
corresponds to one of the voxels of the s1. The incident voxel obtains one of the four labels: Occupied,
occluded, open or unknown. The incident voxel is occupied if the measured point p1 belongs to the
s1, occluded if p1 is in front of the s1, opened if p1 is behind the s1 and is unknown otherwise. If the
ray does not intersect the surface the labels remain unchanged.

Figure 7. An incident voxel on the wall surface will be assigned the label occupied, occluded or open
if the measured point p1 is in the front, on the surface or behind the wall surface respectively.

After the occlusion-test process, the results need to be further inspected to identify false
openings. False openings happen where a clutter is connected to the ceiling and is extended to the
neighboring walls. Therefore, during the occlusion test it is considered as a surface with opening
(Figure 8b). Such false openings are identified and removed if more than a percentage (e.g., 80%) of

Figure 7. An incident voxel on the wall surface will be assigned the label occupied, occluded or open if
the measured point p1 is in the front, on the surface or behind the wall surface respectively.

After the occlusion-test process, the results need to be further inspected to identify false openings.
False openings happen where a clutter is connected to the ceiling and is extended to the neighboring
walls. Therefore, during the occlusion test it is considered as a surface with opening (Figure 8b).
Such false openings are identified and removed if more than a percentage (e.g., 80%) of voxels in the
wall surface are labeled as openings (Figure 8c). With this simple check most of the false openings and
erroneous walls are removed.

Remote Sens. 2018, 10, 1754 12 of 23

Furthermore, it is possible to separate the openings into openings that intersect the floor (doors),
and those that are above the floor (windows). However, the clear frame of the opening could not be
inferred because of the noise and occlusion.

Remote Sens. 2017, 9, x FOR PEER REVIEW 12 of 23

voxels in the wall surface are labeled as openings (Figure 8c). With this simple check most of the false
openings and erroneous walls are removed.

Furthermore, it is possible to separate the openings into openings that intersect the floor (doors),
and those that are above the floor (windows). However, the clear frame of the opening could not be
inferred because of the noise and occlusion.

Figure 8. (a) The classification of walls (orange), opening (light blue) and clutter (blue) in the fire truck
hall of Fire Brigade building. The misclassified walls (red dotted area) cause the occlusion test
algorithm to add the excess glass walls (light blue in (b)) in the middle of space that unnecessarily
divides the space to several partitions. Figure (c) shows the correct classification of walls after
identifying and removing false openings.

The occlusion-test provides additional information about the points behind the wall surface.
During the occlusion-test, points that are behind each surface are flagged for further inspection. Each
point p1 that is behind the surface s1 and is measured from t1 on the trajectory, can be a reflected
point or a point that is sensed through a transparent surface. In Section 3.2, it was explained how to
identify points that are caused by the reflection. Otherwise, the point is labeled as a point-behind-
surface artefact and will be removed from the collection. Here, the assumption is that the objects
behind an opening are scanned properly from the belonging space. A point behind a surface is less
reliable because it is possibly measured through a glass surface. For example, in one of the datasets
(Fire Brigade building, level 2) some of the rooms are partially mirrored to the outside of the building,
because of a lot of glass surfaces in the façade. Consequently, in detecting the permanent structures
they are mislabeled as walls, floors and ceilings. By removing points behind a surface, artefacts that
are outside the building layout and could not be identified as reflection will be removed.

5. Space Partitioning

Space partitioning is the process of separating space into more meaningful partitions that could
be differentiated by permanent structures. Every space represents a room or a corridor. Unlike other
methods that use a 2D projection of walls into xy-plane and applies cell decomposition, our method
relies on volumetric space partitioning (Section 5.1). Therefore, slanted walls and non-horizontal
ceilings do not constrain our method. For this purpose, a voxel space with the voxel-size of 0.10 m is
exploited. In Section 5.2, the navigable and non-navigable spaces are extracted from the voxels.

5.1. Volumetric Space Partitioning

A voxel space is generated from the point clouds for space partitioning. Voxels are labeled with
the permanent structure semantics. The occupied, opening and occlusion labels (Section 4.3) are
transferred to the voxels as occupied label. Rest of the voxels are labeled as empty (unoccupied).
Including the label of openings and gaps is important for space partitioning, because spaces can be

Figure 8. (a) The classification of walls (orange), opening (light blue) and clutter (blue) in the fire truck
hall of Fire Brigade building. The misclassified walls (red dotted area) cause the occlusion test algorithm
to add the excess glass walls (light blue in (b)) in the middle of space that unnecessarily divides the
space to several partitions. Figure (c) shows the correct classification of walls after identifying and
removing false openings.

The occlusion-test provides additional information about the points behind the wall surface.
During the occlusion-test, points that are behind each surface are flagged for further inspection.
Each point p1 that is behind the surface s1 and is measured from t1 on the trajectory, can be a reflected
point or a point that is sensed through a transparent surface. In Section 3.2, it was explained how to
identify points that are caused by the reflection. Otherwise, the point is labeled as a point-behind-surface
artefact and will be removed from the collection. Here, the assumption is that the objects behind an
opening are scanned properly from the belonging space. A point behind a surface is less reliable
because it is possibly measured through a glass surface. For example, in one of the datasets (Fire Brigade
building, level 2) some of the rooms are partially mirrored to the outside of the building, because of
a lot of glass surfaces in the façade. Consequently, in detecting the permanent structures they are
mislabeled as walls, floors and ceilings. By removing points behind a surface, artefacts that are outside
the building layout and could not be identified as reflection will be removed.

5. Space Partitioning

Space partitioning is the process of separating space into more meaningful partitions that could
be differentiated by permanent structures. Every space represents a room or a corridor. Unlike other
methods that use a 2D projection of walls into xy-plane and applies cell decomposition, our method
relies on volumetric space partitioning (Section 5.1). Therefore, slanted walls and non-horizontal
ceilings do not constrain our method. For this purpose, a voxel space with the voxel-size of 0.10 m is
exploited. In Section 5.2, the navigable and non-navigable spaces are extracted from the voxels.

5.1. Volumetric Space Partitioning

A voxel space is generated from the point clouds for space partitioning. Voxels are labeled with
the permanent structure semantics. The occupied, opening and occlusion labels (Section 4.3) are
transferred to the voxels as occupied label. Rest of the voxels are labeled as empty (unoccupied).
Including the label of openings and gaps is important for space partitioning, because spaces can be
connected through openings (e.g., a window) or gaps (e.g., an occlusion). Therefore, the dataset that is
used to label voxels contains openings, occluded areas, walls, floors and ceilings.

Remote Sens. 2018, 10, 1754 13 of 23

After labelling the voxel space to occupied and empty, three main steps generate the spaces:
(i) A morphological erosion method is applied on the empty voxels. Therefore, the area covered by
occupied voxels will grow and empty voxels with weak connections will be separated; (ii) A connected
component analysis is applied on selected empty voxels from the previous step to make separate
clusters of empty connected voxels. Each cluster at this stage represents a space partition; (iii) Then a
morphological dilation is applied on empty voxels, while this time empty voxels have a cluster number.
Consequently, the area covered by empty voxels grow while occupied voxels area is shrinking. Finally,
each cluster of empty voxels represents a space partition.

This approach has two advantages, it is volumetric and it is independent of Manhattan-World
constraints. However, the empty voxels that are present outside the building layout will generate some
invalid spaces that need further attention. In the following, we explain how to modify these invalid spaces.

Validating Space Partitions Using the Trajectory: In case the building layout is known, for example
from a ground plan, it is possible to detect and remove invalid spaces generated outside the building
structure. However, our pipeline is just relying on the geometry of the point clouds. Therefore, by using
the trajectory, spaces that are not traversed during the data collection will be discarded. In other words,
space partitions (e.g., rooms, corridors) are representing empty spaces in the environment that have
intersection with the trajectory. A kd-tree search algorithm is used to check a partition’s intersection
with the trajectory. Furthermore, the space partitioning process is retained as a volumetric solution and
projecting spaces to xy-plane is avoided (because of possible slanted walls). For each partition, the
nearby trajectory is found and if the distance is less than the voxel size it indicates the intersection,
hence, a valid partition. This can be done in 3D and it enables us to discard outside partitions that
are not navigated by the trajectory. This approach is favored over methods of calculating the alpha
shape of a partition in 3D or the minimum enveloping polygon in 2D to check the intersection with the
trajectory, because an alpha shape or a minimum enveloping polygon cannot precisely represent the
complex shape of a space partition. Figure 9 shows the spaces and the trajectory from different views.

Remote Sens. 2017, 9, x FOR PEER REVIEW 13 of 23

connected through openings (e.g., a window) or gaps (e.g., an occlusion). Therefore, the dataset that
is used to label voxels contains openings, occluded areas, walls, floors and ceilings.

After labelling the voxel space to occupied and empty, three main steps generate the spaces: (i)
A morphological erosion method is applied on the empty voxels. Therefore, the area covered by
occupied voxels will grow and empty voxels with weak connections will be separated; (ii) A
connected component analysis is applied on selected empty voxels from the previous step to make
separate clusters of empty connected voxels. Each cluster at this stage represents a space partition;
(iii) Then a morphological dilation is applied on empty voxels, while this time empty voxels have a
cluster number. Consequently, the area covered by empty voxels grow while occupied voxels area is
shrinking. Finally, each cluster of empty voxels represents a space partition.

This approach has two advantages, it is volumetric and it is independent of Manhattan-World
constraints. However, the empty voxels that are present outside the building layout will generate
some invalid spaces that need further attention. In the following, we explain how to modify these
invalid spaces.

Validating Space Partitions Using the Trajectory: In case the building layout is known, for
example from a ground plan, it is possible to detect and remove invalid spaces generated outside the
building structure. However, our pipeline is just relying on the geometry of the point clouds.
Therefore, by using the trajectory, spaces that are not traversed during the data collection will be
discarded. In other words, space partitions (e.g., rooms, corridors) are representing empty spaces in
the environment that have intersection with the trajectory. A kd-tree search algorithm is used to check
a partition’s intersection with the trajectory. Furthermore, the space partitioning process is retained
as a volumetric solution and projecting spaces to xy-plane is avoided (because of possible slanted
walls). For each partition, the nearby trajectory is found and if the distance is less than the voxel size
it indicates the intersection, hence, a valid partition. This can be done in 3D and it enables us to
discard outside partitions that are not navigated by the trajectory. This approach is favored over
methods of calculating the alpha shape of a partition in 3D or the minimum enveloping polygon in
2D to check the intersection with the trajectory, because an alpha shape or a minimum enveloping
polygon cannot precisely represent the complex shape of a space partition. Figure 9 shows the spaces
and the trajectory from different views.

Figure 9. (a,b) show the top view of the partitions in various colors and the trajectory in black.
The white places between the spaces are occupied places (e.g., furniture and walls). The dotted circles
show the invalid partitions that are removed, because there is no intersection with the trajectory.
The orange large partition is also an invalid space but is not removed, because it has connection with
the interior space and with the trajectory; (d) The perspective view of the spaces and the trajectory;
(c,e) Show the bottom view of the spaces. The carvings of furniture and occupied places are visible
inside the partitions.

Remote Sens. 2018, 10, 1754 14 of 23

During the space partitioning process, each space partition represents only the empty space if the
furniture is included in the process. This fact is exploited to generate the 3D navigable space. However,
including furniture can cause over-segmentation of the space because some of the furniture can divide
the space in the same room. Next section elaborates on the details of navigable space.

5.2. Extracting the Navigable Space

Having discussed how to generate space partitions, in the following, it is explained how to extract
the navigable and walkable area out of the empty space. Each space partition represents the empty
space (after including the furniture space). The navigable space can be generated in different heights
above the floor and below the ceiling, which is suitable for flying objects to navigate in the space.
Again, it is important that the gaps on the walls caused by the occlusion or opening are labeled as
occupied in the voxels to avoid misinterpretation as walkable space. Doorways that are considered
as openings are labeled as navigable in the final navigable space. Empty voxels just above the floor
are extracted as walkable space. In Figure 9c,e, the spaces are illustrated from the bottom to show the
carvings of the occupied spaces in the empty spaces. If some of the openings connect the spaces and
they are not recognized during the opening detection, as a drawback few partitions cannot be split
and remain as one space (e.g., the orange space in Figure 9). The void between the space partitions is
caused by furniture and permanent structure.

6. Door Detection Using the Trajectory

In this stage, doors that are intersected by the trajectory during the data acquisition can be
detected. Note that in Section 4.3, some doors were already detected as openings by occlusion tests,
while here it is possible to detect closed doors as well. For detecting the doors using the trajectory, the
voxels and the trajectory are the input data of the process. Voxels are used for this step, because the
algorithm tries to find the center of each door that is crossed by the trajectory (see Figure 10).

Remote Sens. 2017, 9, x FOR PEER REVIEW 14 of 23

Figure 9. (a,b) show the top view of the partitions in various colors and the trajectory in black. The
white places between the spaces are occupied places (e.g., furniture and walls). The dotted circles
show the invalid partitions that are removed, because there is no intersection with the trajectory. The
orange large partition is also an invalid space but is not removed, because it has connection with the
interior space and with the trajectory; (d) The perspective view of the spaces and the trajectory; (c,e)
Show the bottom view of the spaces. The carvings of furniture and occupied places are visible inside
the partitions.

During the space partitioning process, each space partition represents only the empty space if
the furniture is included in the process. This fact is exploited to generate the 3D navigable space.
However, including furniture can cause over-segmentation of the space because some of the furniture
can divide the space in the same room. Next section elaborates on the details of navigable space.

5.2. Extracting the Navigable Space

Having discussed how to generate space partitions, in the following, it is explained how to
extract the navigable and walkable area out of the empty space. Each space partition represents the
empty space (after including the furniture space). The navigable space can be generated in different
heights above the floor and below the ceiling, which is suitable for flying objects to navigate in the
space. Again, it is important that the gaps on the walls caused by the occlusion or opening are labeled
as occupied in the voxels to avoid misinterpretation as walkable space. Doorways that are considered
as openings are labeled as navigable in the final navigable space. Empty voxels just above the floor
are extracted as walkable space. In Figure 9c,e, the spaces are illustrated from the bottom to show the
carvings of the occupied spaces in the empty spaces. If some of the openings connect the spaces and
they are not recognized during the opening detection, as a drawback few partitions cannot be split
and remain as one space (e.g., the orange space in Figure 9). The void between the space partitions is
caused by furniture and permanent structure.

6. Door Detection Using the Trajectory

In this stage, doors that are intersected by the trajectory during the data acquisition can be
detected. Note that in Section 4.3, some doors were already detected as openings by occlusion tests,
while here it is possible to detect closed doors as well. For detecting the doors using the trajectory,
the voxels and the trajectory are the input data of the process. Voxels are used for this step, because
the algorithm tries to find the center of each door that is crossed by the trajectory (see Figure 10).

Figure 10. A Zeb-Revo trajectory (blue) crosses an open door in the left and a semi-open door in the
right. The middle door, that is closed, is not traversed by the trajectory thus cannot be detected by our
Figure 10. A Zeb-Revo trajectory (blue) crosses an open door in the left and a semi-open door in the
right. The middle door, that is closed, is not traversed by the trajectory thus cannot be detected by our
algorithm. The yellow boxes show the door center candidates and top of the door voxels. The circles
show the search radius from the door center candidate to the trajectory.

The door center is represented by an empty voxel in case of an open door and an occupied voxel
in case of a closed door. Each voxel in the voxel space is checked whether it can be a center of a
door candidate (a door center). A voxel is a door center candidate if: (i) Nearby the voxel there is a
trajectory; (ii) Above the voxel occupied voxels exist that represent top part of a door frame; (iii) The

Remote Sens. 2018, 10, 1754 15 of 23

neighborhood of the voxel should be empty for an open door. These three criteria enforce three main
search radius parameters: (1) A search range to look for a nearby trajectory (rtraj <

√
3 * voxel-size); (2) a

search radius to look for voxels on top of the door frame relative to the floor (1.80 m < rtop < 2.10 m);
and (3) a neighborhood search radius (rvoid < n * voxel-size) to make sure around the candidate voxel is
empty, where the search radius is a factor of voxel size. The rvoid threshold should always be smaller
than the door width to exclude the door frame in the search for empty neighborhood. Empirically,
if the percentage of empty voxels around a door center within the search radius (rvoid) exceeds 70% of
the total neighbor voxels, then the third criteria for an open door is fulfilled. Furthermore, to speed
up the calculation process, only voxels are explored to be a door center that are located in the height
between 0.8 to 1.10 m relative to the floor, as the door center is expected to be in this height.

Closed Doors: Closed doors appear in the point cloud as part of the wall (Figure 10, the middle
door). When the trajectory crosses the door and the door is closed before or after the scanning,
it appears in the data as if the trajectory went through the wall. To detect closed doors crossed by the
trajectory, the same three criteria as open doors are applied, but with the difference that for the third
rule the neighborhood of the voxel candidate as the door center should be occupied instead of empty.
Notice that simply intersection of wall planes with the trajectory is not sufficient to detect closed doors.
Because in cluttered rooms the trajectory goes between the congested furniture or false detected walls
that can be identified as false doors. Therefore, checking the three criteria is also required for closed
doors. The door detection algorithm, using the trajectory, can only be used for spotting the location
of the door (also double doors), further inspection is required for identifying the door frame or the
door leaf.

7. Results and Evaluation

Our approach is tested on four datasets collected with four different mobile laser scanners.
The details of the datasets and the scanners are given in Table 1. The results of all datasets and the
ground truth are shown in Figure 11. The results show that 80% of the doors and more than 85%
of the rooms are correctly detected. Our methods are tested on buildings that violate the 2.5D and
Manhattan World assumptions. The space partitioning results (Figure 11, 3rd column) show our
constraint-free approach in arbitrary room layouts with different ceiling heights. Both datasets from
Fire Brigade building level 1 and the TU Delft Architecture building have large halls with a high ceiling
and different ceiling heights in other rooms. Figure 11 (3rd column, first and last row) illustrates
the extracted spaces for these two datasets. The permanent structures in Figure 11 (2nd column)
indicates that our pipeline is capable of detecting most of the walls and openings in the heavy cluttered
environments with many reflective surfaces.

Each dataset is subsampled to ease the visualization and to decrease the processing time.
For subsampling, every k’th point of a kNN is used, where a reduction factor between 4 and 6
is applied to decrease the size of the original dataset while keeping the structure of the point clouds.
The subsampling keeps the average point distance less than 0.05 m.

The other important influential factors are noise, the level of clutter and the number of glass
surfaces in the data. The level of noise depends on the sensors precision and the SLAM algorithm.
For details of each MLS device accuracy and noise, the readers are referred to the specification of
each product and the review by Lehtola et al. [24]. In terms of high clutter and high number of glass
surfaces, Fire Brigade dataset poses a lot of challenge because of the very large glass walls. Such glass
walls, as well as heavy clutter are present on the first floor (Figure 12), where the fire trucks are located.

Remote Sens. 2018, 10, 1754 16 of 23

Table 1. Details of the datasets and capturing device. The number of correctly detected rooms and
doors is mentioned in the fourth and fifth columns.

Dataset # Points MLS Device #Rooms/#Detected #Doors/#Detected Clutter and
Glass

Fire Brigade level 1 2.9 M Zeb1 9/8 8/7 High
Fire Brigade level 2 3.6 M Zeb1 16/14 17/12 High
Cadastre Building 4.1 M NavVis Trolley 10/9 7/5 High
TU Braunschweig 1.7 M ITC backpack 30/27 30/29 Low

TU Delft Architecture 3.2 M ZebRevo 18/13 25/18 High

Remote Sens. 2017, 9, x FOR PEER REVIEW 16 of 23

Table 1. Details of the datasets and capturing device. The number of correctly detected rooms and
doors is mentioned in the fourth and fifth columns.

Dataset # Points MLS Device #Rooms/#Detected #Doors/#Detected Clutter and
Glass

Fire Brigade level 1 2.9 M Zeb1 9/8 8/7 High
Fire Brigade level 2 3.6 M Zeb1 16/14 17/12 High
Cadastre Building 4.1 M NavVis Trolley 10/9 7/5 High
TU Braunschweig 1.7 M ITC backpack 30/27 30/29 Low

TU Delft Architecture 3.2 M ZebRevo 18/13 25/18 High

Figure 11. Results of datasets of Table 1. From top to bottom: Fire Brigade building level 2, level 1, TU
Braunschweig, Cadastre building and TU Delft Architecture building. In the second column, detected
walls (orange), floor (yellow), doors (red) and openings (blue) are shown.

Figure 11. Results of datasets of Table 1. From top to bottom: Fire Brigade building level 2, level 1, TU
Braunschweig, Cadastre building and TU Delft Architecture building. In the second column, detected
walls (orange), floor (yellow), doors (red) and openings (blue) are shown.

Remote Sens. 2018, 10, 1754 17 of 23

Remote Sens. 2017, 9, x FOR PEER REVIEW 17 of 23

Figure 12. First level of Fire Brigade building. The amount of clutter and very large glass walls makes
the process of wall detection challenging. The ceiling has two different heights and there is a lot of
clutter below the ceiling. The colors represent the segments.

Implementation: All algorithms are written in C++ and tested on a Lenovo ThinkPad
workstation with an Intel core i7 (2.5 GHz), 16 GB RAM. The main computational cost is devoted to
occlusion test process, because of the ray casting algorithm where the peak of RAM usage is 16 GB
and for large datasets it takes up to an hour. Another expensive process is space partitioning, because
of the 3D morphological process on a large number of voxels. For an area with almost 15 million
voxels, it takes 10 minutes with a voxel size of 10 cm, and 3 minutes with a voxel size of 20 cm. Other
algorithms including permanent structure detection, door detection, reflection removal, level
partitioning and surface growing take seconds up to 5 minutes depending on the size of the dataset.
The computation time for space partitioning is more dependent on the volume of the building and
height of the ceiling than the size of the point clouds. For example, for the TU Delft dataset the
number of voxels exceeds 100 million, since the orange hall has high ceilings (almost 13 meters).
Therefore, the space partitioning method is implemented with 20 cm voxel size for this dataset to
speed up the process.

Parameter Selection: Our pipeline starts with the surface growing segmentation followed by a
surface patch generalization algorithm. For the surface growing segmentation the most important
parameter is the smoothness threshold. The optimal value depends on the amount of sensor noise
and the noise caused by the SLAM algorithm. For the MLS devices in this article, the sensor noise is
less than 5 cm. However, there is more noise in the data created by SLAM algorithm and artefacts of
the glass reflections. Therefore, we experienced a value between 10 and 15 cm for datasets from Zeb1
as a good threshold for planar segmentation and between 5 to 10 cm for other datasets (ZebRevo, ITC
Backpack and NavVis Trolley). For the surface patch generalization, nearby surfaces are considered
parallel if their normal vector angle tolerance is less than θ < 10°, and their proximity (d) alongside
the plane is less than 60 cm. The time lag Δt is the important parameter for detecting and pruning of
ghost walls. Empirically, we choose 150 seconds time lag for a point to be considered as a reflected
point, and if more than 70% of the points in a segment have this time difference with their neighbor
trajectory that segments is defined as a ghost wall.

For reconstructing the adjacency graph, the distance for adjacency of two surface patches is less
than dadj < 10 cm and the minimum length of an intersection line is 20 cm. We experienced that a
minimum length of 20 cm in most datasets is reasonable. There is just one special case that the
threshold is increased to 25 cm, when the frames of doors are extended to the ceiling (e.g., glass rooms
in Figure 13). To avoid door leaves to be misclassified as wall, a minimum length of 25 cm for
intersection line is considered.

The default threshold of 45° is considered for separating the surfaces to almost-vertical and
almost-horizontal. In case of different sloped ceilings, the angle threshold could be changed to
recognize the ceilings from slanted walls. The minimum number of supporting points for each surface
to be included in the adjacency graph is 500 points. A voxel size of 10 cm is preferred for algorithms

Figure 12. First level of Fire Brigade building. The amount of clutter and very large glass walls makes
the process of wall detection challenging. The ceiling has two different heights and there is a lot of
clutter below the ceiling. The colors represent the segments.

Implementation: All algorithms are written in C++ and tested on a Lenovo ThinkPad workstation
with an Intel core i7 (2.5 GHz), 16 GB RAM. The main computational cost is devoted to occlusion test
process, because of the ray casting algorithm where the peak of RAM usage is 16 GB and for large
datasets it takes up to an hour. Another expensive process is space partitioning, because of the 3D
morphological process on a large number of voxels. For an area with almost 15 million voxels, it takes
10 minutes with a voxel size of 10 cm, and 3 minutes with a voxel size of 20 cm. Other algorithms
including permanent structure detection, door detection, reflection removal, level partitioning and
surface growing take seconds up to 5 minutes depending on the size of the dataset. The computation
time for space partitioning is more dependent on the volume of the building and height of the ceiling
than the size of the point clouds. For example, for the TU Delft dataset the number of voxels exceeds
100 million, since the orange hall has high ceilings (almost 13 meters). Therefore, the space partitioning
method is implemented with 20 cm voxel size for this dataset to speed up the process.

Parameter Selection: Our pipeline starts with the surface growing segmentation followed by a
surface patch generalization algorithm. For the surface growing segmentation the most important
parameter is the smoothness threshold. The optimal value depends on the amount of sensor noise and
the noise caused by the SLAM algorithm. For the MLS devices in this article, the sensor noise is less
than 5 cm. However, there is more noise in the data created by SLAM algorithm and artefacts of the
glass reflections. Therefore, we experienced a value between 10 and 15 cm for datasets from Zeb1 as
a good threshold for planar segmentation and between 5 to 10 cm for other datasets (ZebRevo, ITC
Backpack and NavVis Trolley). For the surface patch generalization, nearby surfaces are considered
parallel if their normal vector angle tolerance is less than θ < 10◦, and their proximity (d) alongside
the plane is less than 60 cm. The time lag ∆t is the important parameter for detecting and pruning of
ghost walls. Empirically, we choose 150 seconds time lag for a point to be considered as a reflected
point, and if more than 70% of the points in a segment have this time difference with their neighbor
trajectory that segments is defined as a ghost wall.

For reconstructing the adjacency graph, the distance for adjacency of two surface patches is less
than dadj < 10 cm and the minimum length of an intersection line is 20 cm. We experienced that
a minimum length of 20 cm in most datasets is reasonable. There is just one special case that the
threshold is increased to 25 cm, when the frames of doors are extended to the ceiling (e.g., glass
rooms in Figure 13). To avoid door leaves to be misclassified as wall, a minimum length of 25 cm for
intersection line is considered.

The default threshold of 45◦ is considered for separating the surfaces to almost-vertical and
almost-horizontal. In case of different sloped ceilings, the angle threshold could be changed to
recognize the ceilings from slanted walls. The minimum number of supporting points for each surface

Remote Sens. 2018, 10, 1754 18 of 23

to be included in the adjacency graph is 500 points. A voxel size of 10 cm is preferred for algorithms
operating on voxels, such as the occlusion test, space partitioning and door detection. For a point
spacing of 2 to 5 cm, the voxel size of 10 cm offers a good balance between the computational time
and the number of preserved details of permanent structures. The window size of the morphological
operator for the space partitioning should be larger than a doorway to ensure the separation of spaces
at the locations of open doors. Therefore, a window size between 1.0 to 1.3 m is suggested. Other soft
parameters, such as kNN search, proximity search and connected components do not have significant
influence on the whole pipeline.

Remote Sens. 2017, 9, x FOR PEER REVIEW 18 of 23

operating on voxels, such as the occlusion test, space partitioning and door detection. For a point
spacing of 2 to 5 cm, the voxel size of 10 cm offers a good balance between the computational time
and the number of preserved details of permanent structures. The window size of the morphological
operator for the space partitioning should be larger than a doorway to ensure the separation of spaces
at the locations of open doors. Therefore, a window size between 1.0 to 1.3 m is suggested. Other soft
parameters, such as kNN search, proximity search and connected components do not have significant
influence on the whole pipeline.

Figure 13. Result of wall detection, using the adjacency of segments. (a) The effect of minimum length
parameter for intersection lines between adjacent segments (door leaves and the ceiling) on the result
of wall detection is shown. In (b) the minimum length is 25 cm, so small intersections are discarded
and consequently door leaves are not misclassified as wall.

Robustness: The robustness of our algorithms is evaluated by testing on various datasets
collected by four different mobile laser scanning devices. Additionally, our pipeline is tested on a
multistory building (Fire Brigade dataset), a building with slanted walls (Figure 6) and different
ceiling heights (Fire Brigade building, level 1 and the TU Delft Architecture building), and a building
with high amount of clutter and glass surfaces (Cadastre building and Fire Brigade building, level 2).
Among those, buildings with large glass walls pose the largest challenge to our pipeline (for wall
detection and space partitioning), because the connection of glass surfaces near the ceiling is not
guaranteed in the segmented data and in some cases these glass surfaces are missing entirely in the
data (the TU Delft Architecture building the hall with orange stairs, Figure 14). However, the wall
detection is capable of detecting glass walls even with loose connections to the ceiling.

Figure 14. The robustness of our algorithms for the buildings with many glass surfaces. (a) The orange
hall in the TU Delft Architecture Building, (b) the point clouds and (c) the classified walls and glasses.

For reconstructing the adjacency graph, all datasets are processed with dadj 10 cm. We
experienced, in most cases that increasing this threshold to 20 cm or higher results in losing some of
the walls; and decreasing the threshold to less than 10 cm results in misclassification of some clutter
surfaces to wall surface. The dadj parameter depends on the noise in the data. For datasets with a
higher level of noise the threshold could be increased to 20 cm.

Figure 13. Result of wall detection, using the adjacency of segments. (a) The effect of minimum length
parameter for intersection lines between adjacent segments (door leaves and the ceiling) on the result
of wall detection is shown. In (b) the minimum length is 25 cm, so small intersections are discarded
and consequently door leaves are not misclassified as wall.

Robustness: The robustness of our algorithms is evaluated by testing on various datasets collected
by four different mobile laser scanning devices. Additionally, our pipeline is tested on a multistory
building (Fire Brigade dataset), a building with slanted walls (Figure 6) and different ceiling heights
(Fire Brigade building, level 1 and the TU Delft Architecture building), and a building with high amount
of clutter and glass surfaces (Cadastre building and Fire Brigade building, level 2). Among those,
buildings with large glass walls pose the largest challenge to our pipeline (for wall detection and
space partitioning), because the connection of glass surfaces near the ceiling is not guaranteed in the
segmented data and in some cases these glass surfaces are missing entirely in the data (the TU Delft
Architecture building the hall with orange stairs, Figure 14). However, the wall detection is capable of
detecting glass walls even with loose connections to the ceiling.

Remote Sens. 2017, 9, x FOR PEER REVIEW 18 of 23

operating on voxels, such as the occlusion test, space partitioning and door detection. For a point
spacing of 2 to 5 cm, the voxel size of 10 cm offers a good balance between the computational time
and the number of preserved details of permanent structures. The window size of the morphological
operator for the space partitioning should be larger than a doorway to ensure the separation of spaces
at the locations of open doors. Therefore, a window size between 1.0 to 1.3 m is suggested. Other soft
parameters, such as kNN search, proximity search and connected components do not have significant
influence on the whole pipeline.

Figure 13. Result of wall detection, using the adjacency of segments. (a) The effect of minimum length
parameter for intersection lines between adjacent segments (door leaves and the ceiling) on the result
of wall detection is shown. In (b) the minimum length is 25 cm, so small intersections are discarded
and consequently door leaves are not misclassified as wall.

Robustness: The robustness of our algorithms is evaluated by testing on various datasets
collected by four different mobile laser scanning devices. Additionally, our pipeline is tested on a
multistory building (Fire Brigade dataset), a building with slanted walls (Figure 6) and different
ceiling heights (Fire Brigade building, level 1 and the TU Delft Architecture building), and a building
with high amount of clutter and glass surfaces (Cadastre building and Fire Brigade building, level 2).
Among those, buildings with large glass walls pose the largest challenge to our pipeline (for wall
detection and space partitioning), because the connection of glass surfaces near the ceiling is not
guaranteed in the segmented data and in some cases these glass surfaces are missing entirely in the
data (the TU Delft Architecture building the hall with orange stairs, Figure 14). However, the wall
detection is capable of detecting glass walls even with loose connections to the ceiling.

Figure 14. The robustness of our algorithms for the buildings with many glass surfaces. (a) The orange
hall in the TU Delft Architecture Building, (b) the point clouds and (c) the classified walls and glasses.

For reconstructing the adjacency graph, all datasets are processed with dadj 10 cm. We
experienced, in most cases that increasing this threshold to 20 cm or higher results in losing some of
the walls; and decreasing the threshold to less than 10 cm results in misclassification of some clutter
surfaces to wall surface. The dadj parameter depends on the noise in the data. For datasets with a
higher level of noise the threshold could be increased to 20 cm.

Figure 14. The robustness of our algorithms for the buildings with many glass surfaces. (a) The orange
hall in the TU Delft Architecture Building, (b) the point clouds and (c) the classified walls and glasses.

For reconstructing the adjacency graph, all datasets are processed with dadj 10 cm. We experienced,
in most cases that increasing this threshold to 20 cm or higher results in losing some of the walls; and
decreasing the threshold to less than 10 cm results in misclassification of some clutter surfaces to wall
surface. The dadj parameter depends on the noise in the data. For datasets with a higher level of noise
the threshold could be increased to 20 cm.

Remote Sens. 2018, 10, 1754 19 of 23

Limitations: The permanent structure detection using the adjacency graph is susceptible to errors
when there is a clutter at the ceiling close to the walls (Figure 15). This kind of clutter could be
misclassified as wall if the size of the clutter is large. Hence, during the occlusion test it may be
misclassified as a glass surface. Consequently, the space would be partitioned incorrectly. The reason
behind this limitation is that the rules in the adjacency graph deliberately do not check if a wall
candidate is connected to the floor, because in most cases walls are occluded near the floor. Hence,
a structure in the ceiling connected to the neighboring walls could cause this error.

Remote Sens. 2017, 9, x FOR PEER REVIEW 19 of 23

Limitations: The permanent structure detection using the adjacency graph is susceptible to
errors when there is a clutter at the ceiling close to the walls (Figure 15). This kind of clutter could be
misclassified as wall if the size of the clutter is large. Hence, during the occlusion test it may be
misclassified as a glass surface. Consequently, the space would be partitioned incorrectly. The reason
behind this limitation is that the rules in the adjacency graph deliberately do not check if a wall
candidate is connected to the floor, because in most cases walls are occluded near the floor. Hence, a
structure in the ceiling connected to the neighboring walls could cause this error.

Figure 15. (a) Color point clouds and (b) segmented point clouds. Our adjacency graph algorithm is
limited when a clutter in the ceiling is connected to the walls and constructs a vertical surface attached
to the ceiling and neighboring walls (red area in the images). In (c) walls are yellow, and the red area
is misclassified as wall. The dataset belongs to Mura et al. [10].

During the door detection algorithm, the algorithm fails in case of low ceilings spaces, such as
basements or tall doors reaching until the ceiling. This is because the algorithm searches for the points
on top of the door center, and when the ceiling is low it could be considered as the top of the door
that results in detecting false positive doors (see Figure 16). Detection of doors may be difficult if they
are semi-open, because the condition that checks if a door center is in a void neighborhood for an
open door cannot be true if a door-leaf is occupying part of the doorway. Double doors, could be
spotted with our algorithm, but the exact door frame could not be extracted.

Figure 16. Door detection method in an area with a low ceiling. (a) Shows the detected walls (grey),
false walls (red), missed walls (green) and detected doors (blue). Most of the doors crossed by the
trajectory are detected. (b) The side view shows the trajectory and low ceiling (light blue). The purple
dots are points above the trajectory that are wrongly detected as a door. (c) Is the top view of (b).

Using the trajectory to separate the levels can be error-prone in buildings with a lot of glass
surfaces, because objects could be seen from other levels, especially in the stair cases. However, using
the trajectory for the Fire Brigade building with a huge space in the first level that spans to the other
level is the reasonable option.

In the cadastre building dataset (Figure 11, 3rd row), the surface growing segmentation results
in flawed segments because of slanted glass surfaces and artefacts outside the façade (Figure 17).
Consequently, the supporting walls that are connected to the slanted glasses could not be extracted.

Figure 15. (a) Color point clouds and (b) segmented point clouds. Our adjacency graph algorithm is
limited when a clutter in the ceiling is connected to the walls and constructs a vertical surface attached
to the ceiling and neighboring walls (red area in the images). In (c) walls are yellow, and the red area is
misclassified as wall. The dataset belongs to Mura et al. [10].

During the door detection algorithm, the algorithm fails in case of low ceilings spaces, such as
basements or tall doors reaching until the ceiling. This is because the algorithm searches for the points
on top of the door center, and when the ceiling is low it could be considered as the top of the door that
results in detecting false positive doors (see Figure 16). Detection of doors may be difficult if they are
semi-open, because the condition that checks if a door center is in a void neighborhood for an open
door cannot be true if a door-leaf is occupying part of the doorway. Double doors, could be spotted
with our algorithm, but the exact door frame could not be extracted.

Remote Sens. 2017, 9, x FOR PEER REVIEW 19 of 23

Limitations: The permanent structure detection using the adjacency graph is susceptible to
errors when there is a clutter at the ceiling close to the walls (Figure 15). This kind of clutter could be
misclassified as wall if the size of the clutter is large. Hence, during the occlusion test it may be
misclassified as a glass surface. Consequently, the space would be partitioned incorrectly. The reason
behind this limitation is that the rules in the adjacency graph deliberately do not check if a wall
candidate is connected to the floor, because in most cases walls are occluded near the floor. Hence, a
structure in the ceiling connected to the neighboring walls could cause this error.

Figure 15. (a) Color point clouds and (b) segmented point clouds. Our adjacency graph algorithm is
limited when a clutter in the ceiling is connected to the walls and constructs a vertical surface attached
to the ceiling and neighboring walls (red area in the images). In (c) walls are yellow, and the red area
is misclassified as wall. The dataset belongs to Mura et al. [10].

During the door detection algorithm, the algorithm fails in case of low ceilings spaces, such as
basements or tall doors reaching until the ceiling. This is because the algorithm searches for the points
on top of the door center, and when the ceiling is low it could be considered as the top of the door
that results in detecting false positive doors (see Figure 16). Detection of doors may be difficult if they
are semi-open, because the condition that checks if a door center is in a void neighborhood for an
open door cannot be true if a door-leaf is occupying part of the doorway. Double doors, could be
spotted with our algorithm, but the exact door frame could not be extracted.

Figure 16. Door detection method in an area with a low ceiling. (a) Shows the detected walls (grey),
false walls (red), missed walls (green) and detected doors (blue). Most of the doors crossed by the
trajectory are detected. (b) The side view shows the trajectory and low ceiling (light blue). The purple
dots are points above the trajectory that are wrongly detected as a door. (c) Is the top view of (b).

Using the trajectory to separate the levels can be error-prone in buildings with a lot of glass
surfaces, because objects could be seen from other levels, especially in the stair cases. However, using
the trajectory for the Fire Brigade building with a huge space in the first level that spans to the other
level is the reasonable option.

In the cadastre building dataset (Figure 11, 3rd row), the surface growing segmentation results
in flawed segments because of slanted glass surfaces and artefacts outside the façade (Figure 17).
Consequently, the supporting walls that are connected to the slanted glasses could not be extracted.

Figure 16. Door detection method in an area with a low ceiling. (a) Shows the detected walls (grey),
false walls (red), missed walls (green) and detected doors (blue). Most of the doors crossed by the
trajectory are detected. (b) The side view shows the trajectory and low ceiling (light blue). The purple
dots are points above the trajectory that are wrongly detected as a door. (c) Is the top view of (b).

Using the trajectory to separate the levels can be error-prone in buildings with a lot of glass
surfaces, because objects could be seen from other levels, especially in the stair cases. However, using
the trajectory for the Fire Brigade building with a huge space in the first level that spans to the other
level is the reasonable option.

In the cadastre building dataset (Figure 11, 3rd row), the surface growing segmentation results
in flawed segments because of slanted glass surfaces and artefacts outside the façade (Figure 17).

Remote Sens. 2018, 10, 1754 20 of 23

Consequently, the supporting walls that are connected to the slanted glasses could not be extracted.
The opening detection for cadastre dataset is not performed, since the time stamp of the point clouds
were not available. All the point clouds including the furniture are used for the space partitioning
of the cadastre dataset. Otherwise the interior space will be connected to the outside through the
missing walls.

Remote Sens. 2017, 9, x FOR PEER REVIEW 20 of 23

The opening detection for cadastre dataset is not performed, since the time stamp of the point clouds
were not available. All the point clouds including the furniture are used for the space partitioning of
the cadastre dataset. Otherwise the interior space will be connected to the outside through the
missing walls.

Figure 17. The cadaster building. (a) The top and (b) side view of the point cloud of one of the floors.
The glass façade has slanted surface and artefacts that pose a problem for detecting them by surface
growing. The supporting walls connected to the floor are not detected by our algorithm. (c) The front
view of the cadastre building. Slanted glass surfaces are visible in the façade.

8. Conclusions and Future Work

Several algorithms are presented for the interpretation of complex indoor scenes captured by a
mobile laser scanner. Our work proposes a complete pipeline for classification of MLS indoor point
clouds captured by four different systems. The methods show robustness in dealing with cluttered
scenes and glass surfaces. Arbitrary wall layouts, slanted walls, and non-horizontal ceilings can be
correctly identified in most cases. We presented how to deal with artefacts caused by reflective
surfaces. The usefulness of the scanner trajectory is proved in several algorithms, such as detecting
closed and open doors, removing invalid spaces outside the building layout, separating complex
building levels and detecting ghost walls. Although our approach is not limited to Manhattan-World
and 2.5D assumptions. Still there is a need for improvements to reconstruct water-tight models.

Author Contributions: S.N. has developed and tested the algorithms and wrote the paper. All the co-authors
have read and approved the final manuscript. Parts of this research were done while M.P. was working at the
Faculty of Geo-Information Science and Earth Observation, University of Twente.

Funding: This work is part of the TTW Maps4Society project Smart 3D indoor models to support crisis
management in large public buildings (13742), which are (partly) financed by the Netherlands Organization for
Scientific Research (NWO).

Acknowledgments: Authors would like to thank the Fire Brigade Rotterdam Rijnmond, Cadastre Apeldoorn,
TU Braunschweig and TU Delft for making their buildings available for the test and data collection.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 17. The cadaster building. (a) The top and (b) side view of the point cloud of one of the floors.
The glass façade has slanted surface and artefacts that pose a problem for detecting them by surface
growing. The supporting walls connected to the floor are not detected by our algorithm. (c) The front
view of the cadastre building. Slanted glass surfaces are visible in the façade.

8. Conclusions and Future Work

Several algorithms are presented for the interpretation of complex indoor scenes captured by a
mobile laser scanner. Our work proposes a complete pipeline for classification of MLS indoor point
clouds captured by four different systems. The methods show robustness in dealing with cluttered
scenes and glass surfaces. Arbitrary wall layouts, slanted walls, and non-horizontal ceilings can be
correctly identified in most cases. We presented how to deal with artefacts caused by reflective surfaces.
The usefulness of the scanner trajectory is proved in several algorithms, such as detecting closed
and open doors, removing invalid spaces outside the building layout, separating complex building
levels and detecting ghost walls. Although our approach is not limited to Manhattan-World and 2.5D
assumptions. Still there is a need for improvements to reconstruct water-tight models.

Author Contributions: S.N. has developed and tested the algorithms and wrote the paper. All the co-authors
have read and approved the final manuscript. Parts of this research were done while M.P. was working at the
Faculty of Geo-Information Science and Earth Observation, University of Twente.

Funding: This work is part of the TTW Maps4Society project Smart 3D indoor models to support crisis
management in large public buildings (13742), which are (partly) financed by the Netherlands Organization for
Scientific Research (NWO).

Acknowledgments: Authors would like to thank the Fire Brigade Rotterdam Rijnmond, Cadastre Apeldoorn,
TU Braunschweig and TU Delft for making their buildings available for the test and data collection.

Conflicts of Interest: The authors declare no conflict of interest.

Remote Sens. 2018, 10, 1754 21 of 23

References

1. Mozos, O.M.; Stachniss, C.; Burgard, W. Supervised Learning of Places from Range Data using AdaBoost.
In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain,
18–22 April 2005; pp. 1730–1735.

2. Mozos, O.M. Semantic Labeling of Places with Mobile Robots; Springer: Berlin/Heidelberg, Germany, 2010;
Volume 61.

3. Ikehata, S.; Yang, H.; Furukawa, Y. Structured indoor modeling. In Proceedings of the IEEE International
Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1323–1331.

4. Budroni, A.; Boehm, J. Automated 3D Reconstruction of Interiors from Point Clouds. Int. J. Archit. Comput.
2010, 8, 55–73. [CrossRef]

5. Becker, S.; Peter, M.; Fritsch, D. Grammar-Supported 3d Indoor Reconstruction from Point Clouds For
“As-Built” Bim. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 1, 17–24. [CrossRef]

6. Turner, E.; Zakhor, A. Floor plan generation and room labeling of indoor environments from laser range data.
In Proceedings of the International Conference on Computer Graphics Theory and Applications, Lisbon,
Portugal, 5–8 January 2014.

7. Ochmann, S.; Vock, R.; Wessel, R.; Klein, R. Automatic reconstruction of parametric building models from
indoor point clouds. Comput. Graph. 2016, 54, 94–103. [CrossRef]

8. Mura, C.; Mattausch, O.; Jaspe Villanueva, A.; Gobbetti, E.; Pajarola, R. Automatic room detection and
reconstruction in cluttered indoor environments with complex room layouts. Comput. Graph. 2014, 44, 20–32.
[CrossRef]

9. Bormann, R.; Jordan, F.; Li, W.; Hampp, J.; Hägele, M. Room segmentation: Survey, implementation, and
analysis. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA),
Stockholm, Sweden, 16–21 May 2016; pp. 1019–1026.

10. Mura, C.; Mattausch, O.; Pajarola, R. Piecewise-planar Reconstruction of Multi-room Interiors with Arbitrary
Wall Arrangements. Comput. Graph. Forum 2016, 35, 179–188. [CrossRef]

11. Elseicy, A. Semantic Enrichment of Indoor Mobile Laser Scanner Point Clouds and Trajectories. 2018,
pp. 31–48. Available online: https://library.itc.utwente.nl/papers_2018/msc/gfm/ElSeicy.pdf (accessed on
21 September 2018).

12. Zheng, Y.; Peter, M.; Zhong, R.; Oude Elberink, S.; Zhou, Q. Space Subdivision in Indoor Mobile Laser
Scanning Point Clouds Based on Scanline Analysis. Sensors 2018, 18, 1838. [CrossRef] [PubMed]

13. Foster, P.; Sun, Z.; Park, J.J.; Kuipers, B. VisAGGE: Visible angle grid for glass environments. In Proceedings
of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013;
pp. 2213–2220.

14. Koch, R.; May, S.; Murmann, P.; Nüchter, A. Identification of transparent and specular reflective material in
laser scans to discriminate affected measurements for faultless robotic SLAM. Robot. Auton. Syst. 2017, 87,
296–312. [CrossRef]

15. RIEGL-Terrestrial Scanning. Available online: http://www.riegl.com/nc/products/terrestrial-scanning/
(accessed on 11 January 2018).

16. FARO Focus|FARO. Available online: https://www.faro.com/products/construction-bim-cim/faro-focus/
(accessed on 11 January 2018).

17. Cartographer ROS Integration—Cartographer ROS 1.0.0 Documentation. Available online: http://google-
cartographer-ros.readthedocs.io/en/latest/ (accessed on 10 January 2018).

18. Leica Pegasus: Backpack Wearable Mobile Mapping Solution. Available online: https://leica-geosystems.
com/en/products/mobile-sensor-platforms/capture-platforms/leica-pegasus-backpack (accessed on
10 January 2018).

19. NavVis|M3 Trolley. Available online: http://www.navvis.com/m3trolley (accessed on 10 January 2018).
20. VIAMETRIS-Mobile Mapping Technology. Available online: http://www.viametris.com/ (accessed on

10 January 2018).
21. GeoSLAM—The Experts in “Go-Anywhere” 3D Mobile Mapping Technology. Available online:

https://geoslam.com/ (accessed on 10 January 2018).
22. Matterport 3D Models of Real Interior Spaces. Available online: http://matterport.com (accessed on

4 January 2018).

http://dx.doi.org/10.1260/1478-0771.8.1.55
http://dx.doi.org/10.5194/isprsannals-II-3-W4-17-2015
http://dx.doi.org/10.1016/j.cag.2015.07.008
http://dx.doi.org/10.1016/j.cag.2014.07.005
http://dx.doi.org/10.1111/cgf.13015
https://library.itc.utwente.nl/papers_2018/msc/gfm/ElSeicy.pdf
http://dx.doi.org/10.3390/s18061838
http://www.ncbi.nlm.nih.gov/pubmed/29874873
http://dx.doi.org/10.1016/j.robot.2016.10.014
http://www.riegl.com/nc/products/terrestrial-scanning/
https://www.faro.com/products/construction-bim-cim/faro-focus/
http://google-cartographer-ros.readthedocs.io/en/latest/
http://google-cartographer-ros.readthedocs.io/en/latest/
https://leica-geosystems.com/en/products/mobile-sensor-platforms/capture-platforms/leica-pegasus-backpack
https://leica-geosystems.com/en/products/mobile-sensor-platforms/capture-platforms/leica-pegasus-backpack
http://www.navvis.com/m3trolley
http://www.viametris.com/
https://geoslam.com/
http://matterport.com

Remote Sens. 2018, 10, 1754 22 of 23

23. Tango. Available online: https://developers.google.com/tango/ (accessed on 11 January 2018).
24. Lehtola, V.V.; Kaartinen, H.; Nüchter, A.; Kaijaluoto, R.; Kukko, A.; Litkey, P.; Honkavaara, E.; Rosnell, T.;

Vaaja, M.T.; Virtanen, J.-P. Comparison of the Selected State-Of-The-Art 3D Indoor Scanning and Point Cloud
Generation Methods. Remote Sens. 2017, 9, 796. [CrossRef]

25. Vosselman, G. Design of an indoor mapping system using three 2D laser scanners and 6 DOF SLAM.
ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 173. [CrossRef]

26. Xiao, J.; Furukawa, Y. Reconstructing the world’s museums. Int. J. Comput. Vis. 2014, 110, 243–258. [CrossRef]
27. Stiny, G. Spatial Relations and Grammars. Environ. Plan. B Plan. Des. 1982, 9, 113–114. [CrossRef]
28. Gips, J.; Stiny, G. Production Systems and Grammars: A Uniform Characterization. Environ. Plan. B Plan.

Des. 1980, 7, 399–408. [CrossRef]
29. Tran, H.; Khoshelham, K.; Kealy, A.; Díaz-Vilariño, L. Extracting Topological Relations between Indoor

Spaces from Point Clouds. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 401. [CrossRef]
30. Peter, M. Modelling of Indoor Environments Using Lindenmayer Systems. Int. Arch. Photogramm. Remote

Sens. Spat. Inf. Sci. 2017. [CrossRef]
31. Wonka, P.; Wimmer, M.; Sillion, F.; Ribarsky, W. Instant Architecture. In ACM SIGGRAPH 2003 Papers,

Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH ’03),
San Diego, CA, USA, 27–31 July 2003; ACM: New York, NY, USA, 2003; pp. 669–677.

32. Müller, P.; Wonka, P.; Haegler, S.; Ulmer, A.; Van Gool, L. Procedural Modeling of Buildings. In ACM
SIGGRAPH 2006 Papers, Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques
Conference (SIGGRAPH ’06), Boston, MA, USA, 30 July–3 August 2006; ACM: New York, NY, USA, 2006;
pp. 614–623.

33. Bokeloh, M.; Wand, M.; Seidel, H.-P. A Connection between Partial Symmetry and Inverse Procedural
Modeling. In ACM SIGGRAPH 2010 Papers, Proceedings of the Special Interest Group on Computer Graphics and
Interactive Techniques Conference (SIGGRAPH ’10), Los Angeles, CA, USA, 26–30 July 2010; ACM: New York,
NY, USA, 2010; p. 104.

34. Martinovic, A.; Van Gool, L. Bayesian Grammar Learning for Inverse Procedural Modeling. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013;
pp. 201–208.

35. Khoshelham, K.; Diaz-Vilarino, L. 3D Modeling of Interior Spaces: Learning the Language of Indoor
Architecture. In Proceedings of the ISPRS Technical Commission V Symposium, Riva del Garda, Italy,
23–25 June 2014; Volume 2325.

36. Gröger, G.; Plümer, L. Derivation of 3D Indoor Models by Grammars for Route Planning. Photogramm.
Fernerkund. Geoinf. 2010, 2010, 191–206. [CrossRef]

37. Oesau, S.; Lafarge, F.; Alliez, P. Indoor scene reconstruction using feature sensitive primitive extraction and
graph-cut. ISPRS J. Photogramm. Remote Sens. 2014, 90, 68–82. [CrossRef]

38. Previtali, M.; Barazzetti, L.; Brumana, R.; Scaioni, M. Towards automatic indoor reconstruction of cluttered building
rooms from point clouds. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 1, 281–288. [CrossRef]

39. Chauve, A.-L.; Labatut, P.; Pons, J.-P. Robust piecewise-planar 3D reconstruction and completion from
large-scale unstructured point data. In Proceedings of the 2010 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 1261–1268.

40. Boulch, A.; De La Gorce, M.; Marlet, R. Piecewise-Planar 3D Reconstruction with Edge and Corner Regularization.
Comput. Graph. Forum 2014, 33, 55–64. [CrossRef]

41. Adan, A.; Huber, D. 3D Reconstruction of Interior Wall Surfaces under Occlusion and Clutter. In Proceedings
of the 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission
(3DIMPVT), Hangzhou, China, 16–20 May 2011; pp. 275–281.

42. Xiong, X.; Adan, A.; Akinci, B.; Huber, D. Automatic creation of semantically rich 3D building models from
laser scanner data. Autom. Constr. 2013, 31, 325–337. [CrossRef]

43. Rusu, R.B. Identifying and Opening Doors. In Semantic 3D Object Maps for Everyday Robot Manipulation;
Springer Tracts in Advanced Robotics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 161–175,
ISBN 978-3-642-35478-6.

44. Diaz-Vilarino, L.; Verbree, E.; Zlatanova, S.; Diakité, A. Indoor modelling from SLAM-based laser scanner:
Door detection to envelope reconstruction. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017,
345–352. [CrossRef]

https://developers.google.com/tango/
http://dx.doi.org/10.3390/rs9080796
http://dx.doi.org/10.5194/isprsannals-II-3-173-2014
http://dx.doi.org/10.1007/s11263-014-0711-y
http://dx.doi.org/10.1068/b090113
http://dx.doi.org/10.1068/b070399
http://dx.doi.org/10.5194/isprs-annals-IV-2-W4-401-2017
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W7-385-2017
http://dx.doi.org/10.1127/1432-8364/2010/0049
http://dx.doi.org/10.1016/j.isprsjprs.2014.02.004
http://dx.doi.org/10.5194/isprsannals-II-5-281-2014
http://dx.doi.org/10.1111/cgf.12431
http://dx.doi.org/10.1016/j.autcon.2012.10.006
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W7-345-2017

Remote Sens. 2018, 10, 1754 23 of 23

45. Quintana, B.; Prieto, S.A.; Adán, A.; Bosché, F. Door detection in 3D coloured point clouds of indoor
environments. Autom. Constr. 2018, 85, 146–166. [CrossRef]

46. Diaz-Vilarino, L.; Khoshelham, K.; Martínez-Sánchez, J.; Arias, P. 3D Modeling of Building Indoor Spaces
and Closed Doors from Imagery and Point Clouds. Sensors 2015, 15, 3491–3512. [CrossRef] [PubMed]

47. Elseicy, A.; Nikoohemat, S.; Peter, M.; Oude Elberink, S. Space Subdivision of Indoor Mobile Laser Scanning
Data Based on The Scanner Trajectory. Remote Sens. 2018, 18, 1838.

48. Rusu, R.B. Table Cleaning in Dynamic Environments. In Semantic 3D Object Maps for Everyday Robot
Manipulation; Springer Tracts in Advanced Robotics; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 149–159, ISBN 978-3-642-35478-6.

49. Rusu, R.B.; Marton, Z.C.; Blodow, N.; Holzbach, A.; Beetz, M. Model-based and learned semantic object
labeling in 3D point cloud maps of kitchen environments. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2009), St. Louis, MO, USA, 11–15 October 2009;
pp. 3601–3608.

50. Wolf, D.; Prankl, J.; Vincze, M. Fast semantic segmentation of 3D point clouds using a dense CRF with
learned parameters. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation
(ICRA), Seattle, WA, USA, 25–30 May 2015; pp. 4867–4873.

51. Silberman, N.; Fergus, R. Indoor scene segmentation using a structured light sensor. In Proceedings of the
2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain,
6–13 November 2011; pp. 601–608.

52. Armeni, I.; Sener, O.; Zamir, A.R.; Jiang, H.; Brilakis, I.; Fischer, M.; Savarese, S. 3D Semantic Parsing
of Large-Scale Indoor Spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1534–1543.

53. Mattausch, O.; Panozzo, D.; Mura, C.; Sorkine-Hornung, O.; Pajarola, R. Object detection and classification
from large-scale cluttered indoor scans: Object detection and classification. Comput. Graph. Forum 2014, 33,
11–21. [CrossRef]

54. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation. Proc. Comput. Vis. Pattern Recognit. (CVPR) 2017, 1, 4.

55. Macher, H.; Landes, T.; Grussenmeyer, P. From Point Clouds to Building Information Models: 3D
Semi-Automatic Reconstruction of Indoors of Existing Buildings. Appl. Sci. 2017, 7, 1030. [CrossRef]

56. Barazzetti, L. Parametric as-built model generation of complex shapes from point clouds. Adv. Eng. Inform.
2016, 30, 298–311. [CrossRef]

57. Jung, J.; Hong, S.; Jeong, S.; Kim, S.; Cho, H.; Hong, S.; Heo, J. Productive modeling for development of
as-built BIM of existing indoor structures. Autom. Constr. 2014, 42, 68–77. [CrossRef]

58. Loch-Dehbi, S.; Dehbi, Y.; Plümer, L. Estimation of 3D Indoor Models with Constraint Propagation and
Stochastic Reasoning in the Absence of Indoor Measurements. ISPRS Int. J. Geo-Inf. 2017, 6, 90. [CrossRef]

59. Bosse, M.; Zlot, R.; Flick, P. Zebedee: Design of a spring-mounted 3-d range sensor with application to
mobile mapping. IEEE Trans. Robot. 2012, 28, 1104–1119. [CrossRef]

60. Scanning Rangefinder Distance Data Output/UTM-30LX Product Details|HOKUYO AUTOMATIC CO., LTD.
Available online: https://www.hokuyo-aut.jp/search/single.php?serial=169 (accessed on 25 April 2018).

61. Vosselman, G.; Gorte, B.G.; Sithole, G.; Rabbani, T. Recognising structure in laser scanner point clouds.
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 46, 33–38.

62. Kada, M. Generalisation of 3D building models by cell decomposition and primitive instancing.
In Proceedings of the Joint ISPRS Workshop on “Visualization and Exploration of Geospatial Data”, Stuttgart,
Germany, 27–29 June 2007.

63. Turner, E.; Cheng, P.; Zakhor, A. Fast, Automated, Scalable Generation of Textured 3D Models of Indoor
Environments. IEEE J. Sel. Top. Signal Process. 2015, 9, 409–421. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.autcon.2017.10.016
http://dx.doi.org/10.3390/s150203491
http://www.ncbi.nlm.nih.gov/pubmed/25654723
http://dx.doi.org/10.1111/cgf.12286
http://dx.doi.org/10.3390/app7101030
http://dx.doi.org/10.1016/j.aei.2016.03.005
http://dx.doi.org/10.1016/j.autcon.2014.02.021
http://dx.doi.org/10.3390/ijgi6030090
http://dx.doi.org/10.1109/TRO.2012.2200990
https://www.hokuyo-aut.jp/search/single.php?serial=169
http://dx.doi.org/10.1109/JSTSP.2014.2381153
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Data Collection and Preprocessing
	Point Clouds and the Trajectory
	Identifying the Artefacts from Reflective Surfaces
	Segmentation and Generalization

	Permanent Structure Detection
	Separation of Building Levels and Stairs
	Wall Detection
	Opening Detection Using the MLS Trajectory

	Space Partitioning
	Volumetric Space Partitioning
	Extracting the Navigable Space

	Door Detection Using the Trajectory
	Results and Evaluation
	Conclusions and Future Work
	References

