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Abstract: We mapped native, endemic, and introduced (i.e., exotic) tree species counts, relative basal
areas of functional groups, species basal areas, and forest biomass from forest inventory data, satellite
imagery, and environmental data for Puerto Rico and the Virgin Islands. Imagery included time
series of Landsat composites and Moderate Resolution Imaging Spectroradiometer (MODIS)-based
phenology. Environmental data included climate, land-cover, geology, topography, and road distances.
Large-scale deforestation and subsequent forest regrowth are clear in the resulting maps decades after
large-scale transition back to forest. Stand age, climate, geology, topography, road/urban locations,
and protection are clearly influential. Unprotected forests on more accessible or arable lands are
younger and have more introduced species and deciduous and nitrogen-fixing basal areas, fewer
endemic species, and less biomass. Exotic species are widespread—except in the oldest, most remote
forests on the least arable lands, where shade-tolerant exotics may persist. Although the maps have
large uncertainty, their patterns of biomass, tree species diversity, and functional traits suggest that
for a given geoclimate, forest age is a core proxy for forest biomass, species counts, nitrogen-fixing
status, and leaf longevity. Geoclimate indicates hard-leaved species commonness. Until global
wall-to-wall remote sensing data from specialized sensors are available, maps from multispectral
image time series and other predictor data should help with running ecosystem models and as
sustainable development indicators. Forest attribute models trained with a tree species ordination
and mapped with nearest neighbor substitution (Phenological Gradient Nearest Neighbor method,
PGNN) yielded larger correlation coefficients for observed vs. mapped tree species basal areas than
Cubist regression tree models trained separately on each species. In contrast, Cubist regression tree
models of forest structural and functional attributes yielded larger such correlation coefficients than
the ordination-trained PGNN models.
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1. Introduction

Tropical forests are important for many reasons, but humanity is constantly changing them.
They harbor a majority of Earth’s terrestrial biodiversity, for example, but we have been clearing
them at a rate of 0.5% per year since 1990, emitting carbon at a rate that amounts to 9% of
the global human-caused carbon emissions (the rest is from fossil fuel combustion and cement
manufacturing) [1–4]. Studies suggest that old-growth tropical forests are irreplaceable for biodiversity
conservation, but the degree to which secondary or plantation tropical forests conserve biodiversity or
offset carbon emissions is still under debate [1,5–9]. Either way, managing tropical forest landscapes so
that they sustain their biodiversity while providing ecosystem services, like regulating water supplies,
stabilizing lands, storing carbon, and other contributions to people, is crucial. Doing so requires not
only that we understand, quantify, and monitor how past and future changes affect their biodiversity
and ecosystem services, but also that we illustrate these concepts to managers and the public.

Spatially explicit, i.e., mapped, characterizations of tropical forest attributes have distinct
advantages for meeting these needs. For one thing, management actions are often applied to specific
land areas, but forest inventory data from field plots, which identify species or estimate attributes like
carbon stocks, are only points on the landscape. Predicting forest attributes measured in plot data with
models that use a set of mapped variables, like climate and satellite imagery as explanatory variables,
allows mapping of the likely characteristics of forest across a landscape. Such forest attribute mapping
can secondly assist countries in reporting progress toward meeting conservation and forest-related
targets in international agreements or conventions, like the Aichi biodiversity targets (which came
from the Convention on Biological Diversity) or the United Nations (UN) Sustainable Development
Goals (SDGs). Third, a picture is worth a thousand words.

Our purpose here is to paint a picture, for the Caribbean islands of Puerto Rico and the Virgin
Islands (PRVI), of the outcome for tropical forests of large-scale clearing and regrowth given variable
climate, topography, soil substrates, and disturbance history; of colonization by several exotic species;
and of protected areas established at different times. Towards that goal, we first assemble a database
of tree species functional traits and other characteristics. Secondly, we apply two approaches to
modeling and mapping several attributes of forests, including: (a) counts and relative basal areas of
introduced (also called exotic), native, and endemic tree species; (b) relative basal areas of selected
functional groups; (c) forest structure and biomass; and (d) individual tree species distributions. We
also briefly discuss the relative advantages of the two modeling techniques by comparing plot-level
correlations between observed vs. predicted values from the mapping models. The two modeling
methods that we compare are Cubist regression tree [10] and Phenological Gradient Nearest Neighbor
(PGNN) [11–13]. Finally, we evaluate spatial patterns in the resulting maps of forest attributes in
light of inter-related patterns of disturbance history, protection, climate, geology, and topography, and
we address the implications of these and related results for Earth system models (ESMs) and forest
sustainability, specifically, forest-related aspects of UN SDG 15, particularly Target 15.2, Indicator
15.2.1: Progress towards sustainable forest management. We provide background on related prior
forest attribute modeling in Section 2.3.3. In Section 4.2, we review results from related plot-level
analyses of forest tree biomass, functional traits, species composition, and diversity and compare them
with the mapped spatial patterns.

Our results suggest that that the machine learning regression method Cubist is best for mapping
forest functional traits and characteristics like deciduousness, biomass, and introduced species
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counts compared with PGNN as applied here, but PGNN is better for mapping the basal areas
of individual species.

Our results also suggest that time series of satellite image composites, image-derived age, and
other disturbance history variables, together with geoclimate, should be useful as indicators of several
aspects of progress toward sustainable development, of habitat types, or of functional traits when
implementing dynamic ecosystem models. The maps from this study portray how humans interact
with landscapes to affect tropical forests in many ways.

2. Materials and Methods

2.1. Study Area

Our study area is a collection of Caribbean islands encompassing Puerto Rico and the Virgin
Islands. The climate is tropical, under the definition of tropical as having no frost at sea level.
The tropical forest types range from young and old secondary forest to old forest, and from dry
forests to humid forests. Forest leaf longevities range from deciduous and semideciduous forest to
evergreen forests including cloud forests (with annual rainfall of about 800–1500, 1250–2000, 2000–4000,
and 2000–4600 mm, respectively). Soils include alluvial soils, mostly in lowland areas, and soils
formed over limestone, volcanic, and serpentine substrates. Most limestone areas have complex karst
topography. For a given climate, forests formed on limestone and serpentine substrates have leaf
types or growth forms leaning toward those of drier forests, given fast-draining soils. Serpentine
substrates not only have fast-draining soils, but they are also nutrient poor and have toxic levels of
some metals [14].

2.2. Field Data and Tree Species Characteristics Dataset

Response variables were calculated from the U.S. Department of Agriculture (USDA) Forest
Service Forest Inventory and Analysis program (FIA), which is jointly implemented in Caribbean
territories of the United States by the Southern Research Station and the International Institute of
Tropical Forestry. On the main island of Puerto Rico, about one-third of the plots are surveyed each
year during the first three years of a five-year cycle. On Puerto Rico’s outlying islands of Culebra,
Vieques, and Mona, as well as on the U.S. Virgin Islands, plots are surveyed during the fourth to fifth
year of the cycle. We used data from 442 forested and partially forested plots from the years 2001 to
2004, plus data from the year 2008 for Mona Island, which was when it was first surveyed. Plots are
spaced every 24 km2 on mainland Puerto Rico; every 2 km2 on Culebra, Mona Island, and St. John;
every 2.7 km2 on accessible portions of Vieques and on St. Thomas; and every 4 km2 on St. Croix.
Each plot has four 7.3-m-radius circular subplots where trees with a diameter at breast height (d.b.h.)
of ≥12.7 cm are surveyed [15]. Trees with d.b.h. of 2.5 through 12.6 cm (saplings) are surveyed on
2.07-m-radius circular microplots within each subplot. Among the data recorded for each plot are
tree and sapling species, d.b.h., and height. The subplot layout includes a center subplot and three
surrounding subplots with centers located at azimuths of 360, 120, and 240 degrees and 36.6 m from
the plot center. Each plot fits within a 3 × 3 window of Landsat imagery with 30-m pixels.

We assembled a database of tree species functional traits and characteristics based on field guides
and flora [16–25], technical reports [26], the Kew seed database [27], a dataset on putative N-fixing
species [28], field observations by the authors, and online searches. The traits for which we found
data for all species included growth form (tree, small tree, shrub); height; leaf deciduousness (e.g.,
deciduous, evergreen, facultatively evergreen or deciduous); leaf size (length and width), leaf thickness
(e.g., chartaceous (papery-leaved), coriaceous (hard-leaved), or subcoriaceous); whether or not the
tree was a nitrogen-fixing (N-fixing) species; and whether the species was native, native endemic,
or introduced.
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2.3. Mapped Predictor Data

2.3.1. Remotely Sensed Imagery

We used four types of predictor layers from satellite imagery: (1) previously published land-cover
maps described elsewhere (Section 2.3.2); (2) a supervised maximum likelihood classification to
land cover of a Landsat image from the year 2000 for the small island of Mona; (3) bands from a
long time series of Landsat and Satellite Pour l’Observation de la Terre (SPOT) image composites;
and (4) phenology metrics produced with image composites from the Moderate Resolution Imaging
Spectroradiometer (MODIS) (Table 1). We briefly describe here the Landsat bands and MODIS
phenology metrics and the rationales for including them.

We processed Enhanced Vegetation Index (EVI) data from all 16-day composites from the year
2001 of the MODIS MOD13Q1 Terra product to phenology metrics. The phenology metrics were the
mean and coefficients of a Fourier transform of these EVI composites. Missing values in any composite
were excluded from the harmonic regression. Bands and phenology metrics from multiseason
imagery improve satellite-image-based maps of tropical forest types and structure [29–32]. Here,
eliminating missing-data pixels while estimating the phenology metrics with the Fourier transform
simultaneously removes noise from the 16-day composites while characterizing vegetation phenology.
We resampled the phenology metrics from their native 250-m pixel size to a 28.5-m spatial resolution
with bilinear interpolation.

We also created a long time series of orthorectified Landsat and SPOT cloud-minimized image
composites at five-year intervals spanning the years 1985–2000 (Table 1). The optical bands from these
composites were included as predictor layers. We produced the Landsat composites with regression
tree normalization and histogram matching methods described earlier [33,34]. Brightness values from
a mosaic of panchromatic SPOT imagery for the year 1995, which we produced by normalizing image
sections with linear regression, were also added. We used the SPOT imagery because no Landsat
imagery are available for the study area from the mid-1990s.

The rationale for including optical bands from quinquennial composites or multidecadal imagery
is that they can be used directly in classification and other mapping models as the basis for, or to
improve, maps of tropical forest structure, types, and successional stage [32,35,36]. Current tropical
forest height, foliage height profiles, and past disturbance types, for example, can be directly mapped
with current plus past image bands in landscapes where forest regrowth rather than clearing dominates
forest landscape dynamics [36]. In such landscapes, which include the study area, stand age will
explain less variability in forest canopy structure than the time series of spectral bands. Where cycles of
tropical regrowth and reclearing are common over the timespan of the image series, a forest age layer
is needed to map forest structure, but bands from a time series are still likely to improve such models.
Unlike forest age alone, a long time series of spectral bands reflects past disturbance intensity, and its
effects on forest recovery, both within a disturbed area and among areas with different disturbance
types. For example, a single patch of forest that was partially disturbed by being burned from escaped
fire will have different levels of burn severity, reflected as different pixel brightness values within that
patch that have different forest structure as the stand regrows. Similarly, that partially burned forest
will recover faster and have a different species composition than a nearby patch that was cleared for
agriculture of all vegetation and upper organic soil materials and that has much brighter pixels after
clearing than the pixels of partially burned forest [36].

2.3.2. Other Predictor Data

Besides the imagery, we assembled several other datasets for variables that are normally related
to tropical forest vegetation types and structure to help predict forest characteristics from the FIA data.
The variables included climate, geological soil substrate, soils, and topography, as well as indicators of
human disturbance including distances to roads and the coast, maps of land cover in the years 2000
and 1978, and percent cover of tree canopies and impervious surfaces (Table 1). Except for Mona Island,
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the year-2000 land-cover maps [37,38] were from decision-tree classification of different Landsat image
composites developed for the prior work. As previously described [37], the land-cover map from the
year 1978 was based on air photo interpretation.

The climate layers included long-term (30-year) monthly and annual maps of temperature and
precipitation [39] and the mean and coefficients of a Fourier transform of the monthly data [12] to
characterize the seasonality of temperature and precipitation. A digital elevation model (DEM) with
a 10-m spatial resolution was created from discrete lidar data. These data were processed according
to methods described previously [38]. All of these data types can improve discrimination of tropical
forest biomass, structure, successional stage, physiognomic (i.e., formation) types, or tree species
communities [30,31,36,40–43].

Table 1. Mapped predictor data. TS = Developed for this study.

Mapped Predictor Data Source Cell Size (m) Source

Landsat MSS—Multispectral bands of cloud-minimized image composites
centered on two epochs: the years 1980 and 1985 57 TS 1,2

Landsat TM and ETM+—Multispectral optical bands of cloud-minimized image
composites centered on two epochs: the years 1991 and 2000 28.5 TS 1,2

SPOT 3 panchromatic image composite for the year 1995 from normalizing image
sections with linear regression including filling cloud and data gaps with the red
band from 1991 Landsat

10 TS 1,3

Moderate Resolution Imaging Spectroradiometer (MODIS)—Mean + coefficients
of Fourier-transformed composites produced from all 16-day Enhanced
Vegetation Index (EVI) composites from the year 2001 4

250 [44], TS 1

Precipitation—monthly and annual totals, minimums, maximums; dry and wet
season totals; mean + coefficients of Fourier-transformed monthly totals 4 ~450 [39], TS 1

Temperature—monthly and annual averages, minimums, maximums; dry and
wet season averages; mean + coefficients of Fourier-transformed monthly
averages 4

~450 [39], TS 1

Distance to nearest secondary, tertiary, and all roads and to the coast 28.5 TS 1

Land cover in the year 2000 30 [37,38], TS 1

Forest mask from year 2000 land cover, and forest cover proportion in
surrounding 3 × 3, 9 × 9, 17 × 17, and 35 × 35-m windows [37,38], TS 1

Geological Substrate 28.5 [45,46], TS 1

Soil Orders 28.5 NRCS 5

Predictor data zones—discrete variable identifying islands 28.5 TS 1

Topography—elevation, aspect, percent slope, moisture index, and topographic
shadow for the base scene date of each Landsat composite ~90 [47]

Lidar-derived topography—elevation and slope position (Puerto Rico, St. John,
and St. Thomas; other areas filled in with above topographic data) 10 TS 1

Pixel-level percent tree canopy and impervious surface cover (PR only) 30 [48]

Land cover in 1978 (mainland PR only) 28.5 [37]
1 TS = Developed for this study (e.g., satellite image composites, Fourier transforms of monthly MODIS and climate,
Mona Island land cover, digitized VI geology). 2 Original Landsat imagery from the U.S. Geological Survey. 3 SPOT
= Satellite Pour l’Observation de la Terre (for Puerto Rico (PR) and its outlying islands only). 4 See Wilson et al.
2012. 5 U.S. Department of Agriculture (USDA) Natural Resources and Conservation Service (NRCS).

We excluded stand age and protection from the predictor layers, assuming a priori that these
variables would have strong enough predictive power that mapping models might overfit to them.
Artifacts of such overfitting could include that their boundaries would define unrealistically abrupt
forest attribute spatial patterns and, though in a minority of places, areas of large under- or
overprediction. In addition, the forest age data we had [38,43] were limited to mainland Puerto
Rico, and for the oldest age class, were spatially generalized compared with satellite imagery. Instead,
and as discussed in Section 2.3.1, we relied mainly on the time series of Landsat and SPOT bands to
help explain forest attribute variability related to stand age and disturbance history.
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2.3.3. Background on Modeling Forest Attributes with Cubist and PGNN

The two modeling methods that we used were a machine learning regression approach and an
approach that combines ordination with the machine learning method known as k-Nearest Neighbor.
For the machine learning regression approach, we used the software Cubist. It is a data-mining tool
that builds rule-based models with linear regression models at the terminal node of each ruleset. It is
proprietary, but it enhances published work [49] that improves decision-tree classification models to
handle continuous variables. It also builds “committee” models in which, like boosted regression
trees, successive models are adjusted to increase accuracy. In Cubist, the final predicted value is the
average of the successive models. Decision trees with regression, like Cubist, can predict continuous
variables more accurately than multiple linear regression models [50]. Many studies use Cubist to
combine plot-based forest data with satellite imagery and other spatial data to map forest attributes.
Example response variables include forest biomass [51], height [36,52,53], foliage height profiles [36],
peat depth [54], percent canopy cover [48], and other forest variables. Another machine learning
method, Random Forests [55], is also commonly used to map forest biomass from mapped predictors,
with plot-level field or lidar data as the response variable [40]. Advantages with Cubist include that
the models are highly interpretable [52,56] and that when modeling percentage variables like those
here, Cubist can be more accurate [57]. Studies also use Cubist or other regression tree models to
model forest attributes from lidar metrics [53,58].

For the approach combining machine learning with ordination, we used an offshoot of Gradient
Nearest Neighbor (GNN) modeling [11], Phenological GNN (PGNN) [12,13]. These methods first
use canonical correspondence analysis (CCA), an ordination technique, to find linear combinations
of predictor layers that relate to the relative basal areas of the tree species in plots. These linear
combinations represent environmental gradients (or ordination axes) along which species are arranged,
are uncorrelated with each other, and maximize the differentiation among species in the gradient space
created by these axes [59]. As many of these gradients are estimated as there are predictor layers, but
we used the first eight axes [12]. These eight gradients are mapped with the predictor variables and
the CCA-estimated coefficients. Next, for each pixel, forest attribute values from one or more plots
that were nearest to that pixel in the resulting eight-dimensional space were assigned to that pixel to
map forest attributes.

The PGNN method differs from GNN in assigning to each pixel the average of a small number of
plots (k) that are close neighbors in gradient space, instead of only the closest neighbor. It also adds
as explanatory variables seasonality metrics estimated from a time series of a satellite-image-derived
greenness index, the Enhanced Vegetation Index (EVI). GNN or PGNN have been applied for mapping
forest structure and species basal areas [11,12], forest C stocks [13], indicators of old-growth forest
structure [60], and variables used as input to a forest fuels model [61]. They have two distinct
advantages. First, many plot variables are mapped simultaneously with a single model. Each unknown
pixel is scored only once according to its place in multivariate gradient space. Then, the forest attributes
of the most similar observation in gradient space (GNN) or the average of the k similar observations
(PGNN) are assigned to that pixel. Second, they maintain the mean, range, and covariance among
response variables of the original plot data. As with Cubist, studies have also used GNN to model
many forest attributes with lidar metrics plus environmental data [58].

2.3.4. Mapping with Forest Inventory Data, Cubist, and PGNN

As mentioned, the FIA plots extend over a 3 × 3 window of raster data with a cell size of ~30 m.
Previous work [11] found that modeling plot-level estimates of forest attributes on the response side,
and the average or majority of a 3 × 3 window of 30-m pixels on the explanatory side, rather than
using subplot-level estimates, improved predictions from GNN modeling. Consequently, we applied
a 3 × 3 window focal mean analysis to continuous predictors with ≤30 m cells and a focal majority
analysis to discrete predictors. We divided the attribute values by the total area of the plot. We mapped
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all variables with both Cubist and PGNN, limiting species modeling to the 34 species occurring in at
least 20 plots.

With the Cubist method, each variable is modeled separately. We used the default options in
Cubist version 2.07 plus five-member committee models. Output from committee models is the
average of the n-member model predictions and can improve the accuracy of outputs, similar to
classification and regression tree boosting. Nonforest plots were excluded from training data because
classification and regression trees can perform poorly with unbalanced reference data [62]. To map
each variable, we applied its corresponding Cubist model to the stack of spectral and other predictor
data layers with software from Ruefenacht et al. [63].

With the PGNN method, a CCA was performed with the basal areas of each of the 34 species of
trees with at least 20 observations in the inventory on the response side and the predictor layers on the
explanatory side. Nonforest plots (no subplots forested) were included and assigned a value of zero
basal area for each species. The CCA was estimated via eigenanalysis with the ade4 package for the R
statistical language [64]. Each forested pixel was labeled with the plot identification number of a seed
plot, which was its nearest forested neighbor in the gradient space. Next, the eight plots that were
the nearest neighbors in gradient space to that seed plot were found. Finally, the weighted average
values of those eight plots were assigned to the pixel for each variable. The weights for each of the
eight plots when averaging them were based on inverse Euclidean distance in gradient space from the
seed plot [12]. There were as many groups of eight neighbors as there were plots. We applied the same
forest mask as above to the final maps.

Finally, we used 10-fold cross validation to generate a dataset of observed vs. predicted
values [11,51,65–68]. From these data, we estimated the correlation coefficients [11,51,58,69] and
average absolute errors [11,51] between observed and predicted values. We applied a forest mask,
made from year-2000 land-cover data (Table 1), to all final maps.

3. Results

An important overall result of the mapping was that spatial patterns in the output maps of forest
structure, functional groups, species counts, and of some individual species indicated a consistent
network of drivers of these patterns. Briefly, this network (the drivers are not exclusive of one another)
included the combination of geological substrate (Figure 1a) and climate (Figure 1b), which we refer to
here as geoclimate (e.g., Figure 2); stand age (Figure 2), which is closely related to geoclimate, elevation
(Figure 1c), and protection (Figure 3); and disturbance history other than stand age. Disturbance
history variables other than stand age include those related to forest fragmentation (Figure 3), like past
and present patch isolation and spatial contagion, and variables like past land-use or disturbance type
or intensity. We discuss these variables further in Section 4.2.

Cubist model correlation coefficients between predicted and observed values of forest structure,
species counts, and functional groups were mostly larger than those for PGNN, ranging from 0.24 to
0.65 (Table 2). For PGNN, these coefficients ranged from 0.06 to 0.37 with only forested test data and
from 0.07 to 0.54 if nonforest plots were also included in the test data (Table 3).

The PGNN approach achieved correlation coefficients of observed vs. predicted values of 0.4
or greater for 9 of the 34 species mapped and were mostly larger than those from Cubist (Table 3,
Appendix A). Including plots with no forested subplots in the test data did not generally change the
PGNN correlation coefficients. For maps based on PGNN modeling, spatial patterns of individual
species basal areas were as expected for species with observed vs. predicted correlation coefficients
above about 0.40 based on field observations and general knowledge of various species distributions.

Correlation coefficients between observed and predicted values for both modeling approaches
were in the range of prior work. A coefficient value of 0.52 for Cubist-modeled biomass was in the
0.31–0.92 range for various U.S. regions [51]. These coefficients for PGNN models of basal area and
stand height, of 0.35 and 0.51, respectively, are near those of 0.4–0.77 (basal area) and 0.26–0.83 (height)
from GNN modeling in other U.S. sites [11,61]. For Cubist-modeled species counts, a GNN-modeled
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validation result of 0.53 for species richness is comparable to the same metric for Cubist models of
0.50–0.52 for endemic, introduced, and native species counts.
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Figure 3. Puerto Rico and two of its outying islands, showing (a) forest cover in the year 1951 and (b)
forest cover in the year 2000, with both showing protected areas [70,71] and their date of establishment.

Table 2. Correlation coefficients (Correl. Coef.) and mean absolute error (MAE), in the same units as
the forest characteristics, for observed vs. predicted plot-level values for mapping models of forest
structure, tree species characteristics, and functional traits, ordered by decreasing correlation coefficient
for Cubist models.

Forest Characteristic 1
Cubist—Forest

Test Data
PGNN 2—Forest

Test Data
PGNN 2—Forest and
Nonforest Test Data

Correl. Coef. MAE Correl. Coef. MAE Correl. Coef. MAE

Mean height (m) 0.65 2.5 0.37 3.6 0.51 3.9
Basal area (BA) (m2 ha−1) 0.57 7.7 0.21 10 0.35 8.7

Evergreen to nearly deciduous species (% BA) 0.56 22 0.28 30 0.46 29
Non-nitrogen-fixing (% BA) 0.53 22 0.26 30 0.48 30

Aboveground live dry biomass per ha (Mg/ha) 0.52 34 0.22 42 0.35 36
Deciduous nitrogen-fixing species 0.51 17 0.30 19 0.29 16

Deciduous and facultative species (% BA) 0.51 21 0.31 24 0.36 21
Number of native species 0.51 2.9 0.10 3.9 0.34 3.5

Number of introduced species 0.50 0.72 0.28 0.84 0.32 0.7
Evergreen to near evergreen species (% BA) 0.50 25 0.19 31 0.40 28

Evergreen coriaceous species (% BA) 0.49 16 0.26 19 0.31 15
Nitrogen-fixing species (% BA) 0.47 20 0.30 22 0.30 18

Number of endemic species 0.47 0.3 0.23 0.36 0.25 0.3
Coriaceous species (% BA) 0.45 16 0.25 19 0.31 15
Introduced species (% BA) 0.42 20 0.25 22 0.27 18

Chartaceous species (% BA) 0.42 21 0.27 22 0.29 19
Spathodea campanulata (% BA) 0.38 8.6 0.26 10 0.24 8.4

Proportion of plot forested 0.37 0.19 0.11 0.27 0.50 0.3
Subcoriaceous species (% BA) 0.34 26 0.14 29 0.36 27

Native species (% BA) 0.33 25 0.14 33 0.43 32
Number of trees per hectare 0.28 1600 0.09 1900 0.29 1700

Endemic species basal area (% BA) 0.24 3.1 0.06 3.3 0.07 2.4
1 % BA refers to relative basal area, the percent of species as a percent of total tree basal area on the plot. 2 PGNN =
Phenological Gradient Nearest Neighbor.
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Table 3. Count of nonzero observations, correlation coefficients (Correl. Coef.), and mean absolute
error (MAE) in m2 ha−1 for observed vs. predicted plot-level values for mapping models of species
basal areas (BA), ordered by decreasing correlation coefficient for PGNN models. These results were
nearly identical if nonforest test data were included for PGNN.

Species BA (m2ha−1)
Count of
Nonzero

Observations

Cubist—Forest Test Data PGNN—Forest Test Data

Correl.
Coef.

MAE
(m2 ha−1)

Correl.
Coef.1

MAE
(m2 ha−1)

Bursera simaruba 98 0.42 1.5 0.63 1.4
Roystonea borinquena 21 −0.01 0.2 0.60 0.21
Coccolobadiversifolia 26 0.03 0.13 0.59 0.16

Guapira fragrans 52 0.35 0.67 0.59 0.57
Acacia farnesiana 29 0.05 0.48 0.55 0.34
Cordia alliodora 22 −0.01 0.13 0.46 0.16

Melicoccus bijugatus 20 0.13 0.28 0.45 0.28
Bourreria succulenta 45 0.11 0.68 0.43 0.71
Prestoea acuminata 25 0.34 0.56 0.40 0.53

Cecropia schreberiana 72 0.26 0.99 0.33 1.2
Guarea guidonia 93 0.36 1.7 0.30 2.3

Spathodea campanulata 90 0.29 3.9 0.28 5.4
Inga laurina 46 0.07 0.53 0.26 0.56

Ocotea leucoxylon 47 0.31 0.29 0.26 0.33
Citrus sinensis 20 0.24 0.15 0.25 0.17

Leucaena leucocephala 92 0.12 1.4 0.21 1.4
Tabebuia heterophylla 74 0.07 0.97 0.21 1.1

Mangifera indica 26 0.06 1.6 0.20 1.7
Inga vera 48 0.30 0.57 0.20 0.67

Andira inermis 98 0.04 1.3 0.18 1.3
Citharexylum spinosum 53 0.16 0.34 0.15 0.36
Dendropanax arboreus 39 0.23 0.36 0.14 0.39

Cordia sulcata 28 0.13 0.22 0.14 0.25
Alchornea latifolia 24 0.12 0.31 0.13 0.33

Schefflera morototonii 31 0.17 0.3 0.13 0.35
Ficus citrifolia 25 −0.01 0.21 0.10 0.22

Syzygium jambos 51 0.06 0.87 0.10 0.87
Bucida buceras 44 0.03 0.7 0.10 0.74
Thouinia striata 32 0.15 0.22 0.09 0.24
Eugenia biflora 22 0.00 0.66 0.04 0.37

Zanthoxylum martinicense 45 0.05 0.4 0.00 0.49
Cupania americana 24 0.00 0.17 0.00 0.15

Neolaugeria resinosa 20 0.00 0.21 −0.01 0.26
Casearia sylvestris 39 −0.01 0.34 −0.01 0.38

4. Discussion

4.1. Forest Spatial Patterns Reflect Stand Age, Geoclimate, and Disturbance History

4.1.1. Biophysical, Socioeconomic, and Landscape Controls on Forest Recovery

Because the spatial pattern of stand age was apparent in the patterns of several of the mapped
forest attributes, we briefly discuss here its drivers. In Puerto Rico and elsewhere, the biophysical,
socioeconomic, and landscape variables that drive the spatial patterns of forest recovery are those that
affect land accessibility, arability, market forces, seed dispersal, and microclimate, as well as spatial
contagion related to these drivers [42,43]. The oldest forests are usually more remote, which in the
study area means further from roads, cities, and coastlines and at higher elevations where slopes are
steeper and which in Puerto Rico may be cloud-shrouded and have water-logged soils. Older forests
also occur over rugged geology with fast-draining, nutrient-poor, or toxic soils (karst, serpentine) or
in places that are less accessible or arable in other ways, such as being protected or being wetlands.
These are the places where agriculture was abandoned the soonest or that may never have been cleared.
Being less in demand for human uses, except perhaps watershed stabilization, many of these areas
were among the first to be protected (Figure 3). In Puerto Rico and elsewhere, protected areas may
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have been designated where protection is the least inconvenient for humans [72,73]. Forests closer
to cities and roads, on gentler slopes, and at lower elevations are increasingly younger. The earliest
forests to be abandoned and recover are the last to have been cleared. Then, the next sites to be
abandoned are closer to remaining or existing forest and receive more seed dispersal and have a cooler
and more humid microclimate, enhancing forest recovery. This cycle of interacting socioeconomic and
biophysical drivers, including landscape variables like spatial contagion, make distance to existing
forest, or its usual complement, distance to pasture, the strongest predictors of the spatial patterns of
forest regrowth and stand age [42,43,74]. The nearby forest can be secondary or old-growth forest.

Studies have found exceptions to these trends in other tropical countries. Farmers may clear
less accessible land for agriculture where they find new opportunities for profit from agriculture or
perceive that their best option for income or subsistence is unsanctioned forest clearing for agriculture
in more remote areas, including in protected areas or other state-owned land [75,76]. As mentioned,
protection also makes lands less accessible, and protected areas are not always in the least arable
geoclimates. An example is the island of St. John, two-thirds of which was privately owned for some
time and then became a National Park. Forest in the park is older compared with that on the other
islands east of mainland Puerto Rico, even though it has geoclimates similar to other smaller islands in
the study area.

4.1.2. Forest Structure and Biomass

The maps of forest biomass (Figure 4), height, and basal area reflect the strong relationships
between forest structure and (1) stand age and (2) geoclimate. Plot-level biomass averages across
Puerto Rico by age class, geology, and climate (as gauged by leaf physiognomy) support this
observation [43]. In plot-level studies, stand age has been the best predictor of young tropical forest
biomass, height, or basal area [36,77–79] for a given geoclimate. If other landscape characteristics
are the same, older forests have more biomass. Also apparent are the abovementioned biophysical
and socioeconomic controls on forest regrowth spatial patterns. Younger forests are those closest to
coastlines or the largest cities or roads, and they have less biomass (light blue to white shades in the
biomass map). Forests at higher elevations or further from roads have more biomass.

Stand age is a critical component of forest carbon cycling as well. Net ecosystem productivity,
for example, strongly correlates with age. Intermediate-aged forests are most productive,
but old-growth forests can be huge carbon sinks [80], accumulating carbon for centuries. The rate of C
accumulation in large trees increases with age, and clearing old-growth forest releases more carbon
than can be accumulated by young forests [81,82].

Geoclimate is also important. Forest biomass differs by geologic substrate when averaged across
age classes for a given climate zone. The forests with the most biomass are on volcanic or alluvial
geologic substrates, which are fertile. Forest in karst zones has less biomass, being edaphically dry.
Ultramafic, serpentine soils support the least forest biomass for a given climate, being edaphically dry
plus nutrient poor and toxic. Geology likely influences forest biomass across the tropics, including
in the Amazon basin [41]. As for climate, within the same geology and age class, humid forests
(blue shades in the PET/P map in Figure 1) have more biomass than stands in drier places (white to
brown shades in the PET/P map). Cloud forests on peaks, however, are stunted by water-logged soils,
increased ultraviolet-B radiation, and high winds.

Disturbance history variables other than forest age affect tropical forest height and rates of biomass
accumulation [36,79], but they are less obvious in these regional maps of forest structure. As well,
the effects of finer-scaled topography on forest biomass were inconsistent in the maps. Topography
likely influences forest biomass, however. In Panama moist forests, concave slopes have more biomass
than convex ones [83]. Trees are visibly larger in valleys and concave slopes in dry and edaphically
dry parts of the study area as well.
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4.1.3. Forest Functional Groups

The effects of stand age and climate are also evident in the maps of relative basal areas of N-fixing
and deciduous N-fixing tree species (Figure 5). These attributes are low (yellow in color) in the
oldest forests and high in young forests (deep blue color), particularly so for dry forests (Figure 5a–c).
Deciduous N-fixing relative basal areas are largest in young dry forests, but they are also large in the
youngest forests in humid areas. Pioneer tree species are often N-fixers [84], and N-fixing trees have
long been planted as part of land reclamation plans, including in tropical regions [85,86]. Even without
planting, N-fixing tree species are common in tropical forest pioneer stands, and their prevalence
declines with age [87–89]. This tendency applies to Puerto Rico, where younger forests across climates
have larger relative basal areas of N-fixing species, many of them introduced [87]. Besides stand age,
moisture availability affects the prevalence of N-fixing species. Tropical dry forests in general have
more legumes compared with tropical humid forests [88,89]. For many legumes, the capacity to fix
N and small leaflet sizes probably help them survive seasonal drought [89]. In addition, the larger
N-fixing basal area appearing in Central Puerto Rico at higher elevations could also reflect the presence
of N-fixing species in former shade coffee, including Inga laurina ((Sw.) Willd.) and Andira inermis ((W.
Wright Kunth ex DC.), and N-fixing species planted for shade coffee, including Inga vera (Willd.) and
Erythrina poeppigiana ((Walp.) O.F. Cook). In the Virgin Islands, the maps indicate that N-fixing species
numbers and relative basal area are low in St. John, with its older forests. Other protected, older-forest
areas in these islands show a similar pattern.

In the leaf phenology maps, relative basal areas of evergreen species are larger in more humid
zones, while deciduous species have larger relative basal area in dry zones, as is typical of tropical
forest landscapes (Figure 6a,b). Deciduous species, however, also have relatively more basal area in
humid areas in younger forests, like those south and southeast of San Juan. The youngest tropical
forests tend to be more deciduous in humid zones in Puerto Rico and elsewhere, probably because
shorter leaf longevity protects against desiccation in the drier microclimate of young forest [70,90,91].

The maps of evergreen coriaceous species (Figure 6c) also show large relative basal areas on
serpentine substrates (the westernmost dark green patches), in cloud forests (the remaining dark green
patches at the highest elevations), and in mangrove forests (the small, dark green patches on coastlines).
Hard leaves are typical in such places. Sclerophylly protects leaves in stressful environments [14,92,93].

Variables related to forest function, like nitrogen availability and leaf characteristics, are now
critical to Earth system models. Until maps of such variables are available from more direct sources,
maps like these can be used for running such models in a spatially explicit manner.



Remote Sens. 2018, 10, 1724 14 of 28

Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 28 

 

 
Figure 5. Stand age in Puerto Rico circa the year 2000 (a) and relative basal areas, as mapped with 
Cubist regression tree models, of (b) N-fixing species and (c) deciduous N-fixing species. 

In the leaf phenology maps, relative basal areas of evergreen species are larger in more humid 
zones, while deciduous species have larger relative basal area in dry zones, as is typical of tropical 
forest landscapes (Figure 6a,b). Deciduous species, however, also have relatively more basal area in 
humid areas in younger forests, like those south and southeast of San Juan. The youngest tropical 
forests tend to be more deciduous in humid zones in Puerto Rico and elsewhere, probably because 
shorter leaf longevity protects against desiccation in the drier microclimate of young forest [70,90,91]. 

Figure 5. Stand age in Puerto Rico circa the year 2000 (a) and relative basal areas, as mapped with
Cubist regression tree models, of (b) N-fixing species and (c) deciduous N-fixing species.



Remote Sens. 2018, 10, 1724 15 of 28
Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 28 

 

 
Figure 6. Relative basal areas, as mapped with Cubist regression tree models, of (a) deciduous tree 
species, (b) evergreen tree species, and (c) hard-leaved (coriaceous) evergreen tree species. 

The maps of evergreen coriaceous species (Figure 6c) also show large relative basal areas on 
serpentine substrates (the westernmost dark green patches), in cloud forests (the remaining dark 
green patches at the highest elevations), and in mangrove forests (the small, dark green patches on 
coastlines). Hard leaves are typical in such places. Sclerophylly protects leaves in stressful 
environments [14,92,93]. 

Variables related to forest function, like nitrogen availability and leaf characteristics, are now 
critical to Earth system models. Until maps of such variables are available from more direct sources, 
maps like these can be used for running such models in a spatially explicit manner. 
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species, (b) evergreen tree species, and (c) hard-leaved (coriaceous) evergreen tree species.

4.1.4. Native, Endemic, Introduced and Individual Species

Maps based on models that consider a majority of potentially important variables can help
illustrate net impacts on forest species composition. Like forest structure and functional groups,
spatial patterns of species counts, which are indicators of species richness and diversity, also follow
the network of drivers that control forest age and include geoclimate and in some places land-use
history. The maps of introduced species counts and relative basal areas (Figures 7 and 8) show that
introduced species are widespread across the study area and can often dominate stands. At the same
time, they show that introduced species are uncommon in the abovementioned stressful environments:
cloud forests and forests on serpentine substrate. These latter areas are among the least arable or
accessible lands and, probably not coincidentally, are among the oldest forests that were made less
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accessible through relatively early protection. Introduced species are also less common in other of
the longest-protected or inaccessible areas. Introduced species relative basal areas are increasingly
larger as variables change in directions that that are most associated with forest clearing for agriculture:
with decreasing elevation or ruggedness and decreasing distances to cities, and on volcanic, alluvial,
or flat limestone substrates.Remote Sens. 2018, 10, x FOR PEER REVIEW  17 of 28 
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Figure 7. Plot-level counts of (a) native species, (b) introduced species, and (c) endemic species as
mapped with Cubist regression tree models.
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Figure 8. Relative basal areas of (a) native species, (b) introduced species, and (c) endemic species as
mapped with Cubist regression tree models.

Plot-level studies encompassing the entire study region, all of Puerto Rico, in subregions of Puerto
Rico, and elsewhere in the Caribbean [32,78,94–100], confirm that stands dominated by introduced
species are widespread in the Caribbean islands. Disturbance type, including past or present land
use, can strongly affect the species composition and diversity in Caribbean forests, including whether
introduced species dominate forest regrowth [36,43,97,99,101,102]. Over time, however, a similar land
use before abandonment [95] or seed sources in an area being limited to nearby secondary forest [103]
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can make climate [95] or time since abandonment [103] the drivers that most strongly impact species
composition. In addition, native species seedlings can thrive in the understory of stands dominated
by introduced species [104,105]. Plot-level studies also show that shade-tolerant introduced species,
like Sysygium jambos ((L.) Alston), are are widespread in Puerto Rico, can dominate stands there,
and can occur in older forests. Although it can persist for decades [78,102,106], it now appears to be
susceptible to another introduced species, guava rust (Puccinia psidii Winter), which is relatively new
to Puerto Rico [107]. Finally, introduced, fire-tolerant grasses in dry and dry-moist areas can dominate
land for decades. The introduced Leucaena leucocephala ((Lam.) de Wit) can regenerate in these areas
through its fast growth, partly suppressing these grasses while in some places providing protective
shade for native seedlings [100,108,109].

Native and endemic species counts are mapped as being largest where forests are older and there
has been less or less recent disturbance from land use. Puerto-Rico-wide plot-level studies show that
species richness increases with basal area, stand age, proximity to the largest forest patches (which often
encompass the oldest forests), and being on limestone or serpentine substrate, and that abandoned
pasture is less diverse than recent shade coffee [43,97]. Smaller-scale studies in Puerto Rico and
elsewhere in the tropics show that species richness increases with stand age or basal area [77,78,102]
and proximity to old forest patches [110,111].

Endemic species counts and relative basal area are concentrated at the highest elevations, where
cloud forests occur, and on serpentine and karst substrates. Larger endemic species counts and relative
basal areas were mapped where the largest old forest patches occurred within these areas. Plots in
Northeastern Puerto Rico also found more endemic species in the cloud forests there [112]. Endemic
species often evolve in these environments, including in Puerto Rico, as they can be stressful and
isolated [14,113–116].

For individual species with higher mapping model correlation coefficients between observed
and predicted values, spatial patterns mapped with PGNN were as expected from field observation
or published descriptions. Examples in Figure 9 include an introduced species found in young or
frequently disturbed dry forests (Figure 9a); a common native species found in dry and edaphically
dry places (Figure 9b); a native species typical of humid karst areas (Figure 9c); and the most common
species in Puerto Rico, which is an introduced species (Figure 9d).
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Figure 9. Basal areas in m2/ha of four species as mapped with PGNN modeling, including (a) an
introduced species found in young or frequently disturbed dry forests; (b) a common native species
found in dry and edaphically dry places; (c) a native species typical of humid karst areas; and (c) the
most common species in Puerto Rico, which is an introduced species.
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4.1.5. Implications for Sustainable Development Goal Indicators

The UN SDGs address terrestrial and freshwater ecosystems and their biodiversity and sustainable
management in SDG 15 [117]. Many of its quantitative indicators are measures of national legislation
or regulation. Examples are indicators (I) quantifying protected areas by ecosystem type (I 15.1.2),
areas under sustainable forest management (I 15.2.1), protected areas important for mountain
biodiversity (I 15.4.1), and legislation on invasive alien species (I 15.8.1). The five subindicators
of progress towards sustainable forest management (I 15.2.1) include: (1) net rate of change in forest
area, (2) change in aboveground biomass stocks in forest and forest area or area proportion under (3)
legal protection, (4) a long-term management plan, or (5) a certified management plan.

Several of the maps we present are relevant to these SDG indicators and could help communicate
to decision makers and the public the concepts or effects of these SDGs. They indicate important
sites for biodiversity conservation (SDG Indicator 15.1.2), showing forest with high concentrations of
native and endemic tree species. These areas have unique climate (cloud forests, also addressing SDG
Indicator 15.4.1, important sites for mountain biodiversity) or geological substrate (serpentine and
karst). In the case of Puerto Rico, a large portion of these areas is protected. Despite this protection
advantage, some ecological zones and the ranges of many species remain poorly represented by
protected areas, implying that more protection is needed there [70,72]. The maps also depict forest
biomass (I 15.2.1) and introduced species spatial patterns (I 15.8.1).

We note that many of the introduced species are pioneer species that are shade-intolerant and
consequently expected to decline with stand age as canopies close during forest succession. They are
also mostly deciduous. A drawback of the maps is that the model of the common introduced tree
species S. jambos was poor. It is an evergreen species, and because it is shade tolerant, it has more
potential to be invasive than the other most common introduced species (though, as mentioned, it is
being impacted by guava rust). It has one of the lowest correlation coefficients between observed and
predicted basal areas. In other words, the predictor variables that we used may only be effective for
mapping introduced species that are common in young or disturbed forests or that are deciduous.
Other data are needed to map introduced species that are evergreen and can colonize older evergreen
forest stands.

In addition, concern over the effects of overfertilization of terrestrial ecosystems with
macronutrients like nitrogen [118] have led scientists to call for SDG indicators related to atmospheric
nitrogen deposition [119]. Although it is a macronutrient, adding nitrogen to secondary tropical forests
is thought to enhance tropical forest growth, but it can also inhibit growth [120,121]. In addition,
increasing the basal area of N-fixing trees, including exotic species or species other than legumes,
increases nitrogen levels in leaf litter, forest floor organic matter, or soils, and soils of secondary tropical
forests release more NOx to the atmosphere [28,87,104,109,122], and NOx’s are potent greenhouse
gases. The maps here illustrate where N-fixing species are most abundant.

4.2. Modeling Forest Characteristics vs. Modeling Individual Tree Species

As mentioned, the Cubist models of forest structure, species counts, and relative basal areas of
functional groups and species origin usually had larger correlations between observed and predicted
values than did PGNN models, even when test data included nonforest. A previous comparison
of plot-level biomass values [123] similarly found that Cubist model outputs more closely matched
observed values than GNN. The likely source of this tendency is that, here, the PGNN model is based
on relative basal areas of all tree species rather than the particular structural, functional, or species
origin variable being modeled. Even though species composition is related to structural and functional
forest attributes, our results suggest that training individual models directly with these latter variables
could better optimizes models. This approach could be tested for PGNN and GNN.

Although basing models on the relationships between the basal areas of all species and
environmental gradients may be a disadvantage for modeling structural, functional, and diversity
summaries, it apparently gives GNN and PGNN an advantage when mapping individual species
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distributions, as might be expected. Most tree species are associated with one or more communities of
other tree species. Mapping tree species distributions with ordination axes improves maps of species
that are rarely sampled, as previously observed [12,69], compared with models based only on such
species occurrences. The ordination approach probably has the effect of increasing the number of
observations of a species by virtue of that species’ association with other species in a dataset. A linear
regression of the correlation coefficients of observed vs. predicted values for species-level models
against the number of nonzero observations for each species explained no variability in the range
of these coefficients for the PGNN approach but 20% of the range of correlation coefficients for the
Cubist model results. This relationship suggests that Cubist results are more sensitive to the number
of nonzero observations of species in the dataset than are PGNN results.

Species with highly predictable ranges, however, like the Sierra Palm, (Prestoea acuminata var.
montana ((Willd.) H.E. Moore var. montana (Graham) A. Hend. & G. Galeano), were mapped well
by both PGNN and Cubist (Figure 4), despite having few positive observations. It occurs only at
higher elevations on mainland Puerto Rico in humid forest zones. Prior work in temperate forests
also finds that species with “strong climate controls” or “limited range” were the most easily mapped
ones [11]. Bursera simaruba ((L.) Sarg.) occurs on all islands. It had the most observations and the
largest correlation coefficients between observed and predicted values. It, too, has a highly predictable
range of occurring mainly in drier forests or in humid forests on the tops and sides of limestone hills.
These coefficients were much smaller for Spathodea campanulata (P. Beauv.), the second most commonly
observed species in the dataset. The most likely reason is that it is a widespread pioneer species.
Besides a humid climate, which covers most of mainland Puerto Rico, the only thing it seems to need
is sunlight [94,96,97,103]. Prior work also found widespread species more difficult to map [11].

5. Conclusions

From the mapping results, prior studies, and international sustainability goals, we conclude that:

1. The legacy of past large-scale clearing and subsequent forest recovery are clear when mapping
current forest attributes in this tropical region. Introduced species are widespread across most
of Puerto Rico and the Virgin Islands, and they often dominate stands. Moreover, introduced
species are most prominent in younger forests. They are less common or rare, however, in the
least-arable geoclimatic zones or more remote places.

2. Native species counts are usually larger than counts of introduced species, and their relative basal
areas tend to increase with stand age. Endemic species are concentrated in the oldest forests,
which are in the least arable and most remote locations, including isolated extreme environments
where endemic species often evolve, that were also, probably not coincidentally, protected early
and in some places never cleared.

3. Our mapping models explained a minority of the variance in forest attributes. Still, our results
suggest that PGNN is better than regression tree models for mapping individual species and that,
as in others’ work, the most common species are generally not the most accurately mapped ones.
Instead, species with ranges limited by climate or other environmental factors are most easily
mapped. Further, ordination in particular likely helps map species by virtue of their association
with other species, which in effect increases the sample size for model training.

4. In contrast, regression tree models appear to be better than ordination-based models for mapping
other forest attributes, like forest biomass, functional groups, and species origin, at least when
species basal areas are used to fit the ordination-based models.

5. Several forest attributes addressed in UN SDGs have spatial patterns that reflect stand age,
geoclimate, and aspects of disturbance history other than stand age since abandonment or
last disturbance, like past disturbance type or intensity. Forest age, height, biomass, or
disturbance-type history can now be mapped more accurately with long time series of globally
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available imagery [53,124–128]. Our results suggest that such maps, when combined with climate
and lithology maps, would be useful for monitoring related to SDGs.
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Appendix A

All regression-tree-based maps of tree species characteristics and forest structure with a mapping
model correlation coefficient of 0.4 or greater, and all PGNN-based maps of tree species basal areas
with a mapping model correlation coefficient of 0.4 or greater, were posted to the USDA Forest Service
Geospatial Technology Applications Center Raster Data Gateway (https://data.fs.usda.gov/geodata/
rastergateway/index.php).
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