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Abstract: Tree-related microhabitats (TreMs) play an important role in maintaining forest biodiversity
and have recently received more attention in ecosystem conservation, forest management and
research. However, TreMs have until now only been assessed by experts during field surveys,
which are time-consuming and difficult to reproduce. In this study, we evaluate the potential of
close-range terrestrial laser scanning (TLS) for semi-automated identification of different TreMs
(bark, bark pockets, cavities, fungi, ivy and mosses) in dense TLS point clouds using machine
learning algorithms, including deep learning. To classify the TreMs, we applied: (1) the Random
Forest (RF) classifier, incorporating frequently used local geometric features and two additional
self-developed orientation features, and (2) a deep Convolutional Neural Network (CNN) trained
using rasterized multiview orthographic projections (MVOPs) containing top view, front view and side
view of the point’s local 3D neighborhood. The results confirmed that using local geometric features
is beneficial for identifying the six groups of TreMs in dense tree-stem point clouds, but the rasterized
MVOPs are even more suitable. Whereas the overall accuracy of the RF was 70%, that of the deep
CNN was substantially higher (83%). This study reveals that close-range TLS is promising for the
semi-automated identification of TreMs for forest monitoring purposes, in particular when applying
deep learning techniques.

Keywords: tree-related microhabitats; terrestrial laser scanning; forest monitoring; Convolutional
Neural Network; Random Forest

1. Introduction

Monitoring of forest biodiversity is a key issue in the context of sustainable forest management [1].
Multi-purpose forests need to provide habitats for animals and plants to fulfill their ecological function,
as well as performing economic and social functions. Stem structures, such as cavities, epiphytes
and other tree-related microhabitats (TreMs), serve as habitats at the tree level and are existential
for a wide range of insects, birds and mammal species during their life cycles [2,3]. The abundance
and diversity of TreMs affect the ecological value of a tree [4,5]. TreMs are thus important indicators
of forest biodiversity and have recently received more attention in ecosystem conservation, forest
management and research [6].

The abundance and diversity of TreMs can be roughly predicted using tree characteristics, such as
tree species, vitality status and diameter at breast height (DBH) [7–9]. More precise estimations of TreMs
could be obtained by experts during field surveys, but their reproducibility remains challenging, since it
is strongly affected by the observers [7,10,11]. Standardization of TreM assessment, as proposed by [12],
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should increase the reproducibility of TreM surveys, but such surveys are still very time-consuming
and preferably conducted by at least two experts [11]. TreM assessment in the field has so far been
mostly conducted in small forest areas and rarely in national forest inventories [13]. In the Swiss
National Forest Inventory (NFI), TreMs have been partially recorded in the field survey for 35 years [10].
According to the information needs of NFI stakeholders, numerous TreMs have been added to the
field data catalogue of the ongoing fifth Swiss NFI [7]. Thus, reproducible and efficient methods for
assessing TreMs are therefore needed for future NFI surveys.

Recent developments in terrestrial laser scanning (TLS) allow for efficient mapping of object
surfaces in dense 3D point clouds. In contrast to other 3D remote sensing measurement techniques
(e.g., air- and UAV-borne LiDAR and stereo images), TLS allows capturing precisely very detailed 3D
information (in the millimeter range) below the canopy cover, i.e., on tree stems and understory.
Over the past decade, the potential of TLS has been actively tested to complement or, in the
future, even replace extensive field surveys for forest monitoring, including for conventional
NFIs [14–17]. Researchers have already made big advances in defining optimal scanning designs for
inventory plots [18] and for deriving a wide range of plot-level and tree-level characteristics, such as
tree-stem detection [19] and modeling [20–22], tree species recognition [23,24], DBH extraction [25],
determination of leaf area distribution [26], volume estimation [27], detection of clear wood content [28]
and wood defects [29], assessment of timber quality and timber assortments [30]. TLS 3D point clouds
have also successfully been used to derive forest structural information to evaluate the suitability of a
forest stand as a habitat for animals, e.g., bats [31] or birds [32]. Whereas TLS 3D point clouds have
already been partly used to analyze stem structures in terms of wood quality [28,29], they have not yet
been used for detecting and quantifying TreMs.

Object detection in 3D point clouds has successfully been performed by fitting 3D geometric
primitives [22,33], filtering of point clouds using logical operators [19] or semantic labeling applying
machine learning techniques [34,35]. Machine learning algorithms have experienced great success, in
particular in identifying objects with irregular structures, e.g., natural objects. In the remote sensing of
the environment, the best classification results have most often been obtained when using Random
Forest (RF) and Support Vector Machine (SVM), mostly in combination with hand-engineered features
(e.g., [36]). Meanwhile, RF has become a favored classification approach for semantic labeling of
both image data and point clouds, because of its high performance, its robustness to overfitting
and nonlinearities of predictors, its ability to handle high-dimensional data, and its computational
efficiency [35,37].

However, the performance of any classifier strongly depends on the features, which need
to be sufficiently discriminative. For 3D point clouds, a wide range of local 3D descriptors that
encode the geometric properties of the local neighborhood of a 3D point have been proposed in
the literature [38]. These geometric features which are derived based on the covariance tensor of a
point’s local neighborhood, are popular in LiDAR data processing, due to their efficient computation
and relatively easy interpretation. They have been used, for example, to label unstructured
TLS point clouds [34,35,39], detect contours [39], filter the TLS point clouds collected in a forest
environment [20,40], and discriminate foliar and woody materials in a forest [41]. However,
it is challenging to find an optimal neighborhood for calculating the local geometric features,
since this is affected by the local point density and the geometric characteristics of the object of
interest. The neighborhood of a point is thus often chosen heuristically [39] or calculated on multiple
scales [34,35].

Object detection greatly benefits from learning of deep representatives. Recent developments in
computational hardware and the possibility of greatly speeding up the training time of deep neural
networks with parallel computation using Graphical Processing Units (GPUs) have initiated a new
era when deep learning has been the subject of great interest. Convolutional Neural Networks
(CNNs), which learn deep representations directly from the data, have meanwhile become a
state-of-the-art approach in both 2D image classification and segmentation [42,43]. Although CNNs
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were primarily designed for 2D data, they have already been successfully applied for semantic
labeling of 3D point clouds using the 3D point cloud information directly [44–46] or their 2D
representations, i.e., 2D images [47,48]. While learning, CNNs generate class-specific high-level
features (representations) from low-level input information. The impressive results achieved with
CNNs can be improved even further by integrating contextual information using Conditional Random
Fields or Recurrent Neural Networks [49]. Moreover, features generated by CNNs can be used to train
a classical machine learning approach, such as SVM [50].

In this study, we addressed the potential of TLS for semi-automated identification of TreMs,
since expert field assessment is difficult to reproduce. We trained both a classical machine learning
approach involving hand-engineered features (RF) and a deep neural network based on learned
features (CNN) to perform point-wise semantic labeling of TLS point clouds, with the goal to identify
six groups of stem structures associated with TreMs. Therefore, in this paper, we conducted research
to: (1) evaluate the suitability of the RF trained on commonly used local geometric features for TreM
identification; (2) develop two additional local geometric features and illustrate their contributions to
the RF performance; (3) evaluate the potential of a deep CNN for TreM identification from 3D point
clouds; (4) propose an approach to generating 2D input data for a CNN based on 3D point cloud
information; and (5) discuss the suitability of TLS point clouds for TreM identification.

2. Materials and Methods

2.1. Data Acquisition

In this study, we focused on identifying TreMs on beech (Fagus sylvatica L.). In Switzerland,
forest biodiversity and the ecological needs for TreMs are greatest in the lowlands, e.g., in the colline
and submontane zones, where beech is naturally dominant on most sites [51] and forests are often
intensively managed. Beech is thought to have considerable potential for accumulating TreMs [6,8].

A FARO Focus 3D S120 laser scanner (FARO Technologies Inc., Lake Mary, FL, USA) was used to
collect data. It is a high-speed phase-shift scanning device with a high-precision measurement capability
and a small footprint (Table 1). TLS data were acquired in several forest reserves and managed forests
across Switzerland. Scanning design was primarily developed to scan one single habitat tree. The habitat
trees were, thus, scanned from six different positions regularly distributed around the tree. The angular
resolution was set to 0.018◦, which corresponded to a point spacing of 3 mm at a 10 m distance from the
scanner. This allowed us to obtain the data with a very high point density. Intensity and RGB values
were acquired as well (Table 2). In total, 29 beech habitat trees were scanned.

Table 1. Technical specifications of the FARO Focus 3D S120 laser scanner.

Ranging unit Range 0.6–120 m
Ranging error ±2 mm

Deflection unit
Field of view (vertical/horizontal) 305◦/360◦

Step size (vertical/horizontal) 0.009◦/0.009◦

Laser
Wavelength 905 nm
Beam diameter at exit 3.0 mm
Beam divergence 0.011◦

Table 2. Scanning design used in the study.

Parameter Setting

Number of scans per tree 6
Angular resolution (vertical/horizontal) 0.018◦/0.018◦

Distance from scanner to tree 5–7 m
RGB images Yes
Intensity Yes
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2.2. Field Assessment of TreMs

In order to get a sufficient number of each type of TreM without excessive effort, we had to focus
on these types that are of main interest [12], as well as relatively frequent (own field experience, [52])
and visible from the ground. According to the TreMs assessment in the fourth Swiss NFI, around
80% of TreMs are located on the tree stem and thus contribute the most to the ecological value of a
tree. This is why we focused on tree stems. We did not consider the TreMs in tree crowns due to high
occlusion rates in the TLS data. We recorded all TreMs located on the stem of a scanned habitat tree
below Hmax, where Hmax corresponded to 10 m or the height of the first branch. The TreMs addressed
in this study and the thresholds for their inclusion are listed in Table 3. The thresholds were chosen to
correspond or being lower than these in the field manual of the current fifth Swiss NFI [53].

Table 3. Definitions of the tree-related microhabitats (TreMs) addressed in the study.

TreM Type Definition Threshold for Inclusion

Bark loss and exposed wood Exposed wood and missing bark Coverage > 1%

Bark pocket
Space between peeled-off bark and sapwood
forming a pocket (open at the top) or shelter (open
at the bottom)

Depth > 1 cm

Crack Crack through the bark or the wood Width > 1 cm
Fungi Tough fruiting bodies of perennial polypores Diameter > 2 cm
Ivy Tree stem covered with ivy Coverage > 1%
Lichen Tree stem covered with foliose and fruticose lichens Coverage > 1%
Moss Tree stem covered with moss Coverage > 1%

Stem hole Tree stem rot-hole; cavities resulting from an injury
or branch loss

Length > 2 cm,
width > 2 cm

Woodpecker cavity Woodpecker foraging excavation Length > 2 cm,
width > 2 cm

Woodpecker hole Woodpecker breeding cavities Diameter > 4 cm

For countable TreMs, such as bark pockets, cracks or fungi, located at a height of ≤3.5 m on the
tree stem, we measured their positions and dimensions. For those located at a height above 3.5 m,
the dimensions were estimated. For uncountable TreMs, such as ivy, mosses, lichens or missing bark,
we estimated their coverage (in percent) in the lower (0–2 m), middle (2–4 m), and upper (4–Hmax m)
parts of the tree stem. To specify the location of a TreM, the azimuth (gon), vertical angle (grad)
and horizontal distance (m) were measured. Additionally, detailed photos were taken from each
scanner position along the stem of the scanned habitat tree, using a conventional digital camera with a
high resolution.

2.3. Point Cloud Pre-Processing

First, the scans collected in the field were accurately co-registered using reference targets in the
FARO Scene software (version 5.4, FARO Technologies Inc., Lake Mary, FL, USA). Second, the stem part
of interest in this study up to 10 m or to the height of the first branch was then manually delineated
from the initial point cloud using CloudCompare software [54]. Third, tree-stem point clouds were
thinned out using a 3 mm voxel grid, so that only the point located next to the voxel center remained.
Fourth, the Statistical Outlier Removal (SOR) filter was applied to reduce the noise produced by the
sensor. The SOR calculates the mean µ and standard deviation σ of distances from point pi to its k
nearest neighbors. Points located beyond the threshold µ ± α · σ are considered to be outliers and are
removed [55]. In this study, we set k = 5 and α = 1.

2.4. Stem Axis Fitting

Since a tree stem is a cylindrical object, detecting its axis (centerline) is likely to be helpful when
analyzing its surface. Various methods have been used to define stem axis, such as cylinder fitting [56]
and normal accumulation [29]. It might be necessary to slightly adapt both of the methods prior to
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applying them to habitat trees, which are often characterized by rich tree stem structures. We therefore
developed a method to define the tree stem axis of habitat trees. This method involves: (1) intensive
pre-filtering of the tree stem in terms of reducing the structural variability on its surface, and (2)
modeling a curve through the centers of the circles fitted into the stem cross-sections. This procedure
consisted of several steps (Figure 1).

Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 23 

 

2.4. Stem Axis Fitting 

Since a tree stem is a cylindrical object, detecting its axis (centerline) is likely to be helpful when 
analyzing its surface. Various methods have been used to define stem axis, such as cylinder fitting 
[56] and normal accumulation [29]. It might be necessary to slightly adapt both of the methods prior 
to applying them to habitat trees, which are often characterized by rich tree stem structures. We 
therefore developed a method to define the tree stem axis of habitat trees. This method involves: (1) 
intensive pre-filtering of the tree stem in terms of reducing the structural variability on its surface, 
and (2) modeling a curve through the centers of the circles fitted into the stem cross-sections. This 
procedure consisted of several steps (Figure 1). 

 
Figure 1. Workflow for stem axis fitting: (a) original tree-stem point cloud; (b) calculation of planarity 
feature based on a fixed-radius point’s local neighborhood, which was considered to be within a 
sphere with a radius of 5 cm; (c) filtering out leaves and small tree branches; (d) “unrolling” the tree 
stem—xyz coordinates were transformed into Lzd using a cylinder fitted into the point cloud, where 
L is the length of circumference (m), z—z coordinate of the initial point cloud (m), d—distance to 
modeled cylinder surface (m); (e,f) filtering out the points located closest to the tree stem surface; (g) 
fitting the stem axis: the centers of the circles used for stem-axis fitting are in blue and the resulting 
stem axis in red. 

Figure 1. Workflow for stem axis fitting: (a) original tree-stem point cloud; (b) calculation of planarity
feature based on a fixed-radius point’s local neighborhood, which was considered to be within a sphere
with a radius of 5 cm; (c) filtering out leaves and small tree branches; (d) “unrolling” the tree stem—xyz
coordinates were transformed into Lzd using a cylinder fitted into the point cloud, where L is the length
of circumference (m), z—z coordinate of the initial point cloud (m), d—distance to modeled cylinder
surface (m); (e,f) filtering out the points located closest to the tree stem surface; (g) fitting the stem axis:
the centers of the circles used for stem-axis fitting are in blue and the resulting stem axis in red.

First, we used geometric information (xyz coordinates) of the tree-stem point cloud (Figure 1a)
to calculate the planarity feature (Figure 1b; see the detailed description of feature extraction in
Section 2.5.2.2). The planarity is associated with features that describe shape characteristics and is
calculated based on eigenvalues of a 3D covariance matrix. In the case of 3D points, equally distributed
on a squared plane, the planarity is expected to be equal to 1 and is below this value for the 3D points
equally distributed on a rectangular plane with unequal sites (typically for edge regions). However,
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according to [57], the values of the planarity might deviate from the expected values. Thus, the tree
stem was roughly extracted by removing non-flat regions in the tree-stem point cloud using the
planarity. Since the stem of a habitat tree can have many edges, we retained all the points with a value
above the threshold of 0.75 (Figure 1c). The planarity was also used by [20] to remove non-flat regions
in TLS point clouds in their denoising and tree-stem modeling algorithm (threshold of 0.8). In the
following step, we refined the tree-stem filtering by extracting the points located closest to the surface
of the tree stem. For this, the xyz coordinates of the filtered tree-stem point cloud were transformed
(“unrolled”) into Lzd coordinates using a cylinder modeled based on the point cloud (see Figure 1c
and for more details, see [56]). The transformed point cloud was then divided into vertical columns
using a regular 2D raster (based on Lz coordinates) with a window size of 3 cm. In each raster cell,
only the point with the lowest d coordinate was retained (Figure 1e). The resulting point cloud was
then converted back into xyz coordinates, and multiple circles were fitted along the tree stem. For this,
the point cloud was divided into non-overlapping cross-sections which was 20 cm wide (Figure 1f).
For each cross-section, a circle was fitted using the least squares method (outliers were removed).
In the following step, the circles were analyzed to define extreme values in their diameters and remove
those with diameters considered to be statistical outliers. We then fitted a curve through the centers of
the remaining circles by training a multilayer perceptron (MLP) [58]. The MLP consisted of one hidden
layer. The number of neurons in the hidden layer was tuned via grid search for each separate tree stem.
The number of iterations, while training the MLP, also varied and depended on the length of the tree
stem. For each additional 1 m of stem length, 100 more iterations were added. The gradient descent
optimization algorithm and linear activation function were applied. The resulting root-mean-square
errors (RMSEs) for effective and predicted circle centers revealed RMSEmin = 0.01 m, RMSEmax = 0.05 m,
meanRMSE = 0.026 m and sdRMSE = 0.015 m. An example of a fitted stem axis is shown in Figure 1g.

The fitted stem axes were used for: (1) extracting orientation features for RF classification models
(see details in Section 2.5.2.2), and (2) generating input data for CNNs (see details in Section 2.5.3.2).

2.5. Classification

Two different classification approaches were tested to identify TreMs in the tree-stem point clouds.
First, a RF classifier was trained using two different sets of hand-engineered features. Second, a CNN
was used for both extracting features and classification, and was trained with and without the input
being augmented (Table 4).

Table 4. Setups of the classification models trained for automatic identification of TreMs.

Classification
Model Classifier Input Data Input Data

Pre-Processing

RFshp Random Forest 3D shape features (e1, e2, Lλ, Pλ, . . . , Cλ) None

RFshp–orient Random Forest 3D shape features + orientation features
(e1, e2, Lλ, Pλ, . . . , ϕ2D) None

CNN Convolutional Neural
Network rasterized multiview orthographic projections None

CNNaugm
Convolutional Neural

Network rasterized multiview orthographic projections Augmentation

2.5.1. Training Data Set

For the training data set, patches of 3D points belonging to a TreM were manually delineated
from the tree-stem point clouds. The collected patches corresponded mostly to a complete object
(e.g., a fungus or a bark pocket). For not countable (continuous) TreMs, such as mosses, lichen or ivy,
parts of the tree stem covered with it were chosen for training. We also collected patches of bark only
(without any TreMs). In total, 173 patches with varying numbers of points were collected. Since some
of the TreMs are rare (e.g., cracks and woodpecker holes), we assigned them according to similarities in
their geometric properties to the following six TreM groups: bark (including bark and exposed wood),
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bark pockets, cavities (including cracks, stem cavities and holes, woodpecker cavities and holes), fungi,
ivy, and mosses (including mosses and lichens). For details about the training data set, see Table 5.

Table 5. Sample set used in this study with TreM types included into TreM groups, number of trees
used to collect point patches, and number of patches collected for each TreM group.

TreM Groups TreM Types Included in
the Group

Number of Trees Where
Patches Were Collected

Number of
Patches

Number of
Points

Bark Bark and exposed wood 10 43 761,820
Bark pockets Bark pockets 8 35 220,420

Cavities Cracks, stem holes,
woodpecker cavities and holes 7 29 150,560

Fungi Fungi 6 19 31,770
Ivy Ivy (foliage only) 4 15 506,210
Mosses Mosses and lichens 10 32 309,235

It is not necessary to use the complete training set to achieve an appropriative classification model
(see e.g., [35]). Thus, we rebalanced our training set and reduced it to 10,000 training points per class,
which were randomly selected from the initial data set. To evaluate how well the reduced training set
represents the complete training set, we run ten RF classification models. For each RF model, a new
training set was generated using random selection of 10,000 points per class. The performance of the
RF models was evaluated using a 5-fold cross-validation procedure, which was repeated three times.
The resulting mean overall accuracy was 75.5% and the standard deviation was 0.4%.

2.5.2. Random Forest

2.5.2.1. Classifier

RF is an ensemble classifier, consisting of a collection of randomized decision trees [59]. The high
performance and robustness of RF were achieved by implementing bagging [60], a learning procedure
designed to improve the stability and performance of weak machine learning algorithms. For RF,
a large number of decision trees are trained on training sets generated from the original data set, using
random sampling with replacement. While growing the trees, the user-defined number of predictors
are randomly selected at each split. This multiple randomization procedure results in non-correlated
trees being produced with high variance and low bias [61]. The final classification output is created by
aggregating the predictions of all individual decision trees using majority voting.

Two parameters that need to be adjusted when training RF are the number of trees (ntree) and the
number of predictors used at each split (mtry). According to [62,63], 500 trees are enough to stabilize
the model. Our pre-tests confirmed this and showed that, in our case, using a higher number of trees
does not affect the performance of the RF classification models. Thus, we set ntree to 500. The RF
seems to be quite sensitive to the mtry parameter [36,62]. It is recommended to tune mtry for each
separate case, since this parameter depends on the fraction of relevant predictors. If this is low, small
values of mtry may result in a poor model performance since the chance that the relevant predictors
will be selected at each split is low [61]. We trained RF using the train function of R package caret [64].
By default, this function tests three different options for mtry: the lowest, the highest and the mean
value of both. The model with the lowest out-of-bag error was selected as the final model.

2.5.2.2. Local Geometric Features

To train RF, we derived a set of features from the geometric information of the TLS point cloud.
The FARO Focus 3D S120 laser scanner captures geometric (xyz coordinates) and spectral information
(RGB and intensity) of the surrounding objects. Since RGB values are very sensitive to the sun
illumination and intensity values need to be corrected [65], only xyz coordinates from the acquired
point clouds were used in this study.
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A point in a 3D point cloud can be characterized by its closest neighborhood, from which a set
of local 3D geometric features can be derived. Two different procedures are most commonly used
to define the point’s local neighborhood: (1) a fixed-number nearest neighbors’ search [35,39] or (2)
a fixed-radius nearest neighbors’ search [34]. For a point-wise multiclass classification problem, the
choice of the point’s neighborhood might be crucial since, for different classes, the discriminative power
of the 3D geometries may vary across scales, i.e., across the search radii or number of nearest neighbors.
Two different procedures have been proposed for this: considering an optimal 3D neighborhood for
each individual point [35] or deriving geometric features on different scales [34,39].

To train the RF classifier, for each point in the point cloud, a set of 3D geometric features (Table 6)
was derived. We selected the point’s 3D neighborhood using a fixed-radius nearest neighbor search
on multiple scales, i.e., the 3D neighborhood of a point was selected using a sphere with a radius
corresponding to the scale parameter r. The scale parameter r varied from rmin = 1 cm to rmin = 5 cm
with ∆r = 0.5 cm. For each scale, a set of eigenvalues (λ1, λ2, λ3) and of eigenvectors (

→
v 1,

→
v 2,

→
v 3)

were extracted based on a covariance tensor around the medoid of the neighborhood of the point
pi (for details, see [39]). The derived eigenvalues were normalized by their sum, and then used to
calculate a set of 3D shape features: linearity, planarity, sphericity, omnivariance, anisotropy, eigenentropy
and surface variation [35,39]. Since the normalized eigenvalues already characterize the geometric
properties of the point’s neighborhood regarding its variations along eigenvectors, we used the first
and the second of them (e1, e2) as discriminative variables as well.

Table 6. Set of local 3D geometric features as used in this study. The features were derived from
eigenvalues and eigenvectors of the covariance tensor of a point’s local 3D neighborhood, which was
defined on different scales varying from rmin = 1 cm to rmax = 5 cm with ∆r = 0.5 cm.

Feature Family Feature Based on a Local 3D Structure Tensor Feature Definition

3D shape features First eigenvalue e1 ei = λi/
3
∑

i=1
λSecond eigenvalue e2

Linearity Lλ (e1 − e2)/e1
Planarity Pλ (e2 − e3)/e1
Sphericity Sλ e3/e1
Omnivariance Oλ

3
√

e1·e2·e3
Anisotropy Aλ (e1 − e3)/e1

Eigenentropy Eλ −
3
∑

i=1
eiln(ei)

Surface variation Cλ e3/(e1 + e2 + e3)
Orientation features 3D orientation ϕ3D 〈[xC yC 0], [xn yn zn]〉

2D orientation ϕ2D 〈[xC yC 0], [xn yn 0]〉

To capture local changes in the directions of the stem surface relative to the stem axis,
we developed two additional orientation features. These features were inspired by the verticality
feature used by [39], which was calculated as an angular product between the vertical axis and the
local normal ni, where ni =

→
v 3 of a point pi. The two orientation features used in this study correspond

to: (1) the angular product between the normal ni of a point pi and a vector directed to the center
of the tree stem Ci, (2) the angular product between the orthogonal projection of the ni of a point pi
and a vector directed to the center of the tree stem Ci. The values of the orientation features varied
between 0 (when ni and the vector directed to Ci were parallel) and 1 (when they were perpendicular).
The whole set of the local 3D geometric features used in this study is listed in Table 6. See Figure 2 for
visualization of a feature.
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Figure 2. Visualization of a local geometric feature (planarity), calculated for section of the tree stem
partly covered with ivy, with scales of 1 cm, 2.5 cm and 5 cm (from left to right) for the point’s local
neighborhoods. The local geometric features calculated on a small scale indicate small structures on
the tree-stem surface, while those calculated on a bigger scale indicate more rough structures.

2.5.3. Convolutional Neural Network

2.5.3.1. Convolutional Neural Network Architecture

CNNs (also known as ConvNets) belong to the family of feed-forward artificial neural networks
and were first introduced by [66]. In contrast to other classification approaches based on previously
extracted features, CNNs learn specific features directly from the data. A CNN usually has a
multi-layered architecture, which is represented by various combinations of convolutional, pooling,
dropout layers, and with one or several fully connected layers. Convolutional layers are core structures
in a CNN. In a convolutional layer, feature maps will be generated from an input image using
convolutional filters. Each unit (neuron) of the feature map is connected only to a small subregion of the
input image. The output of each convolutional layer is passed through an activation function (e.g., tanh
or ReLU). After each convolutional layer, a pooling layer is often incorporated into downsample
the feature maps along their spatial dimensions. Each feature map is therefore divided into usually
non-overlapping subregions, for which an arithmetic operation is then performed (e.g., averaging or
considering the maximum value). Reducing the dimensionalities of the feature maps leads to training
of a much lower number of weights and a more computationally efficient network. The pooling layer
also has a regulating effect.

Another very effective way to prevent overfitting and increase the generalization of the neural
network is to introduce dropout layers. A dropout layer is specified by a dropout rate p, which
indicates the probability of a neuron being “dropped out”, i.e., the weights of the “dropped out”
neuron are set to zero. Deactivated neurons might then be used in the next iteration. In CNNs, dropout
is usually applied to fully connected layers [67], but is also effective for convolutional layers [68].
A CNN is finalized with one or several fully connected layers when all neurons are fully connected to
all activations in the previous layer. The last fully connected layer generates the output of the CNN
and, in the case of a classification, its number of neurons corresponds to the number of classes (for
more details, see [69]).

The input data for the CNNs in this study consisted of a stack of the three rasterized multiview
orthographic projections (MVOPs) of the point’s local neighborhood (for details, see Section 2.5.3.2).
The architecture of the CNN consisted of two pairs of convolutional layers, of which each was followed
by a pooling and a dropout layer, and a fully connected layer with dropout (Figure 3). If several
convolutional layers that follow each other are specified (e.g., [45,67]), more abstract representatives
can be learned before implementing a destructive pooling layer and the performance of a neural
network thus increase. We used an equal number of convolutional filters in all convolutional layers
(32 filters with a window size of 3 × 3 and zero-padding). The output of each convolutional layer was
passed through a ReLU. A pooling layer with a window size of 2 × 2 to calculate a maximum value
(max-pooling) was introduced after every other convolutional layer. Dropout with a rate of 0.25 was
applied to the resulting feature maps, which means that 25% of neurons were deactivated. The CNN
was finalized with a fully connected layer consisting of 512 neurons and followed with a dropout layer
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with higher intensity (dropout rate = 0.5). The output of the neural network was generated using the
softmax function. The CNN was trained for 50 epochs using a stochastic gradient decent with a batch
size of 64 samples.
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Figure 3. Architecture of the Convolutional Neural Network used in this study: Input indicates the
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Max pool: a pooling layer calculating a maximum value, and Full: a fully connected layer.

2.5.3.2. Rasterized Multiview Orthographic Projections (MVOPs)

Since a CNN requires input with array-like structures, 3D point clouds have to be processed
accordingly, for example, voxelized [44,45]. Training a 3D CNN for very dense 3D point clouds might
be computationally expensive since high numbers of weights need to be calculated. Additionally,
such models might be sensitive to overfitting. We therefore developed a novel approach to generating
input data for a CNN by converting the 3D information of a point cloud into a set of its 2D
representations. Similar to hand-engineered geometric features, we characterized a 3D point in
a point cloud through its local neighborhood. We hypothesized that TreMs, each represented by a
typical shape, might also be distinguished by their rasterized MVOPs (top view, front view and side
view) [70]. Using 2D representations, instead of 3D representations, of a point’s local neighborhood
would mean much lower number of weights was trained and thus would increase the computational
efficiency of our CNNs.

The rasterized MVOPs were generated for each point in the point cloud based on the point’s closest
neighborhood. Since a 3D object might look different depending on the perspective, when generating
such input data for a classification model, it is important to choose different viewing positions (as used
in e.g., [47,48]) or to rotate the 3D point cloud around an axis to a predefined viewing position. In this
study, we used the fitted tree-stem axes to rotate the tree stems. In the case, no stem axis is available,
the tree stem can be rotated using a vertical line going through it. Prior to generating the rasterized
MVOPs, we rotated the tree stem around its axis to set the point of interest to the position of 3π

2 .
The point’s neighborhood was then selected using a 10 cm voxel with an assumption that the point of
interest was located in the center of the voxel. In the next step, three orthographic projections were
extracted by projecting the point’s neighborhood into xy, zy and xz planes (top view, front view and
side view). The projections were then transformed into images with a spatial resolution of 5 mm,
where the values in each image cell were associated with the number of points in the corresponding
columns (Figure 4). A stack of the three rasterized orthographic projections was used as input data for
the CNNs.
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Figure 4. Generating rasterized multiview orthographic projections (top view, front view and side view)
for: (a) bark (BA), (b) bark pockets (BP), (c) cavities (CA), (d) fungi (FU), (e) ivy (IV), and (f) mosses (MO).
The color gradient indicates the point accumulation: low in yellow, and high in dark blue.

2.5.3.3. Data Augmentation

The performance of the neural networks increases if a lot of training data are used. A good
approach is to perform a synthetic data transformation (augmentation) to enlarge the training set if
only a limited amount of data are available [67,69]. Another advantage of data augmentation is it
reduces network’s overfitting and is thus often used to regularize a neural network. The techniques for
transforming the data include scaling, affine transformation, rotation, flipping, and adding noise [69].
We flipped our training set in three different ways along the planes: (1) xy, (2) yz, and (3) xy and yz
(see Figure 5). We did not flip the data by the xz plane since this might lead to conflicts between some
of the classes (for example, fungi might be then confused with cavities, and vice versa).

2.5.4. Model Validation and Accuracy Assessment

The performance of the classification models was assessed using patch-based leave-one-out
cross-validation (LOOCV). LOOCV is a special case of k-fold cross-validation, where the number of
folds is equal to the number of samples [71]. LOOCV allowed us to use the available data efficiently and
to test the classification models on spatially independent data. Since we used a point’s neighborhood
to extract discriminative features in both the RF and CNN models, spatial stratification of the training
and testing data sets was crucial for a proper validation of the models.

We trained our models N times, where N corresponds to the total number of the collected patches
(N = 173, see Table 5). Each patch consisted of a number of 3D points that were assigned to it. Each time,
a new training set was created by random selection of 10,000 points per class from the all the points
associated with N-1 patches. The 3D points associated with the “left-out” patch were used to test the
model performance. For each patch, the predictive accuracy was assessed in terms of the percentage of
correctly classified points. The resulting patch-based performances of the classification models were
compared using Kolmogorov–Smirnov significance test. Based on all predictions, final error matrices
were calculated for each model type (RFshp, RFshp–orient, CNN and CNNaugm). The performance of the
models was evaluated using standard accuracy metrics, which can be calculated from an error matrix:
overall accuracy (OA), Cohen’s Kappa coefficient (K), user’s accuracy (UA) and producer’s accuracy
(PA) [72].
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Figure 5. Data augmentation: rasterized multiview orthographic projections of (a) the original point
cloud and after flipping along the (b) yz, (c) xy, (d) xy and yz planes.

3. Results

3.1. Performance of the Classification Models

Model statistics on the results of the patch-based LOOCV are shown in Tables 7–10. According
to LOOCV, RFshp–orient performed better on the validating data set than RFshp (see Tables 7 and 8),
with OAs of 70 % for RFshp–orient and 66% for RFshp. Training deep CNNs using the rasterized MVOPs of
the point’s local 3D neighborhood resulted in a substantially higher OA (81%, see Table 9). Augmenting
the training set before training CNNs improved the validation result by a further 2% and resulted in
an OA of 83% (see Table 10). Cohen’s K showed a similar trend with slightly lower values.

Table 7. Error matrix after the patch-based leave-one-out cross-validation (LOOCV) of RF classification
models based on 3D shape features (RFshp) for the identification of the six groups of TreMs: bark (BA),
bark pockets (BP), cavities (CA), fungi (FU), ivy (IV) and mosses (MO). The performance of the models was
assessed using LOOCV. In total, 173 models were trained, each predicted on the points belonging to
the “leaved-out” patch.

Reference
Prediction Producer’s Accuracy

BA BP CA FU IV MO

BA 0.77 0.03 0.01 0.00 0.00 0.18 0.77
BP 0.11 0.35 0.18 0.04 0.11 0.21 0.35
CA 0.03 0.15 0.44 0.13 0.13 0.13 0.44
FU 0.00 0.06 0.32 0.41 0.21 0.00 0.41
IV 0.00 0.06 0.12 0.05 0.76 0.01 0.76

MO 0.24 0.09 0.08 0.00 0.01 0.58 0.58
User’s accuracy 0.67 0.47 0.38 0.64 0.63 0.52 -

Overall accuracy: 0.661, Kappa: 0.553
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Table 8. Error matrix after the patch-based LOOCV of RF classification models based on 3D shape
and orientation features (RFshp–orient) for the identification of the six groups of TreMs: bark (BA),
bark pockets (BP), cavities (CA), fungi (FU), ivy (IV) and mosses (MO). The performance of the models was
assessed using LOOCV. In total, 173 models were trained, each predicted on the points belonging to
the “leaved-out” patch.

Reference
Prediction Producer’s Accuracy

BA BP CA FU IV MO

BA 0.81 0.03 0.00 0.00 0.00 0.16 0.81
BP 0.08 0.39 0.17 0.03 0.11 0.23 0.39
CA 0.01 0.15 0.55 0.07 0.12 0.11 0.55
FU 0.00 0.07 0.18 0.54 0.20 0.00 0.54
IV 0.00 0.05 0.07 0.06 0.81 0.01 0.81

MO 0.22 0.13 0.05 0.00 0.01 0.60 0.60
User’s accuracy 0.73 0.48 0.54 0.78 0.65 0.54 -

Overall accuracy: 0.704, Kappa: 0.608

Table 9. Error matrix after the patch-based LOOCV of CNNs without data augmentation (CNN) for the
identification of the six groups of TreMs: bark (BA), bark pockets (BP), cavities (CA), fungi (FU), ivy (IV)
and mosses (MO). The performance of the models was assessed using LOOCV. In total, 173 models
were trained, each predicted on the points belonging to the “leaved-out” patch.

Reference
Prediction Producer’s Accuracy

BA BP CA FU IV MO

BA 0.86 0.01 0.01 0.00 0.00 0.11 0.86
BP 0.03 0.54 0.08 0.05 0.14 0.16 0.54
CA 0.04 0.05 0.81 0.02 0.03 0.06 0.81
FU 0.00 0.14 0.08 0.73 0.03 0.02 0.73
IV 0.00 0.09 0.01 0.02 0.88 0.00 0.88

MO 0.14 0.08 0.01 0.01 0.00 0.75 0.75
User’s accuracy 0.80 0.59 0.81 0.89 0.82 0.68 -

Overall accuracy: 0.807, Kappa: 0.744

Table 10. Error matrix after the patch-based LOOCV of CNNs with data augmentation (CNNaugm) for
the identification of the six groups of TreMs: bark (BA), bark pockets (BP), cavities (CA), fungi (FU), ivy (IV)
and mosses (MO). The performance of the models was assessed using LOOCV. In total, 173 models
were trained, each predicted on the points belonging to the “leaved-out” patch.

Reference
Prediction Producer’s Accuracy

BA BP CA FU IV MO

BA 0.86 0.03 0.01 0.00 0.00 0.10 0.86
BP 0.05 0.60 0.07 0.03 0.13 0.12 0.60
CA 0.03 0.05 0.82 0.02 0.02 0.05 0.82
FU 0.00 0.09 0.07 0.80 0.03 0.02 0.80
IV 0.00 0.07 0.01 0.01 0.90 0.00 0.90

MO 0.11 0.06 0.01 0.01 0.00 0.80 0.80
User’s accuracy 0.81 0.66 0.83 0.92 0.84 0.73 -

Overall accuracy: 0.828, Kappa: 0.771

Both accuracy metrics for TreM identification (PA and UA) varied across the classification models
(Figure 6). The lowest values were achieved for RFshp and the highest values were realized for
CNNaugm. PA showed a similar trend for all classification models, resulting in the highest values for
bark and ivy and the lowest for bark pockets. The different groups of TreMs do not benefit in the same
way from different classification models. The accuracy metrics for fungi and cavities improved the
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most (the differences between RFshp and CNNaugm were close to 40%), whereas for bark, the differences
were much lower (around 10%). Involving the orientation features slightly improved the identification
of all TreM groups with PA and UA increasing most for cavities and fungi (more than 10%). CNNs
substantially increased the accuracy metrics of identification of all TreM groups, apart from bark (see
Figure 6). Training CNNs on the augmented training set further increased both accuracy metrics of all
groups of TreMs by several percents. The best classification model (CNNaugm) resulted in the highest
PA for ivy (90%), whereas the highest UA was obtained with fungi (92%). Both accuracy metrics were
the lowest for bark pockets (PA = 60%, UA = 66%).

Omission and commission errors occurred in all the TreM groups (see Tables 7–10). CNNs
substantially reduced the misclassification for most groups of TreMs, but it remained high (more than
10%) for bark and mosses, as well as bark pockets, ivy and mosses.
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Figure 6. Dynamics of producer’s accuracy (PA) and user’s accuracy (UA) for six groups of TreMs:
bark (BA), bark pocket (BP), cavities (CA), fungi (FU), ivy (IV) and mosses (MO).

3.2. Patch-Based Predictive Accuracy

With the LOOCV, predictive accuracies were calculated for each patch (in total, 173 patches).
Figure 7 shows that the patch-based predictive accuracies varied greatly across all groups of TreMs and
all models. These variations indicate that the patches within each TreM group were not homogeneous.
The patch-based predictive accuracies were highest for ivy with the lowest variation. For bark,
the predictive accuracies for most of the patches were high for all models, but there were several
outliers. CNN models predicted the patches associated with cavities and fungi more accurately, but there
were several outliers with low accuracies (<25%). The predictive accuracies varied the most for mosses
and bark pockets.

RFshp–orient resulted in a better predictive accuracy of patches for most group of TreMs than
RFshp, but also in a higher variability. CNNs produced a better predictive accuracy for most of
the groups of TreMs, but did not always reduce the variability within the groups. According to
the Kolmogorov–Smirnov significance test, CNN and CNNaugm provided in general a significantly
better result (at the 0.05 significance level) in the assessment of most groups of TreMs than RFshp and
RFshp–orient (Table 11); for ivy, RFshp produced significantly worse results than all other classification
models. The Kolmogorov–Smirnov significance test shows that the patch-based predictive accuracies
obtained using RFshp and RFshp–orient, as well as CNN and CNNaugm, were not significantly different.



Remote Sens. 2018, 10, 1735 15 of 23
Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 23 

 

 
Figure 7. Distributions of patch-based predictive accuracies of six groups of TreMs obtained using 
RFshp, RFshp–orient, CNN and CNNaugm. The values were calculated for each of the 173 patches associated 
with the six groups of TreMs: bark (BA), bark pocket (BP), cavities (CA), fungi (FU), ivy (IV) and mosses (MO). 

Table 11. Comparison of the classification models’ performances using the Kolmogorov–Smirnov 
significance test based on patch-based predictive accuracies. Statistically significant p-values are 
indicated in bold. 

TreM Group Classification Model CNN CNNaugm RFshp 
Bark CNNaugm 0.53   
 RFshp 0.01 0.01  
 RFshp–orient 0.02 0.04 0.86 
Bark pockets CNNaugm 0.20   
 RFshp 0.01 0.00  
 RFshp–orient 0.03 0.01 0.12 
Cavities CNNaugm 0.95   
 RFshp 0.00 0.00  
 RFshp–orient 0.00 0.00 0.37 
Fungi CNNaugm 0.97   
 RFshp 0.00 0.00  
 RFshp–orient 0.00 0.00 0.31 
Ivy CNNaugm 0.99   
 RFshp 0.03 0.13  
 RFshp–orient 0.13 0.35 0.99 
Mosses CNNaugm 0.27   
 RFshp 0.02 0.00  
 RFshp–orient 0.16 0.00 0.43 

4. Discussion 

In this study, a novel approach was developed for identifying the stem structures associated 
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Figure 7. Distributions of patch-based predictive accuracies of six groups of TreMs obtained using
RFshp, RFshp–orient, CNN and CNNaugm. The values were calculated for each of the 173 patches
associated with the six groups of TreMs: bark (BA), bark pocket (BP), cavities (CA), fungi (FU), ivy (IV)
and mosses (MO).

Table 11. Comparison of the classification models’ performances using the Kolmogorov–Smirnov
significance test based on patch-based predictive accuracies. Statistically significant p-values are
indicated in bold.

TreM Group Classification Model CNN CNNaugm RFshp

Bark CNNaugm 0.53
RFshp 0.01 0.01
RFshp–orient 0.02 0.04 0.86

Bark pockets CNNaugm 0.20
RFshp 0.01 0.00
RFshp–orient 0.03 0.01 0.12

Cavities CNNaugm 0.95
RFshp 0.00 0.00
RFshp–orient 0.00 0.00 0.37

Fungi CNNaugm 0.97
RFshp 0.00 0.00
RFshp–orient 0.00 0.00 0.31

Ivy CNNaugm 0.99
RFshp 0.03 0.13
RFshp–orient 0.13 0.35 0.99

Mosses CNNaugm 0.27
RFshp 0.02 0.00
RFshp–orient 0.16 0.00 0.43

4. Discussion

In this study, a novel approach was developed for identifying the stem structures associated
with six groups of TreMs (bark, bark pockets, cavities, fungi, ivy and mosses) on beech (Fagus sylvatica
L.), based on dense TLS point clouds, and applying a semi-automated point-wise semantic labeling.
We tested both a classic statistical classifier trained on hand-engineered predictors and a deep learning
approach capturing representations directly from the data. RF involving local 3D geometric features
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has been frequently used in the past decade for the semantic labeling of unstructured 3D point clouds
captured in natural environments [34,35]. In contrast, CNNs have experienced more attention in
remote sensing only recently, but have already proved to have great potential for both semantic
labeling and classification [44–50].

The classification algorithms, which were used to identify the six TreM groups, produced different
results. Whereas the RF classifier produced an OA of up to 70% when both local 3D shape features and
two additionally developed orientation features were used, the CNNs significantly outperformed this
with an OA of 82% and thus seem potentially better. The proposed rasterized MVOPs of a point’s local
3D neighborhood (top view, front view and side view) seems to be a powerful input data set for a CNN.
CNNs also benefited from synthetic transformation of the data (data augmentation), which increased
the variability of the training set. The best final agreement was achieved for bark and ivy, whereas it
was lowest for bark pockets. The advantages and drawbacks of both classification approaches, as well
as the potential and limitations of TLS 3D point clouds for identifying TreMs, are discussed below.

4.1. Local 3D Geometric Features vs. Convolutional Features for TreM Identification

The local 3D geometric features used in this study comprise 3D shape and orientation features.
Some of these features have been successfully used in forestry applications for filtering and semantic
labeling TLS data. For example, flatness (also planarity) was used to detect single tree-stem profiles [40],
and, in combination with verticality, for denoising and modeling tree stems [20]. Eigen decomposition
is particularly useful for reconstructing tree architecture [21]. Moreover, geometric features are superior
to spectral features for discriminating foliar and woody material in mixed natural forests, but the
combination of both provides the best results [41].

Using 2D CNNs for semantic segmentation of 3D point clouds has already been successfully
applied in other studies [47,48], where 2D raster data were generated from the initial 3D point clouds
and then used to train a CNN. Thus, [47] generated multiple 2D snapshots of the point cloud and
produced two types of images: Red-Green-Blue (RGB) view and a depth composite view containing
geometric features. In [48], RGB, depth and surface normal images were produced. When generating
input data for a classification model, it is important to consider that a 3D object might look different,
depending on the perspective and distance to the object. This can be addressed either by choosing
different viewing positions (as used in e.g., [47,48]) or by rotating the 3D point cloud around a certain
axis, as conducted in this study.

We found that the local 3D geometric features used in this study have a limited potential for
identifying the stem structures associated with the six groups of TreMs. These features are powerful
for distinguishing between 2D (i.e., bark, mosses) and 3D (i.e., cavities, fungi and ivy) stem structures
(see Tables 7 and 8). However, the differences between convex stem structures (i.e., fungi, ivy, and bark
pockets) and concave stem structures (i.e., cavities) are not captured. These stem structures were often
confused with each other. Using CNNs incorporating rasterized MVOPs could substantially reduce or
even eliminate the misclassifications between TreM groups (see Table 9).

An advantage of the local 3D geometric features is, that in contrast to the rasterized MVOPs, they
are robust to global inclinations of a tree stem and thus suitable for both straight and inclined trees.
An inclined tree stem can be corrected using a stem axis, but this might be challenging for curved trees.
In such cases, generating 2D input data for a CNN using different vertical angles (as used in [46]) or
an artificial rotation of the point cloud around a horizontal axis to a certain angle might be beneficial.
Integrating both the deep representations learned by CNNs and the local 3D geometric features into a
classification model might also be promising. Such an approach has successfully been applied by [50]
and also resulted in a higher transferability of the classification model.

In this study, we used two self-developed orientation features. The idea behind these features was
to capture local changes in the directions of the stem surface relative to the stem axis. These features
were inspired by the verticality feature used by [39], which was calculated as an angular product
between the vertical axis and the local normal. Training the RF on the enlarged feature set, which
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included the two proposed orientation features and other local geometric features used in this study,
increased the overall classification accuracy by 4%. To calculate the orientation features, the fitted
tree-stem axes were used. Thus, these features might be sensitive to the quality of the stem axes.

Visual inspection of the point-wise semantic labeling of tree-stem point clouds shows that RF using
local 3D geometric features resulted in a more fragmented prediction than CNN classification models
(Figure 8). For example, when using RFshp, cavities, fungi and bark pockets were misclassified within the
regions of the tree stems covered by ivy (Figure 8, top and middle row). These misclassifications also
occur in highly structured stem regions that are associated with large cavities (Figure 8, bottom row).
The prediction obtained using the RFshp–orient classification model was only slightly less fragmented.
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In general, the predictions of the six groups of TreMs using CNNs were less fragmented and thus
better. Although misclassifications were reduced, problems remain in the regions on the tree stems,
where several different types of TreMs border each other. In these regions, both RF classification models
perform better. However, the set of local geometric features in this study is limited. Other high-level
local geometric features, as provided in the literature (e.g., [35]), might be more suitable for TreM
identification. The rasterized MVOPs proposed in this study include only the geometric information
of the point cloud, i.e., depth in terms of accumulation of the points. Involving 2D images generated
from other point cloud information (e.g., normals, as used by [48], or local geometric features) might
be beneficial for classification performance.
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4.2. Limitations of TLS Data for TreM Identification

Although 3D point clouds have great potential for analyzing tree-stem structures associated with
TreMs on beech, they have several limitations:

(1) Occlusion. This is a key factor that limits the use of TLS technology, especially in forest
environments. The presence of other trees, branches and foliage material between the scanning
device and the target object (habitat tree) may lead to substantial information loss. This can
be minimized by using scanning designs with multiple scanner positions [18,19], or by using
other technologies, such as a canopy crane [73]. In the present study, occlusions on the stems
of the habitat trees were minimized using a single-tree scanning design with multiple scanner
positions. Nevertheless, not all TreMs of a habitat tree can be assessed using TLS even with such
a scanning design. The TreMs located in the tree crown are very difficult to detect with TLS due
to the occlusion with branches and foliage.

(2) Point cloud quality. Tree stems were scanned from multiple positions to detect TreMs. However,
the quality of a co-registered point cloud is crucial since this might affect the results of the point
cloud interpretation. Visual inspection of the semantic point cloud labeling results revealed that
the predictive accuracies for some groups of TreMs may depend on the stem height. For example,
identifying bark was more accurate in the lower parts of the tree stems than it was in the upper
parts (Figure 9). Detailed inspection of the point clouds showed that the point cloud quality
was lower in the upper part of the tree stem, where multiple representations on the tree-stem
cross-section were present. Since the scan co-registration using reference targets was reported
to be successful, spatial inconsistencies in point clouds in the upper parts of tree stems might
occur because of slight movement of tree stem caused by wind. The movement amplitude tends
to be zero in lower parts of tree stem, but increases with tree height. Such spatial inconsistencies,
especially in the TLS point clouds derived from multiple scanning positions, have been reported
to have a significant effect on tree parameter estimation in upper parts of tree stems [74], as well
as affecting tree whorl detection and branch modeling [75]. Additional training data collected in
the upper stem parts could be useful to overcome this problem when identifying TreMs in TLS
point clouds using machine learning approaches, and to improve the classification accuracy.

(3) Spatial resolution. The TLS point clouds used in this study were acquired at a very high spatial
resolution (point spacing of 3 mm at 10 m distance). Consequently, the data acquisition was
time-consuming. This means it probably cannot yet feasibly be used in the framework of a forest
inventory. We hypothesize that reducing the spatial resolution of TLS point clouds may have an
effect on TreM identification, especially on TreMs with very fine structures, e.g., mosses, but this
has not yet been studied. Another aspect is that the spatial resolution of TLS data decreases with
tree-stem height. As a consequence, the structural properties of the objects located in the upper
part of the tree stems may be captured with less detail.

(4) Spectral information. Besides spatial information (xyz coordinates), the FARO Focus 3D S120
laser scanner also captures information in the visible and near-infrared (NIR) parts of the light
spectrum. As previously mentioned, RGB values are very sensitive to sun illumination and are
thus not suitable for analyzing TLS data. Instead, intensity values can be used. [65] reported
that intensity values provided by the FARO Focus 3D S120 depend on the distance to the
scanned object and proposed an approach to correct it. Authors of [41] used a RIEGL VZ-400
scanner in their study on discriminating foliar and woody material in mixed natural forests.
They reported that, beside local geometric features, the features derived from intensity values
were highly relevant. We suggest that intensity values could improve the identification of the
TreMs containing chlorophyll, i.e., mosses and ivy.
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Figure 9. Misclassifications arising from scan co-registration errors. The tree-stem point cloud was
labeled using a deep Convolutional Neural Network (left). In the upper part of the tree stem, bark (BA)
was misclassified as bark pockets (BP) but it was correctly classified in the lower part of the tree stem.
Detailed inspection shows such misclassifications occurred in the regions of the point cloud where scan
co-registration failed (right), independent of the classification model used. The cross-sections were
collected at h = 9.5 m in the tree-stem point clouds and labeled using the (a) RFshp, (b) RFshp–orient,
(c) CNN and (d) CNNaugm classification models.

5. Conclusions

Dense point clouds seem to have high potential for the semi-automated identification of stem
structures associated with TreMs (bark, bark pockets, cavities, fungi, ivy and mosses), as shown here for
beech. Whereas the discriminative power of hand-engineered local geometric features used in this
study is limited, deep representatives learned by CNNs from proposed rasterized MVOPs, which denote
accumulation of points in the point cloud, are very promising. The best RF classification model trained
based on the complete set of the local geometric features resulted in an OA of 70%, whereas with the
best CNN incorporating rasterized MVOPs, it was 83%. The local geometric features are very effective
in distinguishing between the structures with 2D (bark and mosses) and 3D (cavities, ivy and fungi)
properties, whereas they are less useful in distinguishing convex stem structures such as ivy and fungi,
and concave structures such as cavities. The rasterized MVOPs are more suitable for the identification
of such stem structures. However, further work is needed and more training data should be used to
capture TreMs properties better, especially in stem regions where several stem structures may border
each other, and where spatial inconsistencies in point clouds caused by wind may occur. Incorporating
additional classification approaches, as well as involving an enlarged set of local geometric features
might improve TreM identification. Moreover, the approach needs to be tested on other important
tree species such as oak, spruce and fir as well. In future, it is necessary to investigate how TreM
identification and assessment of the ecological value of a tree or a forest stand might be affected by
reduction of point cloud density, the usage of other (lighter) scanning devices with different levels of
measurement precision, or information loss due to occlusion.
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