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Abstract: Generally, the characterization of land surface roughness is obtained from the analysis of
height variations observed along transects (e.g., root mean square (RMS) height, correlation length,
and autocorrelation function). These surface roughness measurements are then used as inputs for
surface dynamics modeling, e.g., for soil erosion modeling, runoff estimation, and microwave remote
sensing scattering modeling and calibration. In the past, researchers have suggested various methods
for estimating roughness parameters based on ground measurements, e.g., using a pin profilometer,
but these methods require physical contact with the land and can be time-consuming to conduct.
The target of this research is to develop a technique for deriving surface roughness characteristics
from digital camera images by applying photogrammetric and geographical information systems
(GIS) analysis techniques. First, ground photos acquired by a digital camera in the field were used
to create a point cloud and 3D digital terrain model (DTM). Then, the DTM was imported to a GIS
environment to calculate the surface roughness parameter for each field site. The results of the
roughness derivation can be integrated with soil moisture for backscattering simulation, e.g., for
inversion modeling to retrieve the backscattering coefficient. The results show that the proposed
method has a high potential for retrieving surface roughness parameters in a time- and cost-efficient
manner. The selection of homogeneous fields and the increased spatial distribution of sites in the
study area will show a better result for microwave backscattering modeling.
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1. Introduction

Surface roughness plays a key role in microwave remote sensing backscattering and modeling
and is an important parameter for studies on soil moisture, soil erosion, and hydrological processes.
Microwave remote sensing images are commonly used for large-area soil moisture retrieval and
mapping from space, but despite much research, accurate soil moisture estimation is still challenging
due to the inherent dependency of the backscattered microwave radiation on both the geometric and
dielectric properties of the land surface [1-5]. The dielectric constant of natural surfaces (e.g., soil or
water) can be measured directly, but the land or water surface roughness conditions adversely affect
most remote measurements of this parameter closely related to soil water content [5-8]. Soil surface
roughness can be considered as a stochastic height variation of the soil surface towards a reference
surface. Generally, the characterization of surface roughness is obtained from the analysis of height
variations observed along transects, from which the RMS height, correlation length, and autocorrelation
function are commonly calculated as the input(s) to backscatter models [4,6,9]. Although in recent
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years some methods have been developed for inverting both soil moisture and soil surface roughness
separately using multi-temporal synthetic aperture radar (SAR) images and/or multi-frequency,
multi-polarized SAR data, their performance has mainly been evaluated at relatively small scales,
and their suitability for large-area operational usage is therefore uncertain [10-12].

Researchers have suggested several methods for estimating surface roughness parameters to allow
for the more accurate retrieval of dielectric properties. These methods can be divided into two groups:
those using instruments which make physical contact with the soil surface (i.e., contact instrument
methods), and those using instruments which do not make physical contact with the surface (i.e.,
noncontact instrument methods) [7]. The contact instrument group comprises, e.g., meshboards and
pin profilometers, while the noncontact group includes laser profilers, image photogrammetry, acoustic
backscatter, infrared, and ultrasonic techniques [10]. Meshboards and needle profilers are still the
most common instruments used for measuring soil surface roughness [11]. The main disadvantage
of pin profilers and meshboards is that they are contact instruments which may modify the surface
profile being measured. Because all these methods provide only 2D measurements, they are poorly
suitable for roughness characterization over agricultural soils, which often present some degree of
anisotropy due to tillage operations [10]. Because microwave scattering is the result of the interaction
of the incident electromagnetic wave with the soil surface, 3D measurements are preferable.

In recent years, various researchers have used laser profilers [13,14] or 3D photogrammetric
approaches [15,16]. The main downside of laser scanners with millimeter accuracy over extended areas
is their cost. Photogrammetry might be more affordable but has other limitations. Several authors
have related the first hurdle to a poor characterization of surface roughness over natural soils due to
the limited capabilities of current in situ roughness measurement methods. The parameterization of
soil surface roughness and its description in the available backscatter model are the main reason for
this insufficiency [10,17].

A number of studies have involved experimentation at fine scales for the retrieval of soil surface
roughness, but few have used photogrammetric approaches to computing the roughness index.
These studies using photogrammetric approaches have mainly utilized images from unmanned aerial
vehicle (UAV)-borne sensors, while only two studies we are aware of have utilized images from
hand-held cameras. [4,6,18]. Photogrammetry is a science of surveying and mapping measurements,
often from photographs [19]. In recent years, due to the widespread availability of cameras in
smartphone devices, as well as the possibility of acquiring very high spatial resolution aerial imagery
from drones, photogrammetric techniques have become an effective and cost-efficient method to easily
create the digital surface and 3D models [20,21]. This new camera technology can help researchers
to extend the usages of photogrammetry to study various environmental processes by studying and
modeling land surface change dynamics. In previous research, photogrammetric techniques have been
used for land surface modeling and characterization to derive micro-scale soil roughness. In most
recent approaches, researchers have tried to estimate soil moisture without roughness, input the other
environmental factors in backward modeling, and extract the roughness from a digital elevation
model (DEM), but this method is challenging due to various problems including the unavailability
of the environmental factors in the field, and it requires very precise measurements of in situ soil
moisture. Baghdadi et al. applied the inverse model using Sentinel-1 data to estimate the surface
roughness (Hrms) over agriculture fields, however the results showed the overestimation of roughness
parameterization [22]. On the other hand, for inverse backscatter modeling the accurate in situ soil
moisture is required, which is difficult and costly to obtain. Recently, working with cameras that are
not particularly designed for the requirements of photogrammetry has become common in close-range
applications [23-25]. However, we proposed to introduce this method to calculate the microwave
remote sensing surface roughness parameter.

The main goal of this research is to use and analyze common camera photos to derive the surface
roughness parameter for microwave remote sensing backscatter modeling in agricultural areas. In this



Remote Sens. 2018, 10, 1711 30f10

study, we measure and evaluate the parameterization of surface roughness in an agricultural field by
the acquisition of images from a hand-held camera to support the SAR soil moisture retrieval.

2. Material and Methodology

2.1. Image Acquisition and Processing

The proposed surface roughness measurement process consists of four main parts: (1) reference
area setup; (2) photographic image acquisition; (3) image processing with Agisoft Photoscan; and (4)
computation. The first step involves conducting fieldwork and collecting SAR data. In this study,
we used test plots containing 36 different agricultural plots toward the soil moisture retrieval in the
Garmsar region, northern Iran [7,9]. This manuscript will only present the image acquisition of the
agricultural field in the mechanized furrow of the harvested wheat field within the varied field types
of this study. For the photographic image acquisition step, a commercial camera (specifications in
Table 1) was used to take images of field plots approximately 3 x 2 m in size. Reference targets were
included in each plot to make multi-angle and scheme acquisitions of the same soil surface possible
and to allow for scaling the final generated 3D model to create the DEM.

Table 1. Specifications of the camera.

Parameter Values
Camera Canon EOS 550D
Lens Sigma 10-20 mm f/3.5 (set at 10 mm)
Sensor size (mm) 22.3 x 14.9
Image size (Mo) 6 (raw), 0.6 (compressed)
Resolution (pixels) 1728 x 1152
Focal length (mm) 16

Two sets of images were taken in each plot at a height of about 1 m, with a total of 50 images
taken to cover each plot. These images were used to capture small ground surface roughness features.
These features can be captured without detailed images of the soil and it is sampled over a reduced
surface area with close-range images; thus, we used the close range image to reduce the soil detailed.
For reaching the goal of this work, it should acquisition the photos in aligning the plot of study
which the photos must overlap by at least 30% although there are different scenarios for photography
(Figure 1).
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Figure 1. Acquisition scheme for the sampling of roughness measurements with a single reference
frame by photography capturing scenarios.

The third step, image processing with Agisoft PhotoScan, can perform countenance image
alignment without any further information, but the implementation of initial estimates of camera
positions is supported as well. Figure 2 shows the general workflow of the image processing chain
in Agisoft PhotoScan (Figure 2). The camera orientations are calculated by image matching with
common points, and the resulting digital terrain model (DTM) is defined based on the identified
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camera positions and the images [26]. The software can work with a minimum of two photos for 2D
surface mapping, while for 3D mapping at least 10 aligned photos with 30-60% overlap are required
(Figures 3 and 4). Consequently, we captured the more than 50 photos aligned in each plot in the
study area. Firstly, the image resolution was decreased from 2592 x 1728 pixels to 1728 x 1152 pixels,
and then a set of images was inputted and the corresponding point cloud was generated, which was
finally scaled using the reference points.

Image KML export
acquisition
Image Aligning Foint cloud Mesh Generating
management photos and 5| building and » building and » texture
and input to adjustment 4 editing 4 editi?\ 4 and create
Photoscan g DTM
Exporting to
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Figure 2. The processing chain of image processing toward DTM in Agisoft.

Figure 3. Acquisition of reference frames by photography capturing in the field.

It should be considered that for most DTM software, at least four ground control points (GCPs) are
required in each plot; otherwise, generating a DTM would be impossible. Thus, a total of four reference
points are spaced within each of the two imaged patches and used the four points marker in each plot
and used the camera’s GPS device for referencing of each photo in the Agisoft for preprocessing.

2.2. Soil Surface Roughness Parameterization

The last step of the methodology is to compute the soil surface roughness, which can be
characterized by a vertical and a horizontal component including root mean square (RMS) height
and correlation length. Most radar backscattering models account for surface roughness with three
parameters: RMS height, autocorrelation function, R, and correlation length [3-5,7,10]. The RMS
describes the random surface characteristics, while the correlation length and correlation function
describe the periodicity of the surface. In terms of the mean surface height (z) and the second moment
(z2), the rms height to quantify the vertical component is represented by:

1

rms = (z_z — 22) ? 1)
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where z is the surface height in cm, which can be calculated by two difference height of two DEM of
each plot. Then, the calculation of the rms height can be simplified to:

@

where s is the rms height in cm and Z is the height value in cm. Therefore, the Z; is computed by each
point cloud in profile and the Z is the average height of point clouds in each plot.

The horizontal roughness component is described by the autocorrelation length, 1. For an efficient
estimation of 1, a variogram analysis is used. The inversion of the autocorrelation function (ACF) from
a calculated theoretical directional variogram (y(hj)) where 1 is defined as the distance (h) at which the
ACEF falls below e~ 1 [3].

Additionally, the rms height parallel and perpendicular to the tillage direction could be calculated
separately to quantify the non-isotropic behavior of the sampled surface. The mean rms height parallel
to the tillage direction is then defined as:

x(y) ®)
While the average RMS height perpendicular to the tillage direction is defined as:
n Vi I(Zf<x>—zx )’
Sy(x)= = m — )

As a consequence, the ratio 5,(,) /5, () is a measure for the directionality of the surface roughness,
where for a value of 1 the surface is an absolute isotropic scatter.

As roughness is a function of wavelength, its appearance changes with different wavelengths.
Using lower frequencies, the illuminated target appears much smoother than at higher frequencies.
To compensate for this effect, the RMS Height has to be scaled to the actual wavelength using the
wavenumber, k, within the following equation:

ks=s x k=s x 2n/A (5)

where ks is the RMS height normalized to the wavenumber k and A is the wavelength (which at the
used L-band in the case of PALSAR data is 23.05 cm). As demonstrated by different authors, roughness
parameters often change with the length of the profile over which they are estimated [3,10].

A photogrammetric approach was chosen for measuring soil surface roughness due to its 3D
output and highly accurate estimates. Additional advantages for choosing a photogrammetric
approach are its efficiency with regard to a decoupled acquisition and analysis compared to similar
accurate acquisition setups.

3. Result and Discussion

This research mainly focused on categorizing soil roughness for developing microwave remote
sensing backscattering models in areas containing mechanized agricultural land cover. Hand-held
digital camera images were processed in Agisoft to create a 3D model and DEM (Figure 4a,b).
Four referenced points were used for calibration of the plot images for georeferencing and to calculate
the measurement errors, which are the difference in horizontal errors between x and y and comes from
the acquisition process shown in Table 2. The RMS error in the z-direction (RMSEZ) of the sample
plots is shown in Table 2. A high accuracy was observed in the generated DTMs compared to the
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reference frame in the result. The two examples of the generated DEM and 3D model are presented in
the agricultural field of soil surface roughness in Figures 4 and 5.

Table 2. Average error for the 3D position of four control points.

x (mm) y (mm) z (mm)

Point 1 0.247 0.101 —0.504

Point 2 —0.565 0.292 —0.392

Point 3 —0.536 0.341 —0.704

Point 4 0.589 0.442 —0.516

Mean error 0.070 0.240 —0.710
Mean RMSE 0.493 0.441 0.878

Figure 4 shows the exported DTM in tiff format, and Table 3 shows the characteristic of the
computed The DTM was imported in a GIS software and the “3D Analyst” toolbox was used to make
the profile stack and line features (Figure 5). This toolbox also allowed the computation of the height
of each point along a line transect by deciding the interval and making graph of the profile, which is
very useful for understanding the surface trend (Figure 5).

Agisoft-photoScan

(@) (b)
Figure 4. The perspective model of DTM in Agisoft (a) and the export DEM (b).

Table 3. Characteristics of DEM.

Parameter Stereo-Photogrammetric Setup (DEM)
Image acquisition height 1 m Sigma 10-20 mm f/3.5, set at 10 mm
Number of images 50
Image overlap 60-85%
Average point cloud density 10 points/cm?
DEM size 2x3m

DEM grid resolution 1 mm
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Figure 5. The original photograph (a) and DEM (b) with a profile line (2.5 m) horizontal profile in
ArcGIS 3D toolbox (c) surface height changes in the profile.

The graph showed along the ~2-m profile which has a different height between —17 to 17 mm.
By distinguishing the standard deviation of the RMS height of profiles in different plots, the soil surface
roughness could be categorized into three groups: <2.5 cm (smooth roughness) in disk tilling field;
2.5-4 cm (moderate roughness) in plowed and tillage field; and >4 cm (rough) soil surface of furrow
and mechanized cultivating field (Table 4).

Table 4. The classification of the roughness types in the test site with real ground photos.

Roughness Type RMS Height Ground Real Photo

Slightly rough (disk tillage) <25cm

Moderately rough (plowed field) 2.5-4 cm

Rough (furrow field) >4 cm
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Currently, new methods such as laser scanner and photogrammetry techniques can produce
DTMs with a maximum accuracy of a few millimeters. A higher accuracy can be expected from 3D
measurements because of the larger number of measurement points available in the photogrammetry
method. Although photogrammetry is becoming more accessible, special care needs to be taken
for the setup (camera calibration, accuracy of external orientation with radar beam direction) and
post-processing still requires knowledge of photogrammetry. That said, photogrammetry techniques
represent a potentially robust, systematic, and accessible method to measure surface roughness.

4. Conclusions

In this paper, we proposed a simple approach for the measurement of land surface roughness
using a hand-held digital camera and photogrammetry techniques. The derived surface roughness
measurements can be used to improve microwave remote sensing backscatter modeling. Most recently,
researchers have tried to use the inverse model for backscattering without parametrizing the surface
roughness, however this method requires soil moisture measurement in situ and is often not applicable
in the forward model because of the lack of in situ soil moisture data, and because it is very costly to
set up the soil moisture measurement network.

The accuracy of our approach was acceptable compared with direct field surveying techniques
(e.g., pin profile meter) for the purpose of supporting microwave remote sensing. Other new methods,
such as the independent roughness model, showed the overestimation of the roughness parameter,
and laser scanners still have thehurdle of being difficult to setup and very costly. This research only
focused on the perpendicular direction assessment of surface roughness in the furrowed agricultural
field, contrary to previous research which applied a multidimensional approach in microwave remote
sensing. We found that photogrammetric techniques using stereo imagery can successfully generate
the surface roughness in the agricultural land cover from smooth to rough surfaces. This method
provides a very economical approach to support microwave remote sensing applications, e.g.,
backscattering, and soil moisture measurement. The difficulties are the short focal range of the
handheld camera, which is a limitation for applying the methodology at larger scales than that of
field plots. The investigation of surface roughness depends on the size of the image and close or far
range of image acquisition; this means the scale of roughness index has a direct relationship, therefore
for the small scale of roughness from the close range of an image can work better than far range.
On the other hand, close range image acquisition can support only small plot areas and generate
limited sized DEMs. Future studies should consider the different range of image acquisitions over time.
Additionally, the anisotropy of images should be investigated because the backscattering characteristic
is dependent on the direction of surface roughness.

Finally, this research initially confirmed that one of the benefits of photogrammetry is that
common photographs can be utilized to recreate 3D DTMs for surface roughness measurements in a
cost-effective way compared with, e.g., the pin-profile meter, laser scanners, or other equipment which
have been used in the past for surface roughness microwave remote sensing.
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