
remote sensing  

Article

An Extension of Phase Correlation-Based Image
Registration to Estimate Similarity Transform Using
Multiple Polar Fourier Transform

Yunyun Dong 1,2, Weili Jiao 1,*, Tengfei Long 1,*, Guojin He 1 and Chengjuan Gong 1,2

1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
dongyunyun14@mails.ucas.ac.cn (Y.D.); hegj@radi.ac.cn (G.H.); gongcj@radi.ac.cn (C.G.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: jiaowl@radi.ac.cn (W.J.); longtf@radi.ac.cn (T.L.); Tel.: +86-010-8217-8191 (W.J.);

+86-010-8217-8188 (T.L.)

Received: 5 September 2018; Accepted: 24 October 2018; Published: 31 October 2018

Abstract: Image registration is a core technology of many different image processing areas and is
widely used in the remote sensing community. The accuracy of image registration largely determines
the effect of subsequent applications. In recent years, phase correlation-based image registration
has drawn much attention because of its high accuracy and efficiency as well as its robustness to
gray difference and even slight changes in content. Many researchers have reported that the phase
correlation method can acquire a sub-pixel accuracy of 1/10 or even 1/100. However, its performance
is acquired only in the case of translation, which limits the scope of the application of the method.
However, there are few reports on the estimation of scales and angles based on the phase correlation
method. To take advantage of the high accuracy property and other merits of phase correlation-based
image registration and extend it to estimate the similarity transform, we proposed a novel algorithm,
the Multilayer Polar Fourier Transform (MPFT), which uses a fast and accurate polar Fourier transform
with different scaling factors to calculate the log-polar Fourier transform. The structure of the polar
grids of MPFT is more similar to the one of the log-polar grid. In particular, for rotation estimation
only, the polar grid of MPFT is the calculation grid. To validate its effectiveness and high accuracy
in estimating angles and scales, both qualitative and quantitative experiments were carried out.
The quantitative experiments included a numerical simulation as well as synthetic and real data
experiments. The experimental results showed that the proposed method, MPFT, performs better
than the existing phase correlation-based similarity transform estimation methods, the Pseudo-polar
Fourier Transform (PPFT) and the Multilayer Fractional Fourier Transform method (MLFFT), and
the classical feature-based registration method, Scale-Invariant Feature Transform (SIFT), and its
variant, ms-SIFT.

Keywords: phase correlation; Polar Fourier Transform; Log-polar Fourier Transform; similarity
transform; image registration

1. Introduction

Image registration is a fundamental and challenging task that is used in many different
research areas such as remote sensing, medical imaging, computer vision and video processing [1–4].
Especially in the remote sensing community, the technology is widely used in many applications,
such as mapping of various applications, change detection, image fusion, mosaicking, and earth surface
dynamics monitoring [5–9]. The accuracy of registration determines the quality of the remote sensing
application and analysis and even the success or failure of these applications. Fortunately, because
of the stability of the satellite platform and geolocation tools, the affine transformation model is able
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to fit the local spatial deformations of remote sensing images with the help of the initial geometric
model. In practical applications, one commonly used strategy for image registration is to construct
multi-level pyramid images and divide these images into multiple tiles; this is known as patch-based
image registration [6,10]. Specifically, for small patches, the distortion of remote sensing images
can reasonably be approximated as the differences in scale, rotation, and translation—the similarity
transformation. Therefore, accurate estimation of similarity transformation is a very important and
fundamental task.

Although feature-based image registration methods such as the Scale-Invariant Feature Transform
(SIFT) [11] are popular registration methods with advantages of robustness to scale and rotation, the
invariance of SIFT may not always be maintained on the remote sensing images. Remote sensing
images come from different sensors, have different resolutions and spectra, and they are more special
than natural images. In some cases, the principle orientations of corresponding points are not consistent,
even in the opposite direction, which results in false matching and registration failure [12]. In recent
years, image registration based on phase correlation has drawn considerable attention due to its high
accuracy and other merits, such as robustness to noise and illumination variation, low computation
cost, ease of parallelizing and constant consumption of time, irrespective of the content of images
and amount of translation. In the case of displacement only, it can acquire 1/10 or even 1/100-pixel
accuracy [13–15], and a popular image co-registration-based phase correlation software was also
developed [16]. However, it is only suited for displacement estimation.

In this paper, to take advantage of the phase correlation-based image registration algorithm and
to estimate the similarity transform more accurately, we extend the phase correlation-based method to
estimate the scale, rotation, and displacement simultaneously. Here, we propose a novel algorithm,
the Multiple Layers Polar Fourier Transform (MPFT). Firstly, a proper log-polar grid is constructed.
Secondly, a fast and accurate polar Fourier transform with multiple scaling factors is calculated.
Thirdly, a cubic interpolation is carried out to calculate the log-polar Fourier transform. Qualitative
and quantitative experiments show that the proposed MPFT is superior to the existing methods based
on phase correlation (the Multilayer Fractional Fourier Transform, MLFT [17] and the Pseudo-polar
Fourier Transform, PPFT [18]) as well as the algorithms based on features (SIFT and ms-SIFT [19]).

The rest of the paper is organized as follows: the background of remote sensing image registration
is introduced in Section 2. An overview and description of the proposed method are detailed in
Section 3. The analysis and experimental results are presented in Section 4. The discussion is given in
Section 5 and the conclusions are drawn in Section 6.

2. Background

Remote sensing image registration is a prerequisite of subsequent applications such as image
stitching, time series analysis, and change detection. According to a survey [2], image registration
methods can be divided into two categories: area-based registration methods and feature-based
registration methods.

2.1. Feature-Based Methods

Feature-based registration methods are the more mature and popular methods. They mainly
consist of three steps: feature detection, feature description, and feature matching. Among the
feature-based methods, the most classical algorithm is the scale-invariant feature transform (SIFT) [11].
However, in the remote sensing community, the direct application of SIFT faces many problems such
as the low positional accuracy of feature points, the poor distribution of detected feature points in the
spatial and scale spaces, the sensitivity of feature descriptors to non-linear radiation distortion, and so
on. Recently, a series of improved algorithms emerged to solve these problems. To address the low
positional accuracy of feature points, oriented least square matching (OLSM) was proposed to improve
the positional accuracy of local affine features [20]. For feature descriptors, the adaptive binning
scale-invariant feature transform (AB-SIFT) descriptor was proposed to enhance the robustness to
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local geometric distortions [21] and the histogram of orientated phase congruency (HOPC) descriptor
was developed to address the nonlinear radiometric differences [22]. To address the poor distribution
of detected features, novel score criteria for the feature points, a feature detection method based
on phase congruency, and the uniform partitioning strategy were utilized to generate an adequate
number of high-quality, uniformly-distributed point features in the spatial and scale spaces, such as
UR-SIFT [23], UC-SIFT [24], and MMPC-Lap [25]. For feature matching, a support-line descriptor
based on multiple adaptive binning gradient histograms was developed to filter out the outliers after
the initial matching [26] to produce more high-precision correspondences.

2.2. Area-Based Methods

Area-based matching methods can be loosely grouped into three sub-categories: correlation-
based methods, mutual information-based methods, and phase correlation-based methods. The
correlation-based and mutual information-based methods process the original pixel values directly,
so they are sensitive to change in the gray value and content. The phase correlation-based method
calculates the phase difference in the frequency domain, which is robust to radiation changes and
slight content changes. So, we mainly focused on the phase correlation-based methods. The estimation
of similarity transformation based on phase correlation is usually done in two steps, namely the scale
and angle are firstly estimated, and then, the displacement is estimated.

For the estimation of displacement only, there are two basic approaches. One is the identification
of the coordinates of the main peak of the inverse Fourier transform of the normalized cross-power
spectrum matrix. The other method involves determining the linear phase difference in the frequency
domain. For the first category, the commonly used solutions are interpolation methods, such as 1D
parabolic functions, sinc functions, modified sinc functions and Gaussian functions [27–29]. However,
the disadvantages of the method are its sensitivity to noise and other errors. For the other category,
the main theoretical basis is that the phase difference is linear with respect to displacement in the
frequency domain. However, the frequency components are easily corrupted by image noise, variation
in the image content, and other complex geometric and photometric distortions. So, the key aspect of
the method is to determine the uncorrupted frequency. Some methods are focused on fitting a 2D plane
through the origin of the frequency coordinates, for example, the least squares adjustment method
which filters out the effects of noise and aliasing at high frequencies [30], the Quick Maximum Density
Power Estimator (QMDPE) [31,32], and the maximum kernel density estimator [33]. Some methods
are focused on determining the best rank-one approximation to the normalized cross-spectrum
matrix, for example, singular value decomposition [34,35], minimization with respect to the Frobenius
norm, the weighted residual matrix between the actual computation cross-spectrum and the ideal
one [36], and low-rank matrix factorization with a mixture of Gaussians applied to the cross-spectrum
matrix [37]. Considering that aliasing and noise are also two of many factors that can corrupt the
sub-pixel accuracy of phase correlation-based image registration, and that avoiding inverse Fourier
Transform can alleviate the side effects of aliasing and noise, the method of calculating the linear phase
difference is the most popular [30].

In regard to scale and rotation estimation based on phase correlation, the core technology is to
calculate the log-polar Fourier transform accurately and efficiently. Two approaches to calculate the
log-polar Fourier transform exist. One is directly interpolating the 2D Fourier transform in the Cartesian
coordinate to calculate the log-polar transform. The most representative work of this type is presented
in [17,38]. This method can recover any rotation at a scale of up to 2. In 2003, Stone et al. proposed
an appropriate filter window, weighted to the original image, which can reduce the alias caused by
the rotation and recovery scales to 2.5 with any rotation [18]. The other method involves accurately
and efficiently calculating the Fourier transform value of each point from a specific structure, and then
interpolating the Fourier transform values of these points with the specific structure to approximate
the log-polar Fourier transform value. In 2005, Keller et al. [39] proposed a Pseudo-polar FFT-based
algorithm, which can significantly decrease the interpolation error produced when calculating the
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polar Fourier transform with the same complexity as the 2D FFT. The method involves the construction
of a special grid, named the pseudo-polar grid, where equispaced angular lines are replaced by
equisloped ones, and the computation speed is fast. The method can recover scales of up to 4. However,
the pseudo-polar grid also performs poorly in terms of registering images because of its inability to
approximate the log-polar Fourier transform. Later, in 2006, the pseudo-log-polar FFT was developed.
It separates the whole plane into two parts, BH and BV (BH and BV are two subsets of points, as detailed
in [40]). In the calculation of the Fourier transform values of points in the BH and BV point sets, an
interpolation operation is also needed, which leads to underlying error. So, the pseudo-log-polar FFT
still fails to reduce the interpolation error greatly. In 2009, a Multilayer Fractional Fourier Transform
(MLFFT) approach was proposed in [41], which approximates the log-polar grid points by using
multilayer Cartesian grids with different scaling factors. Compared to the pseudo-log-polar grid, the
MLFFT-based registration method improves the accuracy of angle and scale estimation. However,
an interpolation scheme is necessary, even for only polar Fourier transforms, and more interpolation
errors also occur in the log-polar Fourier transform.

This paper aims to further reduce or eliminate the interpolation error in the calculation of the
log-polar or polar Fourier transform, and to improve the estimation accuracy of the scale and angle.
Here, a special grid is constructed. It is composed of multiple polar grids with different scaling factors.
Furthermore, each polar Fourier transform can be calculated accurately and efficiently. Additionally,
the scaling factors of polar grids can be simply determined by the histogram of radii of the points of
the destination log-polar grid in the radial direction. Because of the accurate calculation of the og-polar
grid Fourier transform, it can acquire a higher registration accuracy than the existing algorithms.
In particular, for angle estimation, there is no interpolation error, which can significantly improve the
accuracy of angle estimation.

3. Methodology

3.1. Math Theory of Image Registration Based on Phase Correlation

The basic principles of phase correlation-based image registration are the Fourier shift theorem
and the log-polar transform, which states that the displacement of two images in spatial domain can
be formulated as a phase difference in the frequency domain. By applying the log-polar transform,
the scale and rotation angle are transformed into translations in the radial and angular directions.
So, the scale and rotation estimations are reduced to a shift estimation operation. Currently, the phase
correlation-based method can acquire a sub-pixel accuracy only in the case of displacement [27–29].

Suppose that f1(x, y) and f2(x, y) represent the coordinates of a pixel in a reference and sensed
image, respectively. Additionally, they satisfy the following relationship:

f2(x, y) = f1(x− x0, y− y0) (1)

where x0, y0 is the displacement in the column and row directions, respectively. Then, the following
expression can be derived according to the Fourier shift theorem:

F2(ωx, ωy) = F1(ωx, ωy)exp{−i(ωxx0 + ωyy0)} (2)

where F1(ωx, ωy), F2(ωx, ωy) is the corresponding Fourier transform of f1(x, y) and f2(x, y),
respectively. ωx and ωy are radian frequencies ranging from −π to π. The normalized cross-power
spectrum matrix is denoted by

Q(ωx, ωy) =
F2(ωx, ωy)F1(ωx, ωy)∗∣∣F1(ωx, ωy)F2(ωx, ωy)

∣∣ = exp
{
−i(ωxx0 + ωyy0)

}
(3)

where ∗ denotes the complex conjugate. The magnitude of Q(ωx, ωy) is normalized to 1 for any
frequency component. It is, therefore, insensitive to gray variation and image content, which makes
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the phase correlation-based method more suitable for matching images acquired by different sensors
or times.

In theory, the normalized cross-power matrix Q is a rank-one matrix, i.e., the phase difference is
linear. As a result, Q is separable and can be expressed as the following equation:

Q(ωx, ωy) = exp {−i(ωxx0)} exp
{
(−i(ωyy0))

}
= qx0(ωx)qy0(ωy). (4)

After calculating the phase difference using the least squares fit or singular value decomposition
methods, the displacements x0 and y0 are acquired. In general, the phase differences are expressed
in the form of the slopes sx,sy of the unwrapped phase angles of components qx0(ωx) and
qy0(ωy0), whose unwrapped phase angles are linear with respect to their corresponding frequencies.
Then, the displacements x0, y0 can be derived as follows:

x0 =
sx M
2π

, y0 =
syN
2π

(5)

where M and N denote the size of the image. When recovering the rotation and scaling parameters,
calculating the log-polar Fourier transform is a common approach. To simplify the derivation,
a two-element vector X = (x, y)T is constructed. Let f1(X) and f2(X) satisfy the relationship f1(X) =

f2(AX − X0), where X0 = (x0, y0)
T is a two-element displacement vector, A = s ∗

(
cos θ0 sin θ0
− sin θ0 cos θ0

)
is

a scale and rotation matrix, θ0 is the rotation angle, and s is the scale. Apply the Fourier transform to
f1(X) and f2(X) separately, and the derivations are as follows:

F1(ξ) =
∫

R2
f1(X)e−iX·ξdX

Y=AX−X0======= s−2
∫

R2
f2(Y)e−iA−1(Y+X0)·ξdY

A−1X0·ξ=X0·Aξs−2

============ s−2e−iX0·Aξs−2
∫

R2
f2(Y)e

−iY· A
s2 ξdY (6)

== s−2e−iX0·Aξs−2
F2(s−2Aξ)

where ξ is a two-element frequency vector (ωx, ωy)T , and · denotes the inner product. Equation (6)
shows that a rotation of the image in the spatial domain rotates its spectra in the frequency domain by
the same angle, and the coefficient rescales the spectral magnitude by s−1. The relationship between
F1 and F2 can be further reformulated as

F1(ωx, ωy) = e−iX0·AξF2(s−1ωx cos θ0 + s−1ωy sin θ0,−s−1ωx sin θ0 + s−1ωy cos θ0). (7)

According to the relationship between Cartesian and Polar coordinates, ωx = r cos θ, ωy = r sin θ,
and the calculation of M1 and M2, the corresponding magnitudes of F1 and F2 in Equation (7),
we have the following relationship:

M1(r, θ) = s−2M2(s−1r, θ + θ0). (8)

Moreover, by applying the log operation to the radius r, we have

M1(log r, θ) = s−2M2(log r− log s, θ + θ0). (9)

Now thatM1 andM2 have only displacements, the phase correlation based method is again
applied onM1 andM2 to determine s and θ.

3.2. Overview of the Proposed Method

The overall workflow, which mainly consists of five steps, is shown in Figure 1. The description
of each procedure is as follows:
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Figure 1. Overall workflow of the proposed method

(1) Image preprocessing: In general, for an image, its opposite borders (up and down or left and right
frames) are not similar. so, the implicit periodic image presents strong discontinuities across the
frame border. So, preprocessing of the image border is vital when directly estimating the linear
phase difference in the frequency domain. In our method, during preprocessing, the original
image is decomposed into two components, the ‘periodic component’ and the ‘smooth component’
by using the image decomposition method [42]. Then, the ‘smooth’ component is discarded and
‘periodic component’ is undergoes the log-polar Fourier transform [43].

(2) Calculate the log-polar Fourier transform: There is no way to calculate the log-polar Fourier
transform exactly except for the direct brute force computation whose complexity is O(N4).
However, the accuracy of the estimation of the scale and angle heavily depends on the accuracy
of the log-polar Fourier transform. In this paper, a novel calculation of the log-polar Fourier
transform is proposed, which is described in detail in Sections 3.3 and 3.4.

(3) Determine the scale and angle parameters: According to the derivation expression 9,
the magnitude spectra of the log-polar Fourier transform of one image and its scaled and rotational
version have a translation relationship only. In our method, a phase correlation-based method is
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applied to estimate the displacements (x0 and y0) in the radial direction and angular direction,
respectively. According to the suggestion that aliasing and noise are also two of many factors that
corrupt the sub-pixel accuracy of phase correlation-based image registration and that avoiding the
inverse Fourier transform can alleviate the side effects of aliasing and noise [30], the displacements
(x0, y0) are estimated by calculating the linear phase difference directly in the frequency domain
as well as identifying the location of the dominant peak of the inverse Fourier transform of the
normalized cross-relation matrix. Then, x0, y0 are converted to scale s and angle θ, respectively,
with the following formula:

s = ρx0
0 , θ = y0∆θ (10)

where ρ0 is the log-base and ∆θ is the angular sampling interval.
(4) Apply the scale and angle parameters to the original image: The sensed image is transformed by

the scale and rotation factors, and then only the shift is left between the referenced image and the
corrected sensed image.

(5) Estimate the translation parameter: After scaling and rotating the sensed image, the phase
correlation-based method is again applied to estimate the displacement between the reference
and sensed images. At this point, all of the scale, rotation, and translation parameters have
been determined.

3.3. Construction of the Proper Destination Grid of the Log-Polar Grid

In the case of image registration based on phase correlation, there are three parameters which
affect the accuracy of estimated scale and rotation angle: angular spacing ∆θ, the number of points
in the radial line N, and the log-base ρ0 of the log-polar grid. Due to the nature of logarithmic
operations, the minimum radius r0 cannot be 0, and even when it approaches 0, logρ0

r0 will go to
infinity. In practice, the minimum r0 should take a proper small value and satisfy the relational
expression ρ0 = (π/r0)

1/N . It is worth mentioning that when the minimum radius r0 and number of
points in the radial line N are known, ρ0 can also be determined. In regard to the parameter settings,
ρ0 and N have specific physical meanings, so the direct assignment of r0 and N can give us a more
intuitive understanding of them. However, estimating the scale by using ρ0 is a more direct calculation,
as in Formula 10. Suppose that the estimation of the shift is x0 in the radial direction and y0 in the
angular direction, correspondingly, the derived angle is θ = y0 · ∆θ and the scale factor is s = ρx0

0 . For
simplicity, suppose that the obtained accuracy level of x0 and y0 is certain, for example, 0.1 pixels. The
accuracy of angle estimation only depends on the angular spacing ∆θ. However, for the accuracy of
scale estimation, the situation is more complicated. Theoretically, the error of scale estimation increases
with x0 and decreases with ρ0. In general, the scale factor does not exceed 10. In the case of a fixed
scale, the relationship between the error of the estimated scale and the log-base ρ0 is shown in Figure 2.
It is noteworthy that due to the unknown true scale in practical applications, the integer value is
roughly obtained close to the true scale at first, which leads to the slight jitter of the line. In fact, the
relationship between the estimated scale error and log-base is strictly linear. For each scale, the error
of the estimated scale increases with the log-base ρ0, in general. However, when the value of the
log-base ρ0 is too small, this will lead to a huge value for logρ0

r, which means the computation of
image registration based on phase correlation is expensive. Considering the balance between accuracy
and computation cost, the log-base ρ0 is chosen from the interval [1.02, 1.06].
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Figure 2. The relationship between the error of the estimated scale and the log-base ρ0. For each fixed
scale, the estimated scale error increases almost linearly with the log-base ρ0.

3.4. Calculation of the Log-Polar Fourier Transform

At present, the core method for calculating the log-polar Fourier transform is to construct grids
with a specific structure that is as close to the log-polar grid as possible, where the Fourier transform
value of each point can be computed quickly and exactly. In this section, an exact and fast computation
method for the polar-grid Fourier transform is applied, as in [44]. Its core idea is to calculate the
Fourier transform of each series of points in one single radial line, which can be formulated as a 1D
fractional Fourier transform. Then, some polar-grids with different radii (namely scaling factors) are
combined to interpolate the log-polar grid.

3.4.1. Preliminaries: 1D Fractional Fourier Transform

For an arbitrary scale value α, the definition of the 1D fractional Fourier transform (FrFT),
also known as the Chirp-Z transform [45], is written as

Fα(k) =
N/2

∑
n=−N/2

f (n)e−i2πknα/(N+1),−N
2
≤ k ≤ N

2
(11)

where f (n) is a discrete 1D function, defined in the interval −N
2 ≤ k ≤ N

2 and N is an even
number. In this paper [46], a fast algorithm is used to compute the above 1D FrFT in the order
of (N + 1) log2 (N + 1). By replacing 2kn, the exponent of Formula 11, with k2 + n2 − (k− n)2, a new
expression is derived as follows:

Fα(k) =
(N/2)

∑
n=−N/2

f (n)e−i πα
N+1 (k

2+n2−(k−n)2) = e−
iπα

N+1 k2
N/2

∑
n=−N/2

f (n)e−
iπα

N+1 n2
e

iπα
N+1 (k−n)2

(12)

where k satisfies the condition −N
2 ≤ k ≤ N

2 . If we let G(n) = f (n)e−i πα
N+1 n2

, E(n) = e−i πα
N+1 n2

, and
apply the cyclic convolutional theorem to expression 12, we have

Fα(k) = E(k) · IFFT(FFT(G) · FFT(E)) (13)

where FFT and IFFT denote the Fourier transform and inverse Fourier transform operations,
respectively. As shown by expression 13, the computation cost of 1D FrFT is three times that of
FFT, whose computational cost is (N + 1) log2 (N + 1). Consequently, the order of complexity of 1D
FrFT with N+1 points is also (N + 1) log2 (N + 1).
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3.4.2. Fast and Exact Computation of the Discrete Fourier Transform for the Polar Grid

For a more intuitive illustration, a polar grid of size M× (N + 1) (16× (16 + 1))) is constructed,
as shown in Figure 3. M denotes the number of radial lines and N + 1 is the number of points on each
radial line. The angle between any two adjacent radial lines is equal to 180°/M, and the points on
each radial line are equally spaced. For any point (m, n) in the polar grid, the Fourier transform is
defined by

F(m, n) =
N/2

∑
c=−N/2

N/2

∑
r=−N/2

f (r, c)e−i 2πn
N+1 (r cos θm+c sin θm) (14)

where f (r, c) represents a discrete Cartesian data point, r is the row index, c is the column index,
−N

2 ≤ r, c ≤ N
2 , 0 ≤ m ≤ M− 1, θm = m∆θ, and ∆θ =180°/M.

Figure 3. Schematic of the polar grid. The size of the points has no extra meaning; the smaller sized
points are only used for clear visualization.

To use 1D FrFT to calculate the Fourier transform values on radial lines in the polar grid,
few definitions are needed. The computation of the 1D frequency domain scaling of a 2D image
along the x axis can be implemented by using 1D FrFT along each row as follows [45]:

Fα
x (r, c) =

N/2

∑
n=−N/2

f (r, n)e−i 2πcn
N+1 α (15)

where −N/2 ≤ r, c ≤ N/2. Likewise, the computation of the 1D frequency domain scaling of a 2D
image along the y axis can be implemented by using 1D FrFT along each column as follows [45]:

Fα
y (r, c) =

N/2

∑
n=−N/2

f (n, c)e−i 2πrn
N+1 α (16)

where −N/2 ≤ r, c ≤ N/2. The following is the detailed description of the calculation of the Fourier
transform of the polar grid. Two scaled Cartesian grids that have been uniformly scaled on one axis
but variably scaled on the complementary axis using 1D FrFT are shown in Figure 4.
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(a) (b)

Figure 4. In Figure (a), after uniformly scaling the Cartesian grid on the x axis (scaling the x coordinates
of all of the points by a proper factor cos ∆θ and keeping their y coordinates unchanged), all the red
circle points in the two green radical dashed lines fall exactly on the vertical lines that constitute the
Cartesian grid scaled on the x axis. In Figure (b), after uniformly scaling the Cartesian grid on the y
axis (scaling the y coordinates of all of the points by a proper factor cos(90°−∆θ) and keeping their x
coordinates unchanged), all the red circle points in two green dashed lines fall exactly on the horizontal
lines that constitute the Cartesian grid scaled on the y axis.

Consider the uniformly spaced N + 1 points on the green radial dashed line oriented at angle
∆θ, shown in Figure 4a. The x coordinate of each point is uniformly scaled on the x axis with the
scaling factor α = cos(∆θ). Additionally, the y coordinate of each point is variably scaled on the y axis
with a variable scaling factor |c|β, where β = sin(∆θ) and c is the column index. According to the
property of separability of the 2D Fourier transform, the frequency domain scaling of a 2D image is
first calculated along the x axis using a 1D FrFT along each row with expression 15. Then, another 1D
FrFT is taken with a variable scale β for each column. At last, the expression [44] is acquired as follows:

Fα,β
x (r, c) =

N/2

∑
n=−N/2

Fα
x (n, c)e−i 2πrn|c|

N+1 β. (17)

For the uniformly spaced N + 1 points on the green radial dashed line oriented at angle ∆θ,
shown in Figure 4b, the y coordinate of each point is uniformly scaled on the y axis with the scaling
factor α = cos(90°−∆θ), and the x coordinate of each point is variably scaled on the x axis with
a variable scaling factor |r|β, where β = sin(∆θ) and r is the row index. Likewise, its 2D Fourier
transform value [44] is expressed as follows:

Fα,β
y (r, c) =

N/2

∑
n=−N/2

Fα
y (r, n)e−i 2πcn|r|

N+1 β. (18)

It is worth noting that only one point for each column in Formula 17 and one point for each row in
Formula 18 need to be calculated. Four symmetrical radial lines exist, two from the x axis scaled grid,
oriented at ∆θ and 180°−∆θ, respectively, and two from the y axis scaled grid, oriented at 90°−∆θ and
90°+∆θ, respectively. This gives us the Fourier transform of the four radial lines: F(1, n), F(M− 1, n),
F(M/2− 1, n), and F(M/2 + 1, n), which are denoted by F1. Here, the points of the four radial lines
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on one axis have the same scaling factor cos(∆θ), and the scaling factor is known as level one scaling.
Similarly, the scaling factor cos(l ∗ ∆θ) is known as level l scaling (l = 1, 2, 3, . . .). For a complete
polar grid (i.e., when M is even), the number of levels required, L, is f loor(M/4), which denotes the
largest integer value that is less than or equal to M/4. For the Fourier transform of level l scaling,
the corresponding Fourier transform [44] can be expressed as

Fαl ,βl
x (r, c) =

N/2

∑
n=−N/2

Fαl
x (n, c)e−i 2πrn|c|

l(N+1) βl (19)

Fαl ,βl
y (r, c) =

N/2

∑
n=−N/2

Fαl
y (n, c)e−i 2πcn|r|

l(N+1) βl (20)

where αl = cos(l · ∆θ), βl = sin(l · ∆θ),−N/2 ≤ r, c ≤ N/2, and 1 ≤ l ≤ L. Note that the orthogonal
lines are not included at 0°and 90°, but the two radial lines can be computed at any level. So, the discrete
Fourier transform on the polar grid is acquired as

F =
L⋃

l=1

Fl (21)

where Fl is the Fourier transform value obtained from the level l scaling, and L denotes the
number of scaling levels. The dominant computation cost of each level of scaling is the first
uniform scaling by αl along the x and y axes using Expressions 15 and 16, which requires a
complexity of order O((N + 1)2 log(N + 1)). Consequently, the complexity of the algorithm is
O((N + 1)2 log(N + 1)). Moreover, the algorithm is easily parallelized by calculating different Fl
at the same time. As computing power increases, the time required for the process will greatly reduced.

3.4.3. Interpolation of the Log-Polar Fourier Transform

During the process of interpolation, there are two parameters to determine. One is the number of
polar grids and the other is the scaling factor of each polar grid, namely, the ratio between the radius
of each polar grid and the maximal radius. To aid in understanding, a log-polar grid of size 16× 24 is
shown in Figure 5f. It has 16 radial lines that are angularly equispaced and 24 non-equispaced points
on each radial line. Taking the semi-series points (the red points in Figure 5f.) as an example, the
distance from each point to the origin constitutes a geometric sequence, and the geometric ratio is the
log-base ρ0. The interval between points grows exponentially larger and larger. So, for a complete
log-polar grid, most points are clustered within a small radius area. Furthermore, in the case of image
registration based on phase correlation, the high frequency components are filtered out due to their
susceptibility to corruptness. This knowledge guided us to use multiple polar grids with small radii to
form the log-polar grid.

In general, the number of polar grids needs to be set in advance. Considering the balance between
efficiency and accuracy, in our model, the number was set to 4. Figure 5a–d are single polar grids with
different scaling factors. Figure 5e is the overlay of Figure 5a–d. In theory, the approach to determine
the scaling factor of each polar grid involves the minimization of the cost function, as defined in the
following expression

G(ri, θi) = ∑((X̂closed − Xreal−logpolar)
2 + (Ŷclosed −Yreal−logpolar)

2) (22)

where (X̂closed, Ŷclosed) represents the coordinates of a point from the polar grids composed of four
single polar grids with different scaling factors that is closest to the specific point with the coordinates
(Xreal−logpolar, Yreal−logpolar) in the log-polar grid. However, it is a nonlinear optimization problem
and a time-consuming operation. To further improve its efficiency in practice, the scaling factors
can be approximated by partitioning the log-polar radial series values into four bins. The second to
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fourth edge values are set to the first three scaling factors, and the fourth scaling factor is set to 1.
After determining the number of single polar grids and the scaling factor of each polar grid, a bicubic
interpolation method is utilized to interpolate the log-polar Fourier transform grid.

(a) (b) (c)

(d) (e) (f)

Figure 5. (a–d) have scaling factors of 0.25, 0.51, 0.76, and 1.0 respectively. (e) is the overlay of the
former four single polar grids with different scaling factors. (f) is the destination log-polar grid. Each
grid has 16 radial lines that are angularly equispaced and 24 points on each radial line.

4. Experiments and Analysis

4.1. Qualitative Experiment

In this section, three pairs of images are registered by the proposed algorithm, MPFT, and then
a checkerboard visualization of registered images is shown to illustrate the effectiveness of the proposed
algorithm. The three pairs of images, shown in Figure 6, illustrate the scale difference, angle rotation,
and similarity transform, respectively. Due to the large spatial extent of all images, certain regions are
denoted with red ellipses to indicate the effectiveness of the MPFT. Through the careful inspection,
the result matching is satisfied, even for the images with a significant gray difference and a slight
change in content, which illustrates the practical value of the proposed MPFT algorithm.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. (a,d) are a pair of images with a scale difference of 2.5. They are from the panchromatic bands
of GF-1 and GF-2, respectively; (g) is the checkerboard visualization of the registered images; (b,e) are
a pair of images with a rotation angle difference of about 50°; (h) is the checkerboard visualization
of matched images; (c,f), from the panchromatic bands of GF-1 and GF-2, respectively, are a pair of
images, with both a scale difference of about 2.5, a rotation difference of about 20°, and displacement
differences of about 49 pixels and 74 pixels in the x and y directions, respectively; (i) is the checkerboard
visualization of rectified images.

4.2. Quantitative Experiment

This section describes three experiments—an interpolation error comparison experiment and
synthetic and real data experiments—that were carried out to verify the performance of the proposed
method, MPFT. At the same time, two other competitive phase correlation based registration
algorithms, the Pseudo-polar Fourier transform method (PPFT) [39] and the Multilayer Fractional
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Fourier Transform method (MLFFT) [41] were used for comparison. Although these two methods were
proposed years ago, they are also the state-of-the-art algorithms due to the absence of the development
of novel and effective phase correlation methods in recent years. To compare the performance of the
proposed method more thoroughly, we also compared it to the most classical feature-based image
registration method, SIFT [11] and its variant, mode-seeking SIFT (ms-SIFT) [19], which is used
for similarity estimations. The SIFT algorithm was implemented by VLFeat [47] and ms-SIFT was
implemented by us in accordance with the original related paper [19]. In each experiment, there were
two kinds of parameters to be set for the phase correlation-based algorithm. One type was related to
the construction of the log-polar grid (polar grid) and included the number of radial lines, the number
of points in a single radial line, and the log-base ρ0. The other type concerned the algorithm itself.
Fo MLFFT and MPFT, there was one parameter to be specified: the number of single grids. For PPFT,
there were no parameters to be set. The concrete parameter settings for each experiment are detailed
in Table 1.

Table 1. The details of parameters to be set in each experiment.

Experiment

Constuction of the Log-Polar Grid (or Polar Grid) Number of Single Grids

Size M × N Log-Base (ρ0) MPFT MLFFT
Number of Radial Lines (M) Number of Points in the Radial Line (N)

Numerical Experiment . . . ... 1.044 4 4

Synthetic Data Experiment Similarity Transform Estimation
Angle Estimation

128 128 ( π
0.015 )

1
127 4 4

250 250 – 1 4
Real Data Experiment 128 128 ( π

0.015 )
1

127 4 4
Further Analysis 128 128 ... 4 4

Note: ’–’ represents there is no need to set this parameter (there is no parameter ρ0 for the polar grid); ’. . .’
represents a series value. (The concrete value series are described in the corresponding section).

During the process of determining the scaling factors for each single polar grid, the the log-polar
radius series values were partioned by the MATLAB function histcounts. The experiments were
carried out on a desktop computer with Intel Xeon CPU 3.50GHz, 16-GB memory, and MATLAB
R2017B. In the synthetic and real data experiments, two measurements were used to evaluate the
performance of each algorithm. One was the mean absolute estimation error, which represents the
accuracy of each algorithm in estimating the scale and angles. It was computed by using the formula
1
C ∑n |s′n − sn|, where s′n denotes the estimation value, sn is the truth value for the image pair n, and C
is the total number of image pairs. The other was the root-mean-square error (RMSE), which denotes

the robustness of the performance algorithm. It can be calculated by the expression
√

1
C ∑n(s′n − sn)2.

4.2.1. Numerical Simulation of the Interpolation Error

The most basic requirement for the estimation of scales and angles based on phase correlation is
the accurate calculation of the log-polar Fourier transform. Under the framework of interpolating the
log-polar Fourier transform, the interpolation error can be measured by the mean squared Euclidean
distance between the actual point in the log-polar frequency plane and the closest point in the
interpolated grids. The three different algorithms have different grid structures: the MultiPolarGrid
(MPFT method), the MultiCartesianGrid (MLFFT method), and the PseudoPolarGrid (PPFT method).
These grids were utilized to compare the interpolation errors. For these experiments, the number
of layers was set to four in the MultiPolarGrid and the MultiCartesianGrid, which was consistent
with the subsequent synthetic and real data experiments. So, four polar grids constituted the final
MultiPolarGrid and MultiCartesianGrid. The scaling factor of each polar grid was acquired by
partitioning the log-polar radius series values into four bins. For the log-polar grid, the log-base ρ0

was set to 1.044. The average interpolation error was equal to the accumulated Euclidean distance
divided by the total number of destination grid points. The size of the log-polar varied from 50× 50
to 500× 500 in steps of 50. A comparison of the average interpolation error of the grids with three
different structures is shown in Figure 7. Obviously, the MultiPolarGrid has a smaller interpolation
error than the other two grids; the MultiCartesianGrid has the second lowest interpolation error.
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In addition, the advantage of MultiPolarGrid is particularly evident, especially for small-sized images,
which is greatly helpful to attaining success and higher accuracy in patch-based matching.

Figure 7. Average interpolation error of grids with different structures. The size of the log-polar grid
varies from 50× 50 to 500× 500.

4.2.2. Synthetic Data Experiments

Two sets of simulation experiments were carried out. One was the case of only angle
transformation. Because the specificity of the polar Fourier transform is only sufficient for angle
estimation and MPFT can calculate the Fourier transform accurately, this was used to demonstrate the
effect of the accurate Fourier transform. The other was the case of similarity transformation. The main
goal of this was to assess the performance of the proposed method when the shift, rotation, and scale
exist simultaneously.

4.2.2.1. Angle Estimation

For angle estimation only, there is no need to construct the log-polar grid—the polar grid is
enough. For MPFT, the destination grid is the polar grid. So, the number of layers of MPFT was set
to 1. Images with a size of 1024× 1024 pixels from different sensors, as in the following similarity
transformation, were utilized. There were 80 images in total. Each image was rotated by a random
angle. The range of rotation angles was from 0° to 180°. After rotating the image, a pair of images
with a size of 512× 512 pixels, centered at the rotated image and original image, respectively, were
clipped as the final estimated image pairs. Due to the large rotations, the final estimated image pairs
had different contents, which made the angle estimation more challenging. The mean absolute error
and RMSE of each algorithm are shown in Figure 8.

From Figure 8, it is evident that the feature-based methods SIFT and ms-SIFT perform better than
MLFFT, but worse than the proposed algorithm, MPFT. The proposed algorithm, MPFT, has the best
performance among all of the competitive algorithms, and the MLFFT has the worst performance.
The PPFT algorithm is superior to the SIFT method, but inferior to ms-SIFT. Among the phase
correlation-based algorithms, the great success of MPFT is mainly due to its lack of interpolation error
when calculating the polar grid Fourier transform, while the other two algorithms have interpolation
errors when calculating the polar grid Fourier transform. Interestingly, the MLFFT had a worse
performance than the PPFT here although the number of layers of the MultiCartesianGrid was four.
An in-depth analysis identified two reasons for this. One is that the PseudoPolarGrid of PPFT is
more similar to the polar grid compared to the MultiCartesianGrid of MLFFT. The other reason is
that the points in a radial line of the polar grid are evenly spaced while most of the points in a radial
line of the log-polar grid are cluttered within a smaller radius. The difference means that using the
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MultiCartesianGrid to approximate a polar grid will lead to a larger error, so MLFFT has the worst
performance for the angle rotation only case. This implies that the accuracy of the polar Fourier
transform has a large influence on angle estimation.

(a) (b)

Figure 8. (a) is the mean absolute error of the angle estimation, (b) is the RMSE of the angle estimation.

4.2.2.2. Similarity Transformation Estimation

In this experiment, images from different sensors—GF-1, GF-2, Sentinel-2 and ZY-03—were
used to carry out the simulated data experiment. The content of images varied: farmlands, roads,
buildings, mountains and so on. One example image for each sensor is shown in Figure 9. Their sizes
were all 800× 800 pixels. There were a total of 80 images, with an equal amount from each of the
aforementioned four sensors. Each image was shifted, rotated, and scaled randomly to make the
registration problem more challenging. The range of shift was 0 to half of the image size; scaling values
varied from 0.1 to 10; and the rotation angle was within the range of 0°to 90°. For each image pair,
we used the SIFT, ms-SIFT, MPFT, MLFFT, and PPFT algorithms to estimate the scale and rotation
parameters. To quantify the performance of each algorithm, two measurements for scale and angle
were used: the average absolute error and the root-mean-square error. The bar diagram for the
performance of each algorithm is shown in Figure 10.

(a) (b) (c) (d)

Figure 9. Example images of similarity transformation. (a) is the GF-1 panchromatic image, covering
the farmland and buildings; (b) is the Sentiment-2A images, mainly containing mountains and roads;
(c) is the GF-2 panchromatic image, consisting of man-made buildings; (d) is a ZY-03 image, including
the plain area.

Obviously from Figure 10, we can see that the SIFT algorithm has almost the worst performance
for both the scale and angle estimation, except that its mean absolute error of scale is lower than that
of PPFT. ms-SIFT performs better than PPFT except its RMSE of angle estimation is higher than that of
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PPFT, but worse than MLFFT and MPFT. In the comparison between only phase-based methods, PPFT
has the worst performance and MLFFT has the second worst performance. This is because although
the PPFT grid separates the plane into BH and BV parts (BH and BV are two subsets of points defined
in [39]), its radial lines are evenly sloped and deviate from the radial lines with equal angle intervals in
the structure of the log-polar grid. For MLFFT, although there are four combined Cartesian grids with
different scaling factors, its single Cartesian grid is very different from the structure of the log-polar
grid. The robustness of MLFFT is strong; it can always acquire a middle ranking result. MPFT has
the best performance among all other methods in both scale and angle estiamtion. This is because
the polar-grid has the same angularly equispaced radial lines as the ones of log-polar grids. The only
difference from the log-polar grid is that the points in the radial line are evenly spaced, while the points
in the radial lines of the log-polar grid are exponentially spaced. However, the gap between these
points in the radial line can be narrowed by the combination of multiple polar grids with different
scaling factors.

(a) (b)

(c) (d)

Figure 10. Comparison of performance of the SIFT, ms-SIFT, PPFT, MLFFT, and MPFT algorithms in
estimating scale and angle. (a) is the mean absolute error of scale estimation, (b) is the RMSE of the scale
estimation, (c) is the mean absolute error of angle estimation, and (d) is the RMSE of angle estimation.

4.2.3. Real Experiments and Analysis

This subsection describes the performance of two sets of experiments. One applied the registration
algorithm directly to estimate the similarity transform between images of a small size. The other
registered the scenes of remote sensing by adoption of the tiling strategy. The registration algorithm
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was only utilized to estimate the similarity transform between corresponding tiles to acquire tie points.
Then, these tie points were used to fit a transform model of scenes to rectify the scenes.

4.2.3.1. Estimation of the Similarity Transform between Remote Sensing Images Directly

Three groups of remote sensing images with 45 pairs of images in total from GF-1 and GF-2 were
utilized. Their descriptive information is listed in Table 2. Three examples from different group data
sets are shown in Figure 11. All the image pairs with a similarity transform relationship were acquired
by the process of pre-orthorectification. For high-resolution satellite images captured by narrow
field-of-view cameras, the absolute positioning errors arising from the initial RPC model are likely
to be near constant throughout the scene and amenable to compensation via a small translation and
rotation of the image coordinates [48]. Consequently, after pre-orthorectification using the initial RPC
model and auxiliary digital elevation model (DEM) data, most of the complex deformations of the raw
image can be corrected (approximately remaining a translation, scale difference and small rotation),
and therefore, the processed images have only a similarity deformation. The SIFT, ms-SIFT, MPFT,
MLFFT and PPFT algorithms were applied to estimate the similarity transform. Due to the unknown
rotation angle and translation parameter for each image pair, we used the errors of corresponding
points from the registered and reference images to evaluate the performances of the different algorithms.
The corresponding points were selected by using the open-source toolbox VLFeat [47]. Then, the errors
of each corresponding point were evaluated using three measurements, ex, ey and e = (e2

x + e2
y)

1/2,
where ex and ey represent the root-mean-square errors (RMSE) in the x and y directions, respectively.
The overall registration error of an image pair was estimated as the average error of a certain number
of matched points. According to the principle of keypoint location in the process of point detection,
the keypoints detected in the first octave with the original image size have higher location accuracy
than keypoints detected in other octaves. After rectifying the images, the registered images had almost
the same scale. So, only keypoints with higher location accuracy in the first octave were kept for
the specific evaluation of each algorithm. Then, ten corresponding points evenly distributed in the
image were selected for each image pair. The measurements ex, ey and e for each method represent
the corresponding average measurements of all image pairs, respectively. The maximum absolute
error of MAXx in the x direction and MAXy in the y direction were also measured. The results are
summarized in Table 3.

Table 2. The metadata of remote sensing images with similarity transformation

Category Sensed Image Reference Image Number of Image Pairs

I Sensor: GF-2 Panchromatic
Resolution: 0.81 m
Size: 512× 512
Acquisition Data: November 2017

Sensor: GF-1 Panchromatic
Resolution: 2.0 m
Size: 207× 207
Acquisition Data: June 2013

15

II Sensor: GF-1 Panchromatic
Resolution: 2.0 m
Size: 829× 829
Acquisition Data: June 2013

Sensor: GF-2 Multispectral
Resolution: 3.24 m
Size: 512× 512
Acquisition Data: November 2017

15

III Sensor: GF-2 Multispectral
Resolution: 3.24 m
Size: 800× 800
Acquisition Data: June 2013

Sensor: GF-1 Multispectral
Resolution: 16 m
Size: 162× 162
Acquisition Data: November 2017

15
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(a) GF-2 Panchromatic (0.81 m) (b) GF-1 Panchromatic (2.0 m)

(c) GF-2 Multispectral (3.24 m) (d) GF-1 Panchromatic (2.0 m)

(e) GF-2 Multispectral (3.24 m) (f) GF-1 Multispectral (16.0 m)

Figure 11. Three examples of remote sensing image pairs from GF-1 and GF-2 with similarity transform.
Each column is a pair of images (namely, (a,d), (b,e), (c,f) are image pairs, respectively).
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Table 3. Three average measurements ex, ey and e for each algorithm (pixel).

Algorithm ex MAXx ey MAXy e

SIFT 0.8041 1.6291 0.7203 1.8937 1.1908
ms-SIFT 0.6291 1.5721 0.6715 1.6382 0.9925

PPFT 0.7052 1.4650 0.7133 1.5320 1.1201
MLFFT 0.6183 1.3952 0.6201 1.3905 0.9729
MPFT 0.5623 1.3815 0.5738 1.3902 0.9017

ex and ey denote the root-mean-square errors (RMSE) in the x and y directions, respectively. e = (e2
x + e2

y)
1
2

MAXx and MAXy denote the maximum absolute errors in the x and y directions, respectively. The bold
numbers indicate the minimum value in each column.

From Table 3, we can easily find that the MPFT method has the best performance for all
measurements compared with the other four algorithms and SIFT has the worst performance.
This result is also consistent with the synthetic data experiments. For the SIFT algorithm, the non-linear
gray difference and changes in content between image pairs result in many mismatching points,
which reduces the registration accuracy. Compared to SIFT, the ms-SIFT algorithm improves the
overall match obtained by performing mode seeking to eliminate the outlying corresponding points.
However, its accuracy is also lower than that of MLFFT and MPFT. Among the phase correlation based
algorithms, the main advantage of MPFT is that it can reduce the error produced when calculating
the log-polar transform to the minimum compared to the other two algorithms, which significantly
improves the registration accuracy.

4.2.3.2. Register Scenes of Remote Sensing by Tiling

The data used for the experiment were one scene of a Landsat 8 panchromatic image with
a resolution of 15 m and one scene of a HJ-1 level 2 image with a resolution of 30 m. The main
applications of the HJ-1 satellite, launched by the National Disaster Reduction Center of China
(NDRCC) in 2008 are environmental monitoring and prediction, solid waste monitoring, and disaster
monitoring and prediction. They are shown in Figure 12. The premise of registration is that, after initial
geometric model correction, the deformation of the local region is displacement dominated, along with
small scale and rotation differences. The specific registration strategy used involved resampling the
Landsat 8 image to 30 m, dividing the HJ-1 image into many tiles (256× 256 pixes), and then roughly
locating corresponding tiles of the same size according to the projected coordinate information. The
centroids of each pair of tiles were regarded as the initial tie points. We applied the PPFT, MLFT,
and MPFT methods to estimate the similarity transform of each corresponding pair, and utilized the
acquired similarity transform to correct each pair of initial tie points to obtain the final control points.
In addition, a phase correlation-based method (called the PC method) was also applied to estimate
the displacement of each tile pair instead of the similarity transform. Lastly, a terrain-dependent
RPC model [49] fitted to all the final control points, combined with the random sampling consensus
algorithm (RANSAC), was utilized to correct the whole image. After rectification, fifty checkpoints,
distributed evenly in the image, were selected manually to validate the final registration accuracy in
terms of three measurements, ex, ey and e, the same as in the experiment where the similarity transform
was estimated directly Secstion 4.2.3.1. MAXx and MAXy denote the maximum absolute errors in the
x and y directions, respectively. The experimental report is given in Table 4.



Remote Sens. 2018, 10, 1719 21 of 26

(a) (b)

Figure 12. (a) is one scene of HJ-1, whose resolution is 30 m, (b) is one scene of the Landsat 8
panchromatic image with a resolution of 15 m. The images cover the area of Wuhan in China. The main
contents of the image are rivers, mountains and residential areas. The differences between images are
that some areas are covered by cloud, and some ground features are different. The reference image a is
divided into many tiles, as shown in the blue grid, and each small blue grid denotes a tile.

Table 4. Three average measurements ex, ey and e, for each algorithm (pixel).

Algorithm ex MAXx ey MAXy e

PC 1.3671 3.1459 0.5196 1.5505 1.4625
PPFT 1.2539 2.3720 0.4912 1.2318 1.3466

MLFFT 1.1997 2.2225 0.5187 1.8221 1.3071
MPFT 1.0850 2.1370 0.4385 1.4062 1.1703

ex and ey denote the root-mean-square errors (RMSE) in the x and y directions, respectively. e = (e2
x + e2

y)
1
2 .

MAXx and MAXy denote the maximum absolute errors in the x and y directions, respectively. The bold
numbers indicate the minimum value in each column.

The experimental results in Table 4 show that the PC method, which only estimates the
displacement of local tiles, has the worst performance compared to the other three methods that
estimate the displacement, small rotation, and scale. It is illustrated that the estimation of the slight
rotation and scale of local tiles can improve the final registration accuracy, especially in the case of high
estimation accuracy of scale and angle. In terms of e, MLFFT is slightly better than MPFT, but for ey,
the opposite is true. MPFT is better than all of the other methods in terms of ex, ey, and e. Although
the MAXy of MPFT is not the minimum and it ranks second, we can also conclude that it performs
best considering the minor difference between its value of MAXy and the minimum of MAXy.

5. Discussion

5.1. Analysis of the Parameter Settings

To construct a log-polar grid, three parameters are required: the number of radial lines M,
the number of points in each radial line N, and the log-base ρ0. In fact, it was found through
experiments that the parameters M and N do not produce intrinsic effects on the accuracy of the
estimation of angle and scale differences when they are greater than 128. In most cases, both M and
N were set to 128, which was enough to guarantee high accuracy. However, the log-base ρ0 affects
the success or failure of the estimation of large scale differences in practical applications. It is crucial
to use a proper value for the parameter log-base ρ0. Thus, another 16 image pairs consisting of GF-2
panchromatic images with a resolution of 0.81 m and ZY-02C multispectral images with a resolution of



Remote Sens. 2018, 10, 1719 22 of 26

10 m were used to test the effect of the value of log-base ρ0. Their scale difference reached 12. Here, the
determination of ρ0 was used to determine the minimum radius r0 in the log-polar grid. When the
number of points in a radial line is fixed, the log-base ρ0 can be calculated according to the minimum

radius value r0, namely ρ0 = ( π
r0
)

1
N . Note that due to the properties of the logarithm operation, the

minimum radius r0 is not set to zero. In this study, for synthetic and real images, the r0 was set to
0.015 and 0.021, respectively. However, for the image pairs with a scale difference of 12, when the r0 is
greater than 0.001, the phase correlation-based image registration does not estimate the scale difference
successfully. The phase correlation-based scale estimation only works when the r0 is less than 0.001. At
this time, it is noteworthy that the smaller r0 becomes, the larger ρ0 becomes, the lower the estimation
accuracy of the scale is, and the points in a radial line are clustered within a smaller radius. As for how
well r0 is set, this is also an open problem. However, a rough conclusion is drawn that the larger the
scale difference is, the greater ρ0 should gradually become .

5.2. Analysis of Performance

In the experiment Section 4, firstly, a qualitative experiment, the registration of three pairs of
images with scale, rotation, and similarity transform was carried out. The checkerboard view shows
that the alignment is well done, which illustrates the effectiveness of the proposed algorithm, MPFT.

Accurate calculation of the log-polar Fourier transform is critical for the estimation of the similarity
transform based on phase correlation. Compared to PPFT and MLFFT, MPFT can acquire the
most accurate log-polar Fourier transform. The average interpolation distance error experiment
was theoretically illustrated by a numerical experiment. MPFT was shown to always have the
minimum interpolation error for different log-polar grid sizes, with PPFT having the maximum
interpolation error.

To estimate the similarity transform for remote sensing images, both synthetic and real data
experiments were carried out. Compared to the competitive algorithms SIFT, ms-SIFT, PPFT, and
MLFFT, the performance of MPFT ranked first. Large non-linear gray differences, slight content
changes, and areas without salient features, result in many mismatching points or less matching points
of high quality when SIFT is used directly, which heavily lowers the performance of SIFT. ms-SIFT
improves the performance of SIFT by filtering out a large number of initial matches and retaining
a set of reliable correspondences with the help of mode-seeking. ms-sIFT also performs better than
PPFT, but is inferior to MPFT and MLFFT. For the three phase correlation-based algorithms, PPFT,
MLFFT and MPFT, MPFT has the best performance, and MLFFT performs better than PPFT. However,
in the case of angle estimation only, the polar Fourier transform is enough. MLFFT has the worst
performance compared to the other algorithms due to its poor ability to approximate the polar Fourier
transform, and MPFT performs better than the other algorithms due to its lack of interpolation error
in the calculation of the polar Fourier transform. The performance ranking difference of MLFFT and
MPFT in the similarity transform estimation and only angle estimation experiment further illustrates
that the calculation of the log-polar Fourier transform (or polar Fourier transform) greatly affects the
registration accuracy based on phase correlation, and MPFT can acquire the best accuracy of estimation
for the similarity transform.

At last, a pair of scenes in HJ-1 and Landsat 8 images were registered based on phase correlation.
Four algorithms, PC, PPFT, MLFFT and MPFT, were compared. The PC algorithm is a category in
itself because it only estimates the displacement of corresponding tiles and other three algorithms
estimate the similarity transform of corresponding tiles. In fact, the PC algorithm performed worse
than other three algorithms, which illustrates the importance of estimating the similarity transform
in remote sensing registration. In the comparison of the three algorithms that estimate the similarity
transform (PPFT, MLFFT, and MPFT), MPFT showed the highest accuracy in terms of the ex, ey and e
values of manually selected checkpoints. This also supports the idea that MPFT has a higher accuracy
of estimation of the similarity transform than the MLFFT and PPFT algorithms.
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5.3. Analysis of Efficiency

As for the efficiency of MPFT, due to the different implementation languages, the use of C++ for
the core source code of the feature-based algorithm and MATLAB code for the phase correlation-based
algorithms, and because the processing time of the feature-based algorithm varies with the image
content while that of the phase correlation-based algorithm is only dependent on the size of image,
we only compared the processing times of the three phase correlation-based algorithms: PPFT, MLFFT,
and MPFT. An in-depth analysis of the procedures of the three algorithms showed that their only
difference is in the calculation of the log-polar Fourier transform. So, only the computation time
of the log-polar Fourier transform for the three algorithms was compared. Two thousand pairs of
synthetic images, with different scaling, rotation and shift were utilized to compare the processing
times. These images had the same size of 256× 256 pixels. Each algorithm was run 2000 * 5 times and
the corresponding parameters were the same, as in the real experiment. The average processing times
of PPFT, MLFFT, and MPFT were 2.35 seconds, 3.48 seconds, and 6.17 seconds, respectively. Although
PPFT is faster than MLFFT and MPFT, its performance is the worst. Compared to MLFFT, MPFT has a
longer computation time due to the use of more “for loops” in its implementation. Considering its
distinguished performance, the efficiency difference is relatively small, and the gap can be further
narrowed by the usage of compiled programming language, such as C++ programming language.
Besides, due to the characteristics of the MPFT algorithm (as expressed in Formula 21), it is easy to
parallelize. In particular, with the explosive improvement in computing capability of CPU and GPU
today, its processing time can be further reduced and the efficiency can be further improved.

5.4. Analysis of Applicability and Limitations

The proposed algorithm, MPFT, which can estimate the similarity transform accurately,
is essentially a phase correlation-based displacement registration method. It utilizes the property
that the scale and angles of the Cartesian coordinates can be converted into the displacement of
the log-polar coordinates. When the geometric deformations between images are complex, a linear
relationship between the phase difference in the frequency domain and the displacement in the spatial
domain will become weak or will even no longer be valid. So, for MPFT, as long as the deformation
between images can be approximated by the similarity transform after coarse rectification, it can be
used to register them.

In our experiments, after pre-orthorectification using the RPC model and auxiliary DEM
data, the deformations of the corresponding small tiles tiled from the remote sensing scenes were
displacement dominant, along with small rotation and scale differences. So, the deformation between
these small tiles can be reasonably regarded as the similarity transform. The proposed method can
accurately estimate the similarity transform between tiles. After the correction of each pair of tiles,
their central points can be treated as a pair of control points. With the use of these generated control
points and a proper transform model, remote sensing scenes can be registered.

For other categories of images, the same is true. For example, for images with relief displacement,
the relief displacement can be corrected by the usage of a DEM and imaging model, and the deformation
of images can be reasonably approximated as a similarity transform. So, the MPFT can register them.
However, if the effect of the relief displacement is not reduced or eliminated due to the lack of
availability of an accurate DEM or imaging model, the geometric deformation between them cannot
be regarded as a similarity transform. In this case, the MPFT will fail to match them. For aerial images
or oblique images, the initial geometric deformation is more complex than a similarity transform;
if there is a possibility that after coarse rectification of images, the left deformation between them can
be regarded as a similarity transform, the MPFT can be used to register them.
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6. Conclusions

In this paper, a novel phase correlation-based algorithm, the Multilayer Polar Fourier Transform
(MPFT) was proposed, which is able to estimate the rotation and scale parameters between images more
accurately than the other two phase correlation-based algorithms, the Multilayer Fractional Fourier
Transform (MLFFT) and the Pseudo-polar Fourier Transform (PPFT), and the classical feature-based
algorithm, SIFT, and its variant, ms-SIFT. The image pairs for estimation can be multi-source remote
sensing images acquired at different times. It is possible for some images to suffer from non-linear
photometric change, occlusion by cloud, or a small amount of content change. MPFT inherits the high
accuracy of phase correlation-based image registration and extends itself to estimate the scale and angle
parameters accurately, which expands the scope of the application of the phase correlation method. In
the future, we will focus on the sensitivity of log-polar Fourier transform-based image registration.
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