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Abstract: Land use significantly influences the planet’s land surface and associated biogeochemical
processes. With fierce conflict between various land uses, it is important to project the land system
process to support decision-making. Lack of insight into scale differences of land use change (LUC)
increased uncertainties in previous studies. To quantify the differences in LUCs within an elevation
gradient, in this study, a novel model, the stratified land use change simulation model (SLUCS),
was developed by using an elevation-based stratification strategy. This model consists of four modules.
First, an elevation-based stratification module to develop a quantitative method for generating
stratifications using elevation and land-use characteristics. Second, a non-spatial land-use demand
module to forecast the overall land use area and make zoning constraints to simulate LUCs. Third,
a stratified suitability estimation module that uses the stratified logistic regression method to reveal
the regional relationship of the driving factors with LUCs at different stratifications. Finally, a spatial
allocation of the land-use module, which projects a spatially explicit LUC. The SLUCS model was
applied and tested in the Guizhou and Guangxi Karst Mountainous Region. Results validated the
effectiveness of the model, and further demonstrated an improved spatial consistency with the
reference, a higher accuracy assessment, and a better simulation performance in conversion areas
than the traditional method. Three scenarios from 2015 to 2030 with different land-use priorities
were designed and projected. Each scenario presented the same LUC trends, but with different
magnitudes, including the rapid expansion of built-up land, the restoration of forest and water,
and the loss of farmland and grassland. Priority of the socioeconomic development and ecological
protection of the scenarios forecasted a sharper increase in the built-up land and in forests than
the historical extrapolation scenario. The SLUCS model visually projected the LUC trajectory and
competition between land uses, which suggests specific tradeoffs among management strategies to
support sustainable land uses.
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1. Introduction

Land-use activities, activities converting natural landscapes for human use or changing
management practices on human-dominated lands, have transformed the planet’s land surface [1,2].
At the global scale, land is becoming a scarce resource, which leads to the fierce competition and
conflict between various groups of people [3]. The world has experienced a large-scale cropland
expansion and intensification to meet food demands for the growing population in the last centuries [4].
Also, the conversion of Earth’s land surface to urban uses drives the loss of farmland, affects local
climate, fragments habitats, and threatens biodiversity [5]. Meanwhile, afforestation/reforestation
projects have been implemented to mitigate climate change and sustain land systems [6]. For example,
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16 sustainability programs have improved the sustainability of land systems in China [7]. Land use,
as a force of global importance, significantly influences the atmosphere, pedosphere, hydrosphere,
and biosphere of the earth [8], and its change results in climatic, biological, and socio-political
forces [9,10]. With different demands for economic growth, population growth, and ecological
restoration and protection, modeling and projecting land-use change processes is necessary to support
the design and implementation of land-use planning and policy.

Previous studies have elaborately reviewed the multiple available models of simulating land-use
change, which were developed and applied to provide a platform for both emulating mechanisms
of land-change processes by the computer encodes and making projections of future land-cover
and land-use patterns [10–13]. Models have ranged from those using pattern-based methods to
structural or process-based methods [14,15]. Brown, Verburg, Pontius and Lange [14] identified five
key types of modeling approaches according to the model input, output, and land use conversion rule
design. The models quantify the complex relationships between physical factors, human activities,
and land-use dynamics, and simulate the land system process under different strategies [14,15]. Under
the combined influences of these factors with different spatial patterns, the land use change would
constitute an obviously spatial-explicit discrimination. In this way, the land use simulation models,
setting the uniform rules of land use change in the model design, tend to lose the detailed spatial
characteristics of land use conversion in the previous studies. Therefore, it is necessary to incorporate
relevant regional difference information for simulating the land use dynamics.

To better project the future land-use change, precisely quantifying the complicated impact of the
driving factors is necessary. However, land-use changes differ with driving factors by region [12,16].
Global scale assessments may therefore conflict with the findings of micro- or meso-scale data sets [9].
In this case, the demands for land resources would be different and conflicted at different stakeholders
and scales [17]. To take the scale dependency into account, a separate simulation method was used for
different world regions in the global land-use projection [16,18]. Within regional research of land-use
change, few studies have focused on this issue, which leads to scale biases and simulation uncertainties.
In particular, mountain ecosystems, characterized by their topographic and climatic variety, presented
shifts in land-use change across their elevation gradient [19]. Meteorological variables, soil properties,
and vegetative functions change with the elevation in the mountainous area [20,21], and further the
human activities and demands on the land use are influenced the elevation [19,22]. Previous study
only used the elevation as one of driving forces, but limited studies measure the difference of land
use dynamics within different elevation gradients. To quantify the regional differences of land-use
changes [23], it call for an insight into spatially varying process of land-use change in the model
design. Using the elevation gradients as zoning constraints, demands for the land and land use
functional orientations are spatial-differentially depicted, and further regional relationships between
driving factors and land use are quantified by the stratified strategy in this study. This can help better
understand the land system dynamics and improve the simulation accuracy.

Stratifications provide a useful approach to simplifying heterogeneity, which divides
environmental gradients into convenient units and then to uses these as sub-regions with relatively
consistent characteristics [24]. Traditional stratification is subjectively based on expert knowledge [25]
or a statistical clustering of environmental variables [26,27]. Knowledge of stratification approaches for
the projection of land-use change is limited and unclear. Object-based segmentation methods provide
an innovative way for image analysis to develop observation units with a set of similar pixels [28,29],
which would be potentially useful in a stratified strategy for simulating land system dynamics. Thus,
the objective of this study was to (1) develop an enhanced land-use change simulation model with an
elevation-based stratification strategy; and (2) apply the new model to simulate land-use change and
investigate the model performance. The model contributes to the existing body of literature on getting
a better approximation for spatial land use change pattern and an improvement of model simulation
performance. This would enhance the understanding of land use dynamics process and provide a
more reliable output to support for the decision making.



Remote Sens. 2018, 10, 1730 3 of 25

2. Materials and Methods

2.1. Study Area

The Guizhou and Guangxi Karst Mountainous Region, a typical karst region in southwestern
China, was selected as the case-study area (Figure 1). Fengcong and fenglin, the two major types of
karst terrain [30], are widely disturbed in the study area. Fenglin is the most extreme form of karst
landscape, and much of it may evolve from fengcong. Fengcong, translating as peak cluster, is a karst
with roughly conical hills separated by deep closed depressions forming a continuous terrain of steep
slopes and significant relief; and fenglin, translating as peak forest, is a karst with isolated hills rising
from a plain forming of limestone bedrock overlain by a veneer of alluvium [30]. The elevation ranges
from 0 to 2848 m with a gradually decreasing gradient from northwest to southeast [31]. It was found
that the vertical terrain features affect the land-use change in the study area [31]. Thus, they can be
used for testing the hypothesis for the elevation-based stratified simulation strategy and for validating
the model performance.

The study area is roughly located between 22◦8′54′ ′N–28◦12′27′ ′N and 104◦18′27′ ′E–110◦20′40′ ′E
and encompasses the majority of Guizhou and Guangxi provinces in China. The area covers
211,400 km2 and lies within the subtropical monsoon humid climate zone with a mean annual
temperature of 19 ◦C and a mean annual precipitation of 1350 mm. According to the Genetic Soil
Classification of China [32], terra fusca, yellow soil, and red soil are the three principal soil types in the
study area.
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Figure 1. Location of Guizhou and Guangxi Karst Mountainous Region, China.

2.2. Land-Use System and Driving Factors

China’s Land-Use/cover Datasets, provided by the Data Center for Resources and Environmental
Sciences at the Chinese Academy of Sciences, were used in this study. The average interpretation
accuracy of out-door surveys and random sample checks were 92.9% and 97.6%, respectively [33],
which consisted of 6 first levels and 25 levels of land-use categories in total. We reclassified the land-use
system in this study as seven categories: Paddy field, dry land, forest, grassland, water, built-up land,
and bare land.
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According to driving factors used by Huang and Cai [34] and Liu, et al. [35], seven aspects,
including seventeen variables, were selected for analyzing their relationship to land-use change,
calibrating and validating the model in Table 1. The climatic factors include temperature and
precipitation. Soil types, texture, and organic matter were chosen to characterize the effect of soil
property on land use. Vegetation types and the Normalized Difference Vegetation Index (NDVI) were
used to represent the vegetative factors. The MODIS NDVI (MOD13Q3) provided every 16 days at
the spatial resolution of 250 m was selected. The datasets were preprocessed with the Atmosphere
Bidirectional Reflectance Distribution Function (BRDF) Correction [36] and geometric correction was
resampled using a nearest neighbor operator from their native sinusoidal projection to the Albers
equal-area conic projection. The maximum value composite method was used to produce the monthly
NDVI values and the annual value was calculated by the average values of twelve months. Then the
average annual NDVI between 2001 and 2005 was calculated and used. Topographic factors included
the elevation and slope. The aspect was calculated using the elevation data from Shuttle Radar
Topography Mission (SRTM) Digital Elevation Model dataset and ArcGIS 10.1 (ESRI Inc., Redlands,
CA, USA). The karst rocky desertification class characterize the influence of land degradation on the
land-use change. Population density and gross domestic product (GDP) were selected as the two
socio-economic factors. Location factors, including the distance to roads, distance to settlements,
and distance to rivers, were selected. Distances to roads and settlements were the proxies for the
distribution of human activities [37], assuming that a shorter distance to roads and settlements
indicated an increased human influence. The distance to rivers reflected the accessibility of water
resources and fishery products [38,39]. To forecast the land use in 2030, temporal scale of several
driving data were updated from the same data sources, including the temperature and precipitation
from 1995–2015, NDVI from 2011 to 2015, population density and GDP in 2015, and road in 2015. Other
factors were used as the same data in Table 1. All the data were resampled in the WGS84 projection
constrained by the same boundary of the study area in GIS 10.1 with a pixel size of 1000 m × 1000 m.

Table 1. Data sources and description of driving forces.

Category Driving Forces Spatial Scale Temporal Scale Data Source

Climatic factors
Mean annual temperature 0.1◦ × 0.1◦ 1981–2000 China Meteorological Forcing Dataset, Cold and

Arid Regions Science Data Center at LanzhouMean annual precipitation 0.1◦ × 0.1◦ 1981–2000

Soil factors

Soil type 1 km × 1 km 1980s Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences

Ratio of clay soil 1 km × 1 km
1980s

Soil Characteristics Dataset of China from
Shangguan et al. [40]Ratio of sandy soil 1 km × 1 km

Soil organic matter 1 km × 1 km 1980s China Dataset of Soil Properties for Land Surface
Modeling [41]

Vegetation factors

Vegetation types 1 km × 1 km 1980s Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences

Normalized Difference
Vegetation Index (NDVI) 250 m × 250 m 2001–2005

MOD13Q1 NDVI products-MODIS/Aqua
Vegetation Indices
(https://ladsweb.nascom.nasa.gov/data/)

Topographic
factors

Elevation 90 m × 90 m
2000

International Scientific Data Service Platform,
Computer Network Information Center, Chinese
Academy of Sciences

Slope 90 m × 90 m
Aspect 90 m × 90 m

Land degradation
factors Karst rocky desertification 100 m × 100 m 2005 State Forestry Administration of People’s Republic of

China. Bulletin of China’s Karst Rock Desertification

Socio-economic
factors

Population density 1 km × 1 km 2000 Data Center for Resources and Environmental
Sciences, Chinese Academy of SciencesGross domestic product

density (GDP) 1 km × 1 km 2000

Location factors
Distance to roads 1 km × 1 km 2000 Data Center for Resources and Environmental

Sciences, Chinese Academy of SciencesDistance to settlements 1 km × 1 km 2000
Distance to rivers 1 km × 1 km 2000

2.3. Overall Model Structure

The novelty of this study to establish an enhanced land-use change simulation model by the
elevation-based stratification strategy (SLUCS). SLUCS consists of four modules: (a) Elevation-based
stratification; (b) non-spatial land-use demand; (c) stratified suitability estimation; and (d) spatial

https://ladsweb.nascom.nasa.gov/data/
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allocation of land use (Figure 2). This model can produce the elevation-based stratifications coupling
with the land use characteristics. Then it would project land system dynamics at these stratifications,
which can make zoning constraints to simulate land sue changes with different land utilization
orientations and use the stratified logistic regression method to reveal the regional relationship
of the driving factors with land uses at different stratifications. The model is hypothesized to
get a better approximation for the land use dynamics process and an improvement of model
performance. To achieve this, the elevation-based stratification module divided the study area into
several spatially-continuous stratifications to separately simulate the land-use change within a stratified
structure. A non-spatial land-use demand module calculates overall areas of all land-use types in
each sub-region for input into the model. The stratified suitability estimation module quantifies the
relationship between land use and driving factors at stratified sub-regions while still being globally
relevant. Finally, the spatial allocation of the land-use module projected the land use at each location
for the spatially explicit output.

The elevation-based stratification module utilized the object-based segmentation tool to determine
the division of stratifications. Using the multi-resolution segmentation algorithm from the eCognition
8.0 software [42], the object-based segmentation was performed by using the elevation data. Based on
the land-use characteristics of the stratifications, three parameters were proposed to evaluate the
intra-segment homogeneity and inter-segment heterogeneity of the stratifications and determine the
optimal segmentation.

The non-spatial land-use demand module calculated the statistical demand of different land-use
types without the spatial dimension. The module estimated the aggregated quantity of land-use
demands using the statistical method and scenario setting. To project the future land-use change,
the Markov chain model [43] was used to forecast the historic trend of land-use change and designed
varying scenarios according to different priorities and demands for land use. Based on the stratified
forecast of historical land-use trends, the non-spatial land-use demands in the entire study area was
divided at different stratifications under varying scenario settings.

The stratified suitability estimation module analyzed the relationship between the land use and
driving factors based on the divided stratifications from the elevation-based stratification module.
Given the uncertainty of land-use dynamics, it is feasible to express the conversion potential of a
location with probability rules rather than deterministic rules [44]. Thus, this study used a logistic
regression model with dummy variables in order to label various stratifications [45] and to quantify
the stratified relationship between land use and driving factors.

The spatial allocation of the land-use module projected each location to the highest conversion
potential of the land-use types, which then used the iterative techniques to make the spatially
aggregated land-use quantity consistent with the result of the non-spatial module. Using the strategy
in the widely used the Conversion of Land Use and its Effects at Small regional extents model
(CLUE-S) [46], the module determined the spatial allocation based on the conversion potential
possibility. The spatial allocation was summed by three parts: The local land-use suitability from
stratified the suitability estimation module, the conversion resistance, and the competitive advantage
of the land use.
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2.3.1. Elevation-Based Stratification Module

The elevation-based stratification module was executed according to the object-based segmentation
tool in the eCognition 8.0 software, which has successfully performed the segmentation and divided
images as different objects in previous studies [47,48]. The objects were labeled as stratifications with the
same meaning in this study. The multi-resolution segmentation algorithm, including the three parameters
of shape, compactness, and scale, was used in this study. The shape defines the homogeneity of the
stratification values influencing the size, length, and edge complexity [49], while compactness is defined
as the ratio of the border length and the square root of the number of pixel compactness [50]. According
to previous studies [47,48], the selected shape and compactness parameters were set to a default of 0.1
and 0.5 in the eCognition software. The scale parameter influences how large the stratifications can
grow, thus influencing the number of pixels that can be grouped into a stratification [49]. The elevation
data were used for the execution of eCognition with different scale parameters.

To ensure the stratification was not over-segmented or under-segmented, rules were needed to
validate an optimal segmentation scale. The optimal image segmentation scale was defined as the scale
that maximized intra-segment homogeneity and inter-segment heterogeneity [51]. Especially, land-use
characteristics in each stratification would be similar, but significantly different from each other in
the model. Therefore, too many or too few stratifications would not adequately project the land-use
change and may also lead to scale biases. We assigned a step size of 500 and a range of 0–10,000 for the
particular scale parameter changes to produce the multi-scale segmented stratifications. A larger scale
parameter produced a larger area of stratification. Using the stratifications with different parameter
settings and the land-use map, each land-use proportion within the stratification unit can be calculated.
Afterwards, three indicators to find the optimal segmentation scale were proposed.

On one hand, the intra-segment homogeneity should ensure that features of interest were not
grouped into stratifications represented by other features. To prevent this, the homogeneity of each
stratification was taken into consideration to identify the optimal segmentation level. The homogeneity
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was defined as the sum of the area-weighted standard deviation of each stratification (ASDintra) for
each segmentation level using the follow equation:

ASDintra =
∑Ni

i=1(ai × si)

∑Ni
i=1 ai

, (1)

where Ni is the number of stratifications; ai is the area of each stratification; and si is the standard
deviation of all land-use-area proportions in each stratification. A higher ASDintra indicated a smaller
intra-segment homogeneity within all segmented stratifications.

On the other hand, the inter-segment heterogeneity would ensure features were significantly
different from their neighbors. The optimal segmentation size can be estimated by making advances of
local variance [41]. The local variance was defined as the mean standard deviation of the stratifications
(LVinter) through segmentation to explore the heterogeneity of all stratifications for each segmentation
scale level:

LVinter =

Nj

∑
j=1

√
1

N−1

Ni
∑

i=1
(mij −

−
mj)

2

Nj
, (2)

where Nj is the number of the land-use type (Nj = 7 in this study); j denotes the land-use type (such as
paddy field, dry land, forest, grassland, water, built-up area, and bare land); mij is the j land-use
proportion of i stratification; and mj indicates of all stratifications’ means. A higher LVinter indicated a
higher inter-segment heterogeneity within all the segmented stratifications.

With a lower ASDintra and higher LVinter at a certain segmentation scale level, it is generally
accepted as a quality segmentation. To allow for the intra-segment and inter-segment goodness
measures to be considered equally, both were rescaled to a similar range by the following equation:

X′ =
X− Xmin

Xmax − Xmin
+ 0.001, (3)

where X′ is the normalized score; X, Xmax, and Xmin are the raw, maximum, and minimum values of
ASDintra and LVinter, respectively. A constant value of 0.001 was used to avoid the denominator being
zero.

Taking the intra-segment homogeneity and inter-segment heterogeneity into account, an optimal
segment score (OSS) was calculated by using the ASDintra and LVinter to identify the optimal
segmentation scale as follows:

OSS =
V(LVinter)

V(ASDintra)
, (4)

where V(LVinter) and V(ASDintra) are the normalized ASDintra and LVinter values determined by
Equation (3). We hypothesized that the optimal segmentation was identified as the one with the
highest OSS, because at this level there is a comprehensive consideration of maximizing intra-segment
homogeneity and inter-segment heterogeneity as much as possible for the land-use characteristics used
in this study. The area proportions of seven land-use types were used for the calculation of ASDintra,
LVinter, and OSS. Based on the elevation gradient and land-use characteristics, we segmented the study
area as new stratifications at the optimal scale.

2.3.2. Non-Spatial Land-Use Demand Module

To project the land system dynamics, the future land-use change was forecasted by the Markov
chain model [43] using the past land-use change trajectories. The Markov chain model was widely
used in historical extrapolation analysis [23,52], which consists of a process for predicting probabilities
of the system at the next state, purely based on the immediately preceding state. The model calculated
the land-use conversion matrix at two periods, t1 and t2, and forecasted the land-use change at the
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next stage, t3. The history time nodes of t1 and t2 were 2000 and 2015 in this study, and the future
time node of t3 was 2030. Based on the historical land-use change trend, different scenarios can be
designed according to the social-economic characteristics of the study area, different land-use priorities,
and targets of regional and national planning (Table 2).

Table 2. Target of land use conversion from 2015 to 2030 under different scenarios.

Land Use Type
Historic-Condition Scenario Planning Scenario Protect Scenario

Change Rate (%) Change Rate (%) Change Rate in Natural
Reserves (%)

Area Proportion
(%)

Paddy field −3.6 −4.7 1 0
Dry land −2.4 −3.4 1 0

Forest 0.6 2.8 1 60.0 3

Grassland −1.9
Water 14.1 3.8 2

Built-up land 36.9 40.4 1 0
Bare land −4.8

1 Calculated according to the revised Planning on Land Use in Guizhou (2006–2020) and Guangxi (2006–2020);
2 Calculated according to Outline of National Territorial Planning (2016–2030); 3 Calculated according to
Guizhou Province’s 13th Five-year Ecological Construction Planning and Guangxi’s 13th Five-year Forestry
Development Planning.

Three future land-use scenarios from 2015 to 2030 were designed in this study, deemed
historic-condition, planning, and protect scenarios. Historic-condition scenario, as the basic scenario,
forecasted the history trend extrapolation of future land-use change by the Markov chain model and
the land-use conversion matrix from 2000 to 2015. The land-use demand, land resource utilization,
and land development activities from 2015 to 2030 would remain similar to that of 2000 to 2015 in the
historic-condition scenario.

The planning scenario emphasized economic priority and social development based on regional
and national land-use planning. This scenario increased demand for built-up land to accelerate
the urbanization process according to the Land-Use Planning of Guizhou and Guangxi Province,
which resulted in a higher increased rate of built-up land than that of the historic-condition scenario.
To improve the ecosystem and environment, this land-use planning required a higher increase in the
rate of forest land. Thus, the increase of built-up land and forest was at the expense of other land
resources. The increased rate of the water region was set according to Outline of National Territorial
Planning, with a lower rate than the historic-condition scenario. Also, the land-use planning limited
the decrease for farmlands, with a larger negative rate of paddy field and dry land removal. The change
rate of bare land stayed the same with the historic-condition scenario.

The protect scenario focused on the protection of ecosystems and the environment according to
ecological and environmental protection planning. Referring to the Guizhou Province’s 13th Five-year
Ecological Construction Plan and Guangxi’s 13th Five-year Forestry Development Plan, the proportion
of forest land should be up to 60% of the total study area. Next, the specific protection strategy in
the nature reserves in the study area was designed by modifying the land-use conversion matrix
(Figure S1). With ecological protection and afforestation projects, this scenario limited the conversion
from other land-use types to paddy field, dry land, and built-up land, and increased the conversion
probability from other land-use types to forests by 25% in natural reserves. Outside natural reserves,
this scenario decreased the conversion probability from other land-use types to the built-up land by
25% and proportionately increased the conversion probability from other land-use types to forest to
make the proportion of forest 60%.

The stratifications were used to differentiate land-use demands in different regions and make
zoning constraints for simulating land use under three scenarios. The future land-use change of the
historic-condition scenario was separately simulated at each stratification. Next, the ratios between
change rates of land use in the planning or protect and historic-condition scenarios for the whole study
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area were calculated. Then these ratios were used to divide the aggregated the planning and protect
result and calculate the change rate of land use at each stratification using the following equations:

Nj

∑
j=1

At
ij =

Nj

∑
j=1

At+1
ij =

Nj

∑
j=1

αi × (1 +
CRS

j

CRH
j
× CRH

ij )× Aij, (5)

CRS
ij = αj ×

CRS
i

CRH
i
× CRH

ij , (6)

where At
ij and At+1

ij are the area of j land use in the ith stratification at the initial time (t) and forecast
time (t); j is the land-use type, including the paddy field, dry land, forest, grassland, water, built-up
area, and bare land; CRS

j is the change rate of j land use of the planning or protect scenario in the whole

study area; CRH
j is the change rate of i land use of the historic-condition scenario in the whole study

area; CRH
ij is the change rate of i land use of the historic-condition scenario in the ith stratification; αi is

the adjusted parameter of the ith stratification to proportionately adjust all the land-use change rates to
make that summed area of all land-use types the same at times of t and t + 1; CRS

ij denotes the change
rate of j land use of the planning or protect scenarios in the ith stratification.

2.3.3. Stratified Suitability Estimation Module

The logistic regression model, an often used method in land-use change studies [9,46], was used
to quantify the relationship between land use and driving factors. This model is a non-linear statistical
method of regression analysis [53], which explores the relationships between binary variables and
independent variables by the following equation:

ln(
P

1− P
) = β0 + β1x1 + β2x2 + · · ·+ βixi, (7)

where the P is the suitability of land use, where the occurrence and absence of the corresponding
land-use type at the location were coded as 1 and 0, respectively; β0 is the intercept term of the model;
βi is the regression coefficient; and xi denotes the observed value for driving factors in Table 1.

Considering the spatial relationship between land use and driving factors being influenced by
the elevation gradient, the stratification as dummy variables were added into the logistic regression
model. This stratification variable is considered to be categorized as k stratifications and its coefficients
are fitted by adding k − 1 dummy variables to the binary logistic model [45]. For example, if the study
area was divided into three stratifications (k = 3, S1, S2, and S3), two dummy variables would be added
to the model as dx1 and dx2. The variables in S1 were set as dx1 = 0 and dx2 = 0, variables in S2 were set
as dx1 = 1 and dx2 = 0, and variables in S3 were set as dx1 = 0 and dx2 = 1. Then the modified logistic
regression model is as follows:

ln(
PS

1− PS
) = β0 +

n

∑
i=1

βixi +
k−1

∑
j=1

λjdxj, (8)

where PS denotes the stratified local suitability of land use; n indicates the number of driving factors;
k − 1 is the number of dummy variables; λj is the regression coefficient of the dummy variables; and
dxj indicates the label of stratifications.

2.3.4. Spatial Allocation of the Land-Use Module

Based on the outputs from the above three modules, the spatial allocation of the land-use module
projected the non-spatially forecasted land-use demands as the highest conversion potential of land-use
types at each location. Following the spatial allocation strategy of land-use simulation model [18,46],
the conversion potential probability equaled the sum of stratified local suitability, conversion resistance,
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and the competitive advantage of land use. With the different land-use demands in different
stratifications, the conversion potential probability was calculated by the following equation:

Pj
cov = Pj

sui + Pj
res + Pj

com, (9)

where Pj
cov is the conversion potential probability of j land use; Pj

sui denotes the stratified local suitability

from the stratified suitability estimation module by the Equation (8); Pj
res indicates the conversion

resistance, which is a measurement for the costs of conversion of j land use into another [18,46]; and Pj
com

is an iterative parameter that is determined in an iterative procedure under the model execution process.
Pj

res ranges from 0 (easy conversion) to 1 (irreversible change), indicating the land use conversion
cost and elasticity. The higher the Pj

res, the more stable is the spatial pattern of land use. A high Pj
res

indicates a relatively high conversion cost and low conversion elasticity of land use, meaning that the
corresponding land use is not easily converted to other land-use types and tend to maintain the land
use status quo. For example, built-up lands with high capital investment are less converted to other
land use types, and hence, have relatively high Pj

res. Based on previous studies [34,35,54], the values of
conversion resistance were preliminarily set for each land-use type within three scenarios (Table 3).
The conversion resistance of built-up land was set to 1.0, indicating the highest conversion costs. Pj

res of
water was set to a relatively high value, because that the protect and restoration of water area are
important in the study area. The bare lands would tend to be developed for other land uses, and hence,
have relatively low conversion costs and low values of conversion resistance. The its conversion
resistance was set to the lowest value. Also, the values of the same land-use type in varying scenarios
were slightly adjusted according to the different priorities of scenarios on land-use demands. planning
scenario would emphasize the expansion of built-up lands sourcing form the farmlands, thus the Pj

res of
paddy field and dry land were set to lower values than those in the historic-condition scenario. As the
relatively lower demand for water with relatively low conversion costs, the Pj

res was also set to a lower
value. Protect scenario emphasized on the protection of natural vegetation. Thus, it hypothesized that
inartificial land use types, including the forest, grassland, and bare land, have high conversion costs,
and Pj

res were set to higher values than those in the historic-condition scenario.
The spatial allocation procedure used the iterative technique of adjusting the Pj

com to make the sum
areas of the spatial allocated land uses consistent with the non-spatial land-use quantities. The Pj

com

was preliminarily set with an equal value for each land-use type. Then, the competitive advantage of
the land use was calculated, and the spatial allocation procedure was performed to allocate the land
use at each location with the highest Pj

cov. The aggregated land-use allocation area was calculated and
compared to non-spatially forecasted land-use area. If the aggregated allocation area is smaller than
the forecasted area, Pj

com increased, otherwise, Pj
com decreased. With the iterative procedure, Pj

com was
dynamically adjusted and the iterative procedure would stop until the aggregated allocation areas of
all land-use types are equal to the forecasted area. Finally, the result of model at this certain calibrated
Pj

com was the projected spatially output of the land use.

Table 3. The resistance factors for each land use type under different scenarios.

Land Use Type Historic-Condition Scenario Planning Scenario Protect Scenario

Paddy field 0.8 0.7 0.8
Dry land 0.8 0.7 0.8

Forest 0.8 0.8 0.9
Grassland 0.8 0.8 0.9

Water 0.9 0.8 0.9
Built-up land 1.0 1.0 1.0

Bare land 0.5 0.5 0.6
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2.4. Accuracy Assessment of Model Simulation

The fitness of the modified logistic regression models between land uses and driving factors was
measured by the relative operating characteristic (ROC) [55,56]. In a ROC-analysis, true-positives
(i.e., pixels correctly predicted as corresponding land use type) are plotted against false-positives
(i.e., pixels incorrectly predicted as corresponding land use type) for different probability thresholds.
A higher value indicates a better model fitness. ROC = 1 indicates a perfect fit and ROC = 0.5 indicates
a random fit. The ROCs were calculated in the SPSS 18.0 Software.

A sampling design was stratified randomly with the strata defined by the land use types for the
accuracy assessment. Two thousand grids were sampled randomly from each strata of the paddy field,
dry land, forest, grassland, water, and built-up land, and twenty-one grids from the strata of bare land
in 2015. Thus, a total of 12,021 grids were selected to calculate the kappa coefficient [57,58]. Overlaying
the total pixels of referenced and simulated land-use maps (211,400 pixels of 1000 m × 1000 m in this
study), two other statistical metrics were used to validate the simulation performance, including the
KSimulation [58], and Modified Lee and Sallee metric [59]. The kappa coefficient measures the overall
consistence between two datasets. Especially, if limited land use changes occur, but they were totally
simulated incorrectly in the analysis period, the kappa coefficient would be still high over results that
have a considerable amount of correctly simulated land uses without changes [58]. This implied that
the kappa coefficient generally favors models that generate less land-use changes. Thus, the KSimulation
integrated the amount of land-use changes in the expected agreement. Its values range from −1 to 1,
with 1 indicating a perfect agreement of land use transitions. To examine the model performance on each
land-use type, the Modified Lee and Sallee metrics, which measured the spatial fitness, were calculated
for each type. Values higher than 0.6 validated a good spatial fit for the simulation of SLUCS model [59].

3. Results

3.1. Land-Use Change from 2000 to 2015

Forest, dry land, grassland, and paddy field ranked as the top four of land-use areas,
which accounted for 97.86% and 96.95% of the total area in 2000 and 2015, respectively (Table 4
and Figure 3). Figure 3 shows a net increase in forest, water, and built-up land, but a decrease in paddy
field, dry land, grassland, and bare land from 2000 to 2015. Compared to a relatively small net area of
land-use change, we found a drastically mutual conversion of various land-use types in the study area
during this period (Figure 4). For example, the net increase area of forest was 729 km2, which is much
lower the conversion area between the forest and other land-use types, with a conversion output forest
area of 1166 km2 and conversion input forest area of 1895 km2 (Figure 4). Based on land use change
areas from 2000 to 2015, the transition probability matrix of land use from 2000 to 2015 was calculated
for the SLUCS model input (Table S1).

Considerable farmlands were occupied by the expansion of built-up lands, and also conversed to
the forest under the Grain for Green Project [60]. Meanwhile, forests and grasslands were reclaimed
to the farmlands under the Requisition-compensation Balance Policy of Farmland [61], where the
majority of land was reclaimed to dry land, but few to paddy field. The most intense conversion
was between forest and grassland. With the ecological restoration project, the forest area significantly
increased from the grassland (major source) and farmland, while several forested lands degraded to
grassland. The built-up land significantly expanded with a higher change rate of 63.49% than those of
others, at the expense of farmland (major source), forest, and grassland. The conversion area of water
and bare land is relatively small, where the farmland, forest, and grassland were restored to water
while small amounts of bare lands were developed.

The correlations of the driving factors to land uses were analyzed by the logistic regression model
(Table 5). Using the coefficients of driving factors at the significant level of 0.05 to build the modified
logistic regression model by the Equation (8), the ROC values evaluated the model fitness between
land uses and driving data. The spatial pattern of forest, paddy field, dry land and grassland can
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be reasonably explained by the independent variables with the high ROC values. The model fitness
of built-up land and bare land show a relative poor fitness with relative lower ROC values. Almost
different categories of factors would significantly influence the spatial distribution of the paddy field,
dry land, forest, and grassland. The quantity of significant drivers at 0.05 level were 10, 10, 10, 11
for, respectively. In contrast, the quantity of significant drivers for the water, built-up land, and bare
land were 6, 7, and 4. Climatic, topographic factors, GDP, and locations of rivers were important
determinants of the distribution of water. Topographic factors socio-economic and location factors
closely related to the built-up land.

Table 4. Land use characteristic of the Guizhou and Guangxi Karst Mountainous Region in 2000
and 2015.

Land Use Type Area in 2000 (km2) Area in 2015 (km2) Change Area (km2) Change Rate (%)

Paddy field 22,716 21,933 −783 −3.45
Dry land 33,970 33,185 −785 −2.31

Forest 121,071 121,800 729 0.60
Grassland 31,787 30,685 −1102 −3.47

Water 1986 2291 305 15.36
Built-up land 2580 4218 1638 63.49

Bare land 23 21 −2 −8.70

Table 5. Logistic regression model estimates for land use patterns.

Driving Factor Paddy Field Dry Land Forest Grassland Water Built-Up Land Bare Land

Intercept 2.234 2.603 −2.160 −0.510 −3.902 −9.955 −4.530
Mean annual temperature 0.106 * 0.043 * −0.060 * −0.055 * 0.072 * 0.028 0.105
Mean annual precipitation 0.125 * −0.175 * −0.031 * 0.156 * 0.083 * 0.007 −0.414 *

Soil type 0.001 0.004 0.001 −0.131 * 0.012 0.001 0.041
Ratio of clay soil 0.057 * 0.003 0.001 −0.002 −0.027 0.015 −0.022

Ratio of sandy soil −0.068 0.014 * −0.002 0.002 −0.032 0.005 −0.010
Soil organic matter 0.043 0.010 −0.002 −0.024 −0.015 0.073 0.026

Vegetation types −0.067 * −0.045 * 0.151 * −0.036 * −0.010 −0.058 −0.111
NDVI −0.039 −0.044 0.072 * −0.148 * −0.068 * −0.017 −0.039 *

Elevation 0.122 * 0.011 −0.090 * 0.070 * −0.095 * −0.109 * 0.138
Slope −0.196 * −0.116 * 0.070 * 0.001 −0.058 −0.090 * −0.058 *

Aspect −0.004 −0.001 0.001 0.005 * −0.002 −0.007 0.011
Karst rocky desertification −0.156 * −0.065 * 0.025 0.088 * −0.108 −0.125 * 0.061

Population density −0.012 0.047 * −2.020 * −1.050 * −0.012 0.230 * −2.512
GDP −0.111 * −0.268 * −0.154 * −0.007 −0.170 * 0.593 * −2.782

Distance to roads −0.074 * −0.038 * 0.036 * −0.019 * 0.008 −0.117 * 0.026
Distance to settlements −0.548 * −0.188 * 0.139 * 0.066 * 0.070 −0.716 * −0.425 *

Distance to rivers 0.007 −0.007 0.009 −0.039 * −0.228 * −0.013 −0.244
ROC statistic 0.85 0.81 0.88 0.83 0.77 0.78 0.75

* Regression coefficient is significant at 0.05 level.
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3.2. Elevation-Based Stratification

With different scale parameter settings, the multi-segmentation based on the elevation was
performed and the stratifications at the corresponding scale parameter were generated. Figure 5 shows
the examples of the stratification results at four specific scale parameters. When the scale parameter
equals 10,000, the segmentation divided the study area into different stratifications with an obvious
elevation gradient from the northwest to southeast. A smaller scale parameter resulted in a larger
number of stratifications, which depicted more details in the local terrain variations.
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Based on the land-use characteristics within the stratifications at different scale parameters,
the ASDintra, LVinter, and OSS were calculated (Figure 6). The results showed a similar decrease
in ASDintra and LVinter, but a more fluctuating change for LVinter. With the increase in the scale
parameter, the ASDintra showed an initial significant decrease followed by a slow decrease. There was
a somewhat fluctuating decrease of LVinter as the scale parameter increased. This change indicated
an increase in intra-segment homogeneity, but a decrease in inter-segment heterogeneity as the scale
parameter increased. This result implied that the maximization of the intra-segment homogeneity and
inter-segment heterogeneity could not be realized simultaneously.
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Figure 6. Parameter determination for (a) area-weighted standard deviation of each stratification
(ASDintra); (b) mean standard deviation of the stratifications (LVinter); (c) optimal segment score (OSS)
as a function of scale parameter. Setting in eCognition software: Shape = 0.1, compactness = 0.5.

With the shape and compactness parameters of 0.1 and 0.5, the scale parameter was assigned
with a step size of 500 and a range of 0–10,000 for eCognition software producing the stratifications
(Figure 6). Taking these two objectives into consideration, the OSS was used to identify an optimal
segmentation. The OSS showed an initial increase followed by a decrease with an increase in the
scale parameter. Here, the OSS reached the maximum at the scale parameter of 6000, where the
number of stratifications was eighteen for the model execution (Figure 5c). The average, minimum,
and maximum value of area in the stratifications were 11,744, 2856 and 29,374 km2, respectively.
Then, seventeen dummy variables for labeling the stratifications were added to the construction of the
logistic regression model. The eighteen stratifications presented an elevation gradient pattern from
northwest with the highest average elevation of 1732 m to southeast with the lowest average elevation
of 144 m. The model showed that the area proportions of land-use types were significantly different
within 18 stratifications (Figure 7). For example, the highest area proportion of built-up land was
6.37% in the stratification of the low elevation, including the province capital of Guangxi. In contrast,
the area proportions of built-up land were lower than 0.1% in the stratification of the high elevation in
the northwest of the study area. This stratification result was supposed to the optimal segmentation
size and used as the basic boundary for the execution of SLUCS model.
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3.3. Accuracy Assessment of SLUCS Model

To assess the accuracy, the simulated land use map in 2015 was projected by the SLUCS model
and was compared to the referenced land use map from the visual interpretation in 2015 (Figure 8).
The non-spatial land-use demand module used the same land-use changes demand from 2000 to 2015
as the actual interpreted land-use change in this period to execute the model. Based on the stratification
result (Figure 5c), the stratified land-use demands, the stratified relationship between the land use
and driving factors were calculated and the spatial allocation of the land-use were performed. Unlike
the stratified method dividing the study area as several stratifications in the SLUCS, the traditional
method, using the entire study area as the only one stratification, was used to simulate the land use
with the same land-use demand.

Based on the visual comparison in the whole study area and three enlarged sample windows,
the referenced and simulated land-use maps were similar in many aspects. Especially, the performance
of SLUCS model on the land-use change was examined. As a main land-use conversion type,
the expansion of built-up land significantly modified the earth surface, increased the impervious
surface area and became the focus of attention. The first sample window was in the Guiyang (province
capital of Guizhou Province) and experienced a rapid and large-scale of built-up land expansion.
Except for the tiny built-up land expansion, a good degree of spatial consistency between the stratified
simulation and referenced result was found, while there was a relative spatial disparity between the
traditional simulation and the reference in this window. The traditional method presented a relatively
increased spatial dispersion distribution of built-up land compared to the reference. The forest
covered over 50% of the total area, and its expansions, sourcing from the farmland and grassland,
were examined in the second and third sample windows, respectively. The windows showed that both
the traditional and stratified simulation presented a globally spatial fit, but a local disparity with the
referenced land-use map. The results presented a more continuous patch than the referenced result by
eliminating several small patches of these land-use types. Especially, the traditional method result
showed a larger magnitude of patch eliminating, which would lead to a bias in the simulation result.

The kappa coefficient, KSimulation, and Modified Lee and Sallee metric were calculated to assess
the accuracy (Table 6). The kappa coefficients of the traditional and stratified simulation were 0.83



Remote Sens. 2018, 10, 1730 17 of 25

and 0.89, respectively. This validated a globally quality performance of the models and a relatively
better performance of stratified simulation results. With the conversion resistance, the model can
perform well with the persistence in land use located in areas without land use changes [18]. As only
2.4% of locations changed from 2000 to 2015, other areas without land use changes in this period
would present a good spatial consistence between referenced and simulated results. The KSimulation
showed a much higher value of the stratified simulation (0.52) than that of the traditional simulation
(0.19), indicating a much better performance of the stratified simulation on regions occurring land
use changes from 2000 to 2015. Comparing the spatial fitness of each land-use type, the Modified Lee
and Sallee metrics of paddy field, dry land, forest, and grassland were larger than 0.90 for both of two
simulation methods, presenting a much higher degree of spatial fit. In contrast, the stratified method
presented a better simulating performance for the water and built-up land than the traditional method.

Table 6. Accuracy assessment of land use change simulation.

Modified Lee and Sallee Metric

Land Use Type Traditional Simulation Stratified Simulation

Paddy field 0.92 0.95
Dry land 0.92 0.94

Forest 0.96 0.97
Grassland 0.90 0.92

Water 0.61 0.73
Built-up land 0.53 0.67

Bare land 0.91 0.91

Kappa coefficient 0.83 0.89
KSimulation 0.19 0.52
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3.4. Simulation of Land-Use Change in 2030

Based on the three scenario settings, the spatial land uses of the study area in 2030 were projected
(Figure 9 and Table 7). Consistent with the change in the trend from 2000 to 2015, three scenarios
presented the same change in trends, but with different magnitudes for each land-use type from 2015
to 2030. The forest, water, and built-up land increased, while inversely the paddy field, dry land,
grassland, and bare land decreased. The historic-condition scenario presented a relatively low change
rate of land use, while the planning and protect scenarios forecasted a sharp increase of built-up land
and forest, respectively, but a sharp decrease of other land-use types.
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The change rate of the built-up land was still the highest for the historic-condition, planning and
protect scenarios, with values of 36.6%, 40.4%, and 30.2%, respectively. Not only an expansion of
built-up land was found surrounding the metropolis, but also was located in several towns with the
scattered distribution. Specially, the cities of Guiyang, Zunyi, Nanning, and Liuzhou experienced a
large area of built-up land expansion from 2000 to 2015 and continuously increased in area in the future
simulation. The increase of forest was small with the change rate of 0.7% in the historic-condition
scenario, but were significantly enlarged as the largest area of all land-use types to 2.8% and 5.5%
in the planning and protect scenarios, respectively. Areas of new afforestation tended to converse
from the scattered distribution grassland (the main source) and farmland, which was mainly located
surrounding the formerly existing forests in relatively high elevations. The planning scenario showed
the lowest increase of water, while that of the protect scenario was the highest.

For the two types of farmlands, the paddy field had a higher decreased rate than the dry land
in the three scenarios, due to a larger proportion of built-up land occupation for the paddy field.
The decreased rate of farmland enlarged in turn for the historic-condition, planning, and protect
scenarios. Also, the decreased magnitude of grassland showed a similar change in trend among these
three scenarios. Particularly, the decreased rate of grassland in planning and protect had enlarged to
10.1% and 14.5%, respectively. These three types of land use became the major sources of other land
use. The area of bare land is tiny and only a few of them were developed to other land uses.

Table 7. Change of land use from 2015 to 2030 under different scenarios.

Land Use Type Baseline (2015) Historic-Condition Scenario (2030) Planning Scenario (2030) Protect Scenario (2030)

Area (km2) Area (km2)
Change Rate

(%) Area (km2)
Change Rate

(%) Area (km2)
Change Rate

(%)

Paddy field 21,933 21,146 −3.6 20,898 −4.7 20,219 −7.8
Dry land 33,185 32,374 −2.4 32,070 −3.4 31,037 −6.5

Forest 121,800 122,598 0.7 125,252 2.8 128,480 5.5
Grassland 30,685 29,640 −3.4 27,593 −10.1 26,239 −14.5

Water 2291 2593 13.2 2377 3.8 2648 15.6
Built-up land 4218 5762 36.6 5923 40.4 5490 30.2

Bare land 21 20 −4.8 20 −4.8 20 −4.8
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4. Discussion

The novelty of our established SLUCS model is that it uses the strategy of elevation-based
stratification to get a better approximation for the land use dynamics process. Elevation gradients
reflects the differences in meteorological variables, soil properties, and vegetative functions [20,21],
and further influences the functional orientation of land use, as well as the activities and human
demands on the land use [19,22]. Along the elevation-based stratifications, the model used the
quantitative method to better quantify stratified land-use demands and the stratified relationship
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of driving factors to land use to improve model performance. Not unlike the method of subjective
division used in previous studies [16,18], the elevation-based stratification module of the SLUCS model
developed a quantitative method of dividing the study area into multiple stratifications. Based on the
proposed ASDintra, LVinter, and OSS in this study, the intra-segment homogeneity and the inter-segment
heterogeneity of the land-use characteristics within different elevation gradients were comprehensively
taken into consideration to perform the segmentation and generate stratifications at the optimal
segmentation size.

The elevation-based strategy produced stratifications along the elevation gradients relating to
different spatial patterns of physical and social-economic factors, which can better present the spatial
land use characteristics and simulate the land use change. Stratifications can ensure that region-level
results from macro-scale models are spatially allocated [18]. Comparing to the administrative unit with
the fixed boundaries, the SLUCS model flexibly divided the entire study area to multiple stratifications
based on the elevation and land use characteristics. The municipal boundaries consisting of sixteen
units (Figure S2) was used to calculate the inter-segment heterogeneity of land use in 2000 (LVinter).
LVinter of municipal boundaries is 0.048, which is nearly less than one third of that for elevation-based
stratifications of our model (0.074). It indicated a larger spatial variation of land use characteristics for
the elevation-based stratifications than that of municipal boundaries. Within different stratifications
from the elevation-based stratification module, the land-use characteristics and historical changes were
different from each other, indicating the spatial difference of land utilization orientation (Figure 7).
For example, the two stratifications with the high elevations of 1732 m and 1714 m located in the
northwest of the study area would have a higher increased rate of forests of 3.02% and 2.75%, which are
much higher than the average value of 0.60% in the entire study area. In contrast, the stratification
with the lowest average elevation of 144 m located in the southwest had the highest built-up land
area proportion of 6.37% in 2000 and presented the highest increase area of 486 km2 from 2000 to 2015.
Thus, the non-spatial land-use demand module would better present the spatial differences in land-use
actives within the elevation gradients, forecast stratified land-use demand, and set zoning constraints
for simulating land use [62]. Better quantifying the relationship of the driving factors with land use
would significantly help improve the simulation accuracy of the land-use change [46,63]. Using the
dummy variables to indicate different stratifications in the logistic regression model, the stratified
analysis could reveal the regional differences in the impacts of the driving factors on land use [12].
The stratified suitability estimation can provide new spatial information regarding land-use change to
improve model performance.

The application of the SLUCS model in the study area validated its effectiveness to project
land-use change (Figure 8 and Table 6). Compared to the traditional method, without the stratifications,
the stratification strategy of the SLUCS model exhibited superior spatial consistency with the reference
land use (from the visualized interpretation) and higher accuracy assessment (from the statistical
metrics). Previous studies validated the idea that the traditional method could account for land-use
persistence simulated the area without land use change in the simulation period well [18,35,58].
As only 2.4% of the reported locations changed from 2000 to 2015, both presented a high kappa
coefficient. However, the high KSimulation indicated the much better performance in simulated areas
experiencing land-use conversion when the stratified method was used than the traditional method [58].
In particular, the stratified method resulted in a better spatially visualized fit (Figure 8) with the
reference and a higher Modified Lee and Sallee metric (Table 6) for simulating the built-up land
expansion. The urban growth was constrained by stricter planning and management efforts in
China within different administrative units [64]. Thus, there was a clear spatial gradient in the
urbanization ratio and the urbanization gaps among different regions persisted [65]. The traditional
method was not able to fully simulate the regional differences in the urbanization process and
projected a spatial dispersion distribution of built-up land. In contrast, the stratified method had
the advantage of a stratified consideration of the regional urbanization process and built-up land
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expansion. The improvement of SLUCS model in projecting land use change would provide a more
reliable output to support for the decision making.

To a certain degree, our model had limitations and did not perform well in local areas of land-use
conversion. The model showed that the simulation accuracies of the built-up land were still lower
than other land-use types and presented a spatial disparity within the referenced land use in tiny
conversion areas. Comparing to ROC values of around 0.85 in previous studies of predicting urban
growth [66,67], the ROC of 0.78 is relative lower in the logistic model for built-up land. This indicated
that the model cannot fully explain the spatial variability of built-up land and would further influence
the local performance of the model simulation. Land use change is determined by the interaction of
driving factors, where different spatial resolutions of data would affect the simulated results and may
cause uncertainties. The aggregated data at coarse scales may obscure the local variability, but can
show patterns invisible at fine scales, and vice versa [68]. Different biophysical and socio-economic
processes influence the land use at their own dominant scale [69], but there is not an absolutely optimal
scale for the system [70]. The data source determined the basic analysis pixel size [68]. As the spatial
resolution in most of driving factors is 1000 × 1000 m, other factors were resampled at the same
pixel size. Incorporation of the fine-scale socio-economic process is difficult, due to the high data
requirements at this scale. Quantification of the land-use planning and policy, significantly influencing
the built-up land expansion, was difficult even with detailed spatial information [71]. Thus, this study
could only characterize the different macro-scale land-use demands driven by the land-use policy and
planning within different stratifications. Also, there were difficulties in determining a straightforward
quantitative approach for human demands and activities on land [72,73]. The use of several proxies
for them in this study (Table 1), which have proven to be acceptable in recent studies, would influence
the local performance of the model. As only seven independent variables at the significant level of
0.05 were used to build the logistic model, the spatial-explicitly detailed socio-economic factors would
help improve the model performance in the future study.

In addition, this study hypothesized that the optimal segmentation was identified as the one
with the highest OSS, and seventeen dummy variables were added into the regression model.
With more independent variables, there may be statistical uncertainty for the estimation with additional
parameters [74]. The application of SLUCS model in the other study areas could be tested to produce a
reasonable number of stratifications and validate the performance of the stratified strategy, where the
number is not too large or small. Also, this study only used the elevation data to perform the
segmentation to examine the effect of the elevation gradient on the land use. Other features could
be selected and tested to generate the stratification with multiple environmental variables [26,27].
Considering the data availability, only temporal scales of partial driving factors with obviously changes
from 2000 to 2015 were updated to simulate the land use in 2030 (Figure 9). Other factors with gradual
and minor changes can be updated in the future study to better project the land use.

The SLUCS model can project the spatial pattern of future land use change under different land
use scenarios. With multiple demands in terms of economic development, food security, and ecological
protection, frequent conflict and competition occurs between multiple land-use types [75]. Under the
three scenarios, the outputs of the SLUCS model demonstrated the potential land-use change and
competition with different land-use priorities and strategies. Consistent for most regions in China [76],
the model indicated an increasing threat to food security in the future with a continuing decline in
farmlands in all the scenarios; this crisis will raise the priority on socio-economic growth and ecological
protection in the planning and protect scenarios. The planning scenario presented a more scattered
pattern of built-up land, with the largest increased area of built-up land under the three scenarios.
This scenario implied that the limited flat land resources in the mountainous areas would restrict the
expansion of built-up land near cities and part of the future built-up land will have to be dispersed.
Over-urbanization in the mountains may easily damage the ecosystem [77] and calls for the scientific
planning of urbanization in the study area [78]. The protect scenario showed that a significant increase
in forests could be realized at the huge expense of low increase rate of built-up land and high decrease
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rate of farmlands and grasslands. Investments into ecological protection and willingness to make
socio-economic sacrifices should be taken into consideration during decision making [79,80].

Limited land resources suitable for living and production in the karst mountain region would
accelerate the different demands for land-use activities [31]. The tradeoffs among the different land-use
types were suggested to support land-use planning and management. Our model visualized the
land system dynamic process and projected the land-use change trajectory at the spatial dimension.
With different target land-use scenarios, areas of land-use conversion can be identified using our model,
which can then be used to evaluate their potential impacts, such as food production, soil conservation,
water conservation, and biodiversity protection [2,9,81,82]. The conversion areas with high values of
land-use should be the focus of land-use planning. For example, strict farmland protection policies
should be implemented in the high production of farmlands occupied by built-up land, as per the
model [83]. Comparing the three scenarios, areas of conversion from other land-use types to forests
could be the priority of afforestation, because of the high suitability for forest planting. To coordinate
multiple conflicting land-use types, information regarding different land-use change trajectories could
provide potential options for sustainable land use.

5. Conclusions

Better understanding and projecting of land system dynamics will support the design and
implementation of land-use planning and policy. To quantify the regional differences in land-use
changes within the elevation gradient, this study built a novel SLUCS model using the elevation-based
stratification strategy. Along the elevation gradients, the stratifications can make zoning constraints
for the simulation with different land utilization orientations and quantify the stratified relationship
of the driving factors with land uses, which help better approximate the land use dynamics process.
The model included four modules: Elevation-based stratification, non-spatial land-use demand,
stratified suitability estimation, and spatial allocation of land use. The first module developed a
quantitative method of generating stratifications at the optimal segmentation size using ASDintra,
LVinter, and OSS, which considered the intra-segment homogeneity and inter-segment heterogeneity
of land-use characteristics. The second module presented the regional demands for land use and made
zoning constraints for simulating land use. The third module utilized the stratified logistic regression
model, with dummy variables to indicate different stratifications in order to reveal the regional
differences in the relationship between driving factors and land use. Taking the Guizhou and Guangxi
Karst Mountainous Region as the case study area, the model was executed to validate its performance.
The effectiveness of the SLUCS model for projecting land-use change was validated. Compared to the
traditional method without stratifications, the stratification strategy demonstrated an improved model
performance than the traditional method, including a better spatial consistency with the reference and
a higher accuracy assessment. Particularly, a much better model performance of simulating land use
conversion areas was seen in the SLUCS model, where the KSimulation was higher (0.52) than that of
the traditional model (0.19). Further, a better built-up land expansion simulation accuracy was seen,
based on the Modified Lee and Sallee metric. The historic-condition, planning and protect scenarios
from 2015 to 2030 were designed with different land-use priorities and management strategies. Under
the three scenarios, the outputs of the SLUCS model projected the potential land-use changes and
visualized the competition between different land uses. Consistent with the historical change trend
from 2000 to 2015, the three scenarios presented the same change trends, but with different magnitudes.
The HISTROY scenario forecasted the historical trend of land use according to the change in the past
15 years. The planning scenario presented the highest increase in built-up land among three scenarios
from conversions of a large area of paddy field, dry land, and grassland. The protect scenario presented
the highest increase in forests at the expense of low increase in built-up land and high decrease in
farmland and grassland. Various management and tradeoff strategies for the multiple land-use
types were suggested, based on the different scenarios. The results validated the effectiveness of the
SLUCS model and the significance of supporting sustainable land use. The limitations and possible
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improvements of the SLUCS model mentioned in this paper can be tested in future research, including
the data acquisition of spatial-explicitly detailed socio-economic factors for better explaining land use
patterns and improvement of the stratification producing process with the optimal segmentation and
multiple environmental variables.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/11/1730/
s1, Table S1: Land use transition probability matrix of under Markov hypothesis from 2000 to 2015, Figure S1:
Location of natural reserves in the Guizhou and Guangxi Karst Mountainous Region, Figure S2: Municipal
boundary in the Guizhou and Guangxi Karst Mountainous Region.
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