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Abstract: Dynamics of surface water is of great significance to understand the impacts of global changes
and human activities on water resources. Remote sensing provides many advantages in monitoring
surface water; however, in large scale, the efficiency of traditional remote sensing methods is extremely
low because these methods consume a high amount of manpower, storage, and computing resources.
In this paper, we propose a new method for quickly determining what the annual maximal and minimal
surface water extent is. The maximal and minimal water extent in the year of 1990, 2000, 2010 and
2017 in the Middle Yangtze River Basin in China were calculated on the Google Earth Engine platform.
This approach takes full advantage of the data and computing advantages of the Google Earth Engine’s
cloud platform, processed 2343 scenes of Landsat images. Firstly, based on the estimated value of cloud
cover for each pixel, the high cloud covered pixels were removed to eliminate the cloud interference
and improve the calculation efficiency. Secondly, the annual greenest and wettest images were mosaiced
based on vegetation index and surface water index, then the minimum and maximum surface water
extents were obtained by the Random Forest Classification. Results showed that (1) the yearly minimal
surface water extents were 14,751.23 km2, 14,403.48 km2, 13,601.48 km2, and 15,697.42 km2, in the year of
1990, 2000, 2010, and 2017, respectively. (2) The yearly maximal surface water extents were 18,174.76 km2,
20,671.83 km2, 19,097.73 km2, and 18,235.95 km2, in the year of 1990, 2000, 2010, and 2017, respectively.
(3) The accuracies of surface water classification ranged from 86% to 93%. Additionally, the causes of
these changes were analyzed. The accuracy evaluation and comparison with other research results show
that this method is reliable, novel, and fast in terms of calculating the maximal and minimal surface water
extent. In addition, the proposed method can easily be implemented in other regions worldwide.

Keywords: surface water dynamics; landsat imagery; Google Earth Engine; Middle Yangtze
River Basin

1. Introduction

Water resources are critical in promoting sustainable development, as they support human
communities, maintain the functions of ecosystems, and ensure economic growth [1]. Surface water
is a key indicator of water resources. As a land cover type, it plays an important role in climate
regulation, biogeochemical cycling, and surface energy balance, among many others [2]. In recent

Remote Sens. 2018, 10, 1635; doi:10.3390/rs10101635 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-4737-0717
https://orcid.org/0000-0002-4548-899X
https://orcid.org/0000-0002-3521-9972
http://www.mdpi.com/2072-4292/10/10/1635?type=check_update&version=1
http://dx.doi.org/10.3390/rs10101635
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2018, 10, 1635 2 of 18

decades, many countries, especially developing countries, have experienced rapid urbanization [3].
Changes in surface water caused by human activities strongly affect surface temperature, soil moisture,
biological diversity, ecosystem functioning, and even human wellbeing [4–6]. Therefore, monitoring
the dynamics of surface water is of great importance for natural environmental health and sustainable
economic development [7].

Research in remote sensing of surface water started before 1970 [8,9]. Studies then emerged
in large numbers [10–15]. Around 2000, accompanied by the rapid development of remote sensing
satellites, several efficient water indexes were proposed to identify surface water coverage, such as the
Normalized Difference Water Index (NDWI) [16] and the modified Normalized Difference Water Index
(mNDWI) [17]. A variety of passive and active remote sensors with visible and microwave bands
have been used to estimate inundation area and delineate water boundaries [18], and such sensors
include Moderate Resolution Imaging Spectrometer (MODIS) [7,19], the Landsat Thematic Mapper
(TM) [2,6,11,20–25], Synthetic Aperture Radar (SAR) [15,26,27], SPOT [28,29], and IKONOS [30]. Up to
now, remote sensing has helped acquire valuable information by providing huge amounts of images
that cover the Earth’s surface over a period of 40 years [31]. However, traditionally, data acquisition and
storage, obscure file formats, and multitudes of geospatial data processing frameworks are significant
obstacles to take full advantage of these images, especially in large-scale and long-term applications [32].
Recently, a free cloud computing platform called the Google Earth Engine (GEE) [33] has been used to
store and process large volumes of remote sensing images. The GEE provides a programming and
graphic interface to a copy of remote sensing images, as well as the power of dedicated cloud storage
and computational hardware [34]. It has been used in large-scale applications, including mapping
vegetation cover [35–37], settlement and population [34,38], and the detection of boundaries of urban
areas [3]. The GEE also has advantages in terms of exploring the long-term dynamics of surface water
in large areas. Global seasonal and permanent surface water extent was calculated by recording the
months and years when water was present between 1984 and 2015, and the results are available in
the GEE platform, named as Joint Research Centre (JRC) Yearly Water Classification History (v1.0) [6].
Earth’s surface water change over the past 30 years was also analyzed through the Deltares Aqua
Monitor [39] with assistance from Google Earth Engine [40]. However, the automatic method for
a global scale lacks suitability for a regional scale. The diversity of regional features will lead to
inconsistency in the accuracy of the results. Related research about the dynamics of regional surface
water and analyses of their driving forces are rare.

The Yangtze River is the longest river in China and the third longest river in the world, it plays
a key role in the social and economic development of China [41]. The Middle Yangtze River Basin
(MYRB) is located in the middle of China. Appropriate climate and geographical conditions have
made the MYRB an important food production area in China. With “the Development Plan for the
City Cluster along the Middle Yangtze River Basin” proposed as a national strategy [42], the MYRB
will become an important economic growth pole for China. The MYRB contains a complex system of
surface water, including marshes, multiple river channels, and thousands of lakes [43]. Over the last
century, the environment in the MYRB has been changed a lot due to increased human activities [43].
The MYRB has a large population and rapid economic development, meanwhile frequent floods and
changeable hydrological conditions threaten the economy and ecology. Therefore, accurate and rapid
monitoring of the long-term dynamics of the surface water in the MYRB is important to the regional
economy and ecosystem [41].

Thus, the objectives of this study are (1) to propose a new method of quickly estimating annual
surface water, using the existing mature surface water index, (2) to apply the proposed method to the
variation in surface water in the MYRB from 1990 to 2017, based on the GEE platform, and (3) to analyze
the causes of surface water variation in the MYRB. The approach will provide a new perspective on
surface water research, and the results of this study will assist in the remote-sensing-based evaluation
of water resource distribution and dynamics. Furthermore, this study also facilitates the development
of appropriate water resource conservation and management strategies.
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2. Materials and Methods

2.1. Study Area

The MYRB is located in the center of the whole Yangtze River Basin (Figure 1a) and covers an
area of about 680,000 km2 [44]. It is composed of four sub-basins: the Hanjiang River Section (HjRS),
Middle Mainstream Section (MMS), Dongting Lake Section (DtLS), and the Poyang Lake Section
(PyLS) [45–47] (Figure 1b). The MYRB experiences a humid continental climate, with humid summers
and cold winters [48]. The altitude ranges from −146 to 3562 m, with an average value of 627 m
(Figure 1b) [49]. There are a number of lakes and reservoirs, including the two largest freshwater lakes
in China: Dongting Lake and Poyang Lake [46]. The region is rich in biodiversity with 11,770 km2

nature reserves [50], over 400 species of fish and over 7000 species of vegetation. The large population
and rapid economic development in the MYRB have led to drastic changes in surface water.
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Figure 1. An overview of the Middle Yangtze River Basin (MYRB): (a) the location of the MYRB in
China; (b) the topography and division of the study area.

The average annual precipitation and average temperature of the study area during 1980 to
2016 are shown in Figure 2. Raw data were downloaded from the National Meteorological Information
Center (http://data.cma.cn).

http://data.cma.cn


Remote Sens. 2018, 10, 1635 4 of 18
Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 19 

 

 
Figure 2. Average annual precipitation and average temperature changes in the MYRB. 

2.2. Data Preparation 

Surface water changed frequently within every year. To acquire more information about its 
extent, we used a dense time series of Landsat images of the study area. Landsat images with a spatial 
resolution of 30 m are suitable for monitoring regional land covers. Complete coverage of the study 
area is achieved with 55 tiles of Landsat Worldwide Reference System (WRS) paths/rows. In this 
study, a total of 2343 United States Geological Survey (USGS) Landsat calibrated top-of-atmosphere 
(TOA) reflectance, orthorectified images were acquired for the years of 1990, 2000, 2010, and 2017, 
respectively, and were available on the GEE as image collections. Detailed statistical information 
about the Landsat Thematic Mapper (TM), and Operational Land Imager (OLI) data used in this 
study is given in Table 1. 

Table 1. Properties of image collections selected for this study. 

Period Sensor Time Image Count 

1990 Landsat 4 TM 
Landsat 5 TM From 1 January 1990 to 31 December 1990 1 

297 
2000 Landsat 5 TM From 1 January 2000 to 31 December 2000 637 
2010 Landsat 5 TM From 1 January 2010 to 31 December 2010 592 

2017 Landsat 8 
(OLI) 

From 1 May 2016 to 30 April 2017 1 816 

1 For the data of Landsat 8, Operational Land Imager (OLI) data are only available before 30 April 
2017 on the Google Earth Engine (GEE). 

The spatial distribution of total observation counts in the year of 2010 in the study area is 
presented in Figure 3A. However, mean annual cloud frequencies of the study area over 2000–2014 
were between 56.49% and 89.81%, estimated through the Global 1-km Cloud Cover [51]. Such a high 
probability of cloud coverage has significant impacts on image interpretation. As a result, it is difficult 
to generate a wall-to-wall map of the study area. To get the utmost out of all the acquired images, the 
index “cloud score” was calculated for every pixel in every image by the built-in algorithm 

Figure 2. Average annual precipitation and average temperature changes in the MYRB.

2.2. Data Preparation

Surface water changed frequently within every year. To acquire more information about its extent,
we used a dense time series of Landsat images of the study area. Landsat images with a spatial
resolution of 30 m are suitable for monitoring regional land covers. Complete coverage of the study
area is achieved with 55 tiles of Landsat Worldwide Reference System (WRS) paths/rows. In this study,
a total of 2343 United States Geological Survey (USGS) Landsat calibrated top-of-atmosphere (TOA)
reflectance, orthorectified images were acquired for the years of 1990, 2000, 2010, and 2017, respectively,
and were available on the GEE as image collections. Detailed statistical information about the Landsat
Thematic Mapper (TM), and Operational Land Imager (OLI) data used in this study is given in Table 1.

Table 1. Properties of image collections selected for this study.

Period Sensor Time Image Count

1990 Landsat 4 TM
Landsat 5 TM From 1 January 1990 to 31 December 1990 1

297
2000 Landsat 5 TM From 1 January 2000 to 31 December 2000 637
2010 Landsat 5 TM From 1 January 2010 to 31 December 2010 592
2017 Landsat 8 (OLI) From 1 May 2016 to 30 April 2017 1 816

1 For the data of Landsat 8, Operational Land Imager (OLI) data are only available before 30 April 2017 on the
Google Earth Engine (GEE).

The spatial distribution of total observation counts in the year of 2010 in the study area is presented
in Figure 3A. However, mean annual cloud frequencies of the study area over 2000–2014 were between
56.49% and 89.81%, estimated through the Global 1-km Cloud Cover [51]. Such a high probability of
cloud coverage has significant impacts on image interpretation. As a result, it is difficult to generate a
wall-to-wall map of the study area. To get the utmost out of all the acquired images, the index “cloud
score” was calculated for every pixel in every image by the built-in algorithm “simpleCloudScore” of
the GEE platform [52]. The source code of the “simpleCloudScore” can be found at [53]. Pixels with a
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low cloud score index, called “good observation”, were then used. The “simpleCloudScore” algorithm
determines a cloud-likelihood score in the range [0, 100] by using a combination of the Normalized
Difference Snow Index (NDSI) and the brightness and temperature from the Landsat TOA reflectance
imagery [54]. The simpleCloudScore algorithm cannot be used as a robust cloud detector, and its main
purpose is to compare multiple appearances at the same point for relative cloud likelihood [54]. For this
study, a cloud score threshold of 20 was used based on the visual interpretation of Landsat images [55]
to give adequate performance at detecting clouds, and pixels with cloud scores less than 20 were
defined as “good observation”, and pixels showing a cloud score higher than 20 were masked out.
The GEE Javascript codes for processing the Landsat image collections are available as Supplementary
Materials. Pixels in good observation images account for 51.10% of all pixels in total observation
images at the study area in 2010. The spatial distribution of good observation counts in the year of
2010 in the study area is presented in Figure 3B.Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 19 
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in study periods: (A) total observation in 2017; (B) good observation in 2017; (C) total observation in
2010; (D) good observation in 2010.
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A stratified random sampling strategy was utilized to select reference samples. For the periods of
2000, 2010, and 2017, we collected reference data from high-resolution images available on Google
Earth. For the period of 1990, we selected samples from historic topographic maps available in the
library of Wuhan University. Because the focus of this study is the spatio-temporal dynamics of surface
water, the reference samples consisted of two categories (water and non-water) and four sub-categories
(water, vegetation, built-up and bare areas, and shadow). Detailed information of reference samples
is given in Table 2. Among these points, 70% of them were gathered as training samples during
classification. The remaining points were used to verify the accuracy of the classification results.

Table 2. Detail information of reference data.

Period Total Samples Surface Water
Non-Water

Vegetation Built-Up Area Shadow

1990 823 258 237 176 152
2000 835 221 316 165 133
2010 851 224 292 189 146
2017 915 245 266 201 203

2.3. Methodology

Since there is great variation in surface water within a given year, in order to obtain abundant
cover information about surface water, the minimal surface water and maximal surface water in each
period were extracted. In this study, the minimal surface water means permanent surface water, and the
maximal surface water means all the seasonal and permanent surface water. The yearly minimal
and maximal surface water were generated by creating the greenest and wettest pixel composite
images respectively for each period, the details are described in the following section. A flowchart
of extracting the surface water extent in this study is presented in Figure 4. It mainly consists of two
parts: (1) removing cloudy pixels with the index “cloud score”, then adding the Normalized Difference
Vegetation Index (NDVI), NDWI, and mNDWI into the bands of images, and removing obvious
non-water pixels by NDVI masking, and NDWI masking procedures, and (2) further extracting surface
water pixels, including image classification and manual noise removal. A detailed description of these
procedures will be provided in the following sub-sections.

2.3.1. Removing Obvious Non-Water Pixels by Normalized Difference Indexes

Three widely used vegetation indices—the NDVI [56], the NDWI [16], and mNDWI [17]—were
calculated for each imagery and added to the image collections, using Equations (1)–(3).

NDVI =
ρNIR − ρred
ρNIR + ρred

(1)

NDVI =
ρNIR − ρred
ρNIR + ρred

(2)

mNDWI =
ρgreen − ρSWIR

ρgreen + ρSWIR
(3)

where ρNIR, respects the values of near infrared band, ρred respects the values of red band, ρgreen

respects the values of green band, and ρSWIR respects the values of shortwave infrared band in the
Landsat Images.

The internal function “simpleCloudScore” implemented in the GEE was used for cloud masking,
as described in Section 2.2. The qualityMosaic method, embedded in the GEE, sets each pixel in
the composite based on which image in the collection has a maximum value for the specified band.
In this study, the NDVI band was selected to create a qualityMosaic image that was a composite of
the “greenest” pixels and called greenest image [57]. The greenest image depicted the greatest extent
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of vegetation observed in the studied periods with minimal surface water extent [58]. The NDWI
band was selected to create a qualityMosaic image which was composite of the “wettest” pixels and
called wettest image. The wettest image depicting the maximal possible surface water in the studied
periods. The greenest and wettest images of 2017 in the DtLS sub-basin were compared and are shown
in Figure 5.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 19 
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Figure 5. The greenest and wettest images in the Dongting Lake Section (DtLS) sub-basin in 2017.

Since the water pixels have relatively lower NDVI values and higher NDWI values, we can acquire
a preliminary surface water map by masking out all pixels that have higher NDVI values and lower
NDWI values. In this study, the threshold value of NDVI greater than or equal to 0.2 and NDWI less
than or equal to −0.3 were set to remove most non-water pixels, then improve the efficiency and accuracy
of the classification algorithm. The threshold was established through checking the effects of repeated
experiments with different values. In the GEE, the procedure was easily accomplished by the code
“updateMask(ndvi.lt(0.2) and (ndwi.gte(−0.3)))” (“ndvi” and “ndwi” are new bands added to the image
by the former step). Through this operation, pixels with obvious vegetation or non-water were removed.

However, it was found that the NDWI cannot efficiently suppress the signal from built-up
surfaces and shadows, and using the rule (NDVI >= 0.2 and NDWI <= −0.3) does not accurately
enable discriminating parts of built-up surfaces and shadows from water pixels [59,60], so the RF
classification model was used to obtain more accurate surface water coverage in the next step.

2.3.2. Further Extracting Surface Water Pixels by Random Forest (RF)

After masking with the NDVI and the NDWI, the rest of the imagery can be divided into three
classes: (1) surface water, (2) built-up areas, which also includes bare ground, roads, and building facilities,
and (3) shadows of mountains, buildings, and clouds. In order to further extract the surface water, the RF
model was chosen to execute classification. The RF model is an ensemble, nonparametric modeling
approach [38] that grows a “forest” of individual classification or regression trees and improves upon
bagging [61] by using the best of a random selection of predictors at each node in each tree [62,63].

In the random forest model, the number of classification trees and the number of features at
each node for spilling are vital to the results [64]. RF classifiers with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20,
25, and 30 classification trees were applied, and the optimal item was chosen based on the overall
accuracy and Kappa accuracy. The overall accuracy implies the overall degree of agreement in the
error matrix [65]. The Kappa coefficient expresses how much better the classification is compared
with a random classification [66]. As shown in Figure 6, 20 is the optimal number of classification
trees in our experiment, for classification result gains a slight improvement in performance when the
number is set above 20. Moreover, it has been suggested in previous works that the number of features
of classification trees should be the square root of the total number of features [67,68]. In this study,
the three calculated normalized difference indices, combined with the original spectral bands, were
used to improve confidence [69]. Hence, we set the number of features as 4.



Remote Sens. 2018, 10, 1635 9 of 18

Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 19 

 

 
Figure 6. Impacts of different numbers of trees in the Random Forest (RF) based on the overall 
accuracy and Kappa accuracy. 

To promote the visual interpretation, a false color composite of the TM Bands 7 (swir2), 5 (swir1), 
and 3 (green) and a composite of OLI Bands 7 (swir2), 6 (swir1), and 4 (green) were generated. The 
best band color combination for detecting surface water was dark blue. 

In order to reduce noise in the classification result, we applied manual noise removal as 
implemented in ESRI ArcMap [70] in post-processing. Trivial cells with an area of less than 5400 m2 
were removed manually to improve the homogeneity of the classified raster. 

Based on the masked with cloud score, the NDVI and the NDWI, the quality mosaicked with the 
NDVI or the NDWI, the RF classification, and the manual correction, yearly minimal and maximal 
surface water coverages were extracted for 1990, 2000, 2010, and 2017. 

3. Results 

3.1. Accuracy Assessment 

Considering that the minimal and maximal surface water was extracted by the same method 
and original image collections, we assumed that classification accuracies of these two maps are 
similar. Additionally, the 3424 validation samples described in Table 2 were all selected from 
permanent water surface. Therefore, in this study, only the accuracies of minimal surface water were 
validated. As shown in Table 3, error matrixes of the classification results in 1990, 2000, 2010, and 
2017 were calculated, respectively. The surface water maps in these periods all had high accuracies 
with overall accuracies of 86–93%, specifically, 86% in 1990, 88% in 2000, 90% in 2010 and 93% in 2017. 
The surface water category had producer accuracies over 84% and user accuracies over 86%. Errors 
were mainly caused by misclassification of water surfaces with shadows. The results of the accuracy 
assessment show that surface water extraction results are consistent with the ground truth. 
  

Figure 6. Impacts of different numbers of trees in the Random Forest (RF) based on the overall accuracy
and Kappa accuracy.

To promote the visual interpretation, a false color composite of the TM Bands 7 (swir2), 5 (swir1),
and 3 (green) and a composite of OLI Bands 7 (swir2), 6 (swir1), and 4 (green) were generated. The best
band color combination for detecting surface water was dark blue.

In order to reduce noise in the classification result, we applied manual noise removal as
implemented in ESRI ArcMap [70] in post-processing. Trivial cells with an area of less than 5400 m2

were removed manually to improve the homogeneity of the classified raster.
Based on the masked with cloud score, the NDVI and the NDWI, the quality mosaicked with the

NDVI or the NDWI, the RF classification, and the manual correction, yearly minimal and maximal
surface water coverages were extracted for 1990, 2000, 2010, and 2017.

3. Results

3.1. Accuracy Assessment

Considering that the minimal and maximal surface water was extracted by the same method and
original image collections, we assumed that classification accuracies of these two maps are similar.
Additionally, the 3424 validation samples described in Table 2 were all selected from permanent
water surface. Therefore, in this study, only the accuracies of minimal surface water were validated.
As shown in Table 3, error matrixes of the classification results in 1990, 2000, 2010, and 2017 were
calculated, respectively. The surface water maps in these periods all had high accuracies with overall
accuracies of 86–93%, specifically, 86% in 1990, 88% in 2000, 90% in 2010 and 93% in 2017. The surface
water category had producer accuracies over 84% and user accuracies over 86%. Errors were mainly
caused by misclassification of water surfaces with shadows. The results of the accuracy assessment
show that surface water extraction results are consistent with the ground truth.



Remote Sens. 2018, 10, 1635 10 of 18

Table 3. Results of error matrixes of land cover in 1990, 2000, 2010, and 2017. The value after the
symbol “±” represents the margin of error with confidence level 95%.

Period Accuracy Surface Water Vegetation Built-Up Area Shadow

1990
User’s 0.89 ± 0.0002 0.92 ± 0.005 0.90 ± 0.003 0.85 ± 0.003

Producer’s 0.84 ± 0.001 0.87 ± 0.002 0.84 ± 0.0 04 0.80 ± 0.007
Overall 0.86 ± 0.001

2000
User’s 0.86 ± 0.003 0.92 ± 0.004 0.86 ± 0.003 0.82 ± 0.002

Producer’s 0.89 ± 0.001 0.84 ± 0.005 0.94 ± 0.004 0.81 ± 0.005
Overall 0.88 ± 0.003

2010
User’s 0.93 ± 0.001 0.90 ± 0.003 0.93 ± 0.0002 0.86 ± 0.006

Producer’s 0.88 ± 0.001 0.82 ± 0.0008 0.89 ± 0.002 0.82 ± 0.0004
Overall 0.90 ± 0.004

2017
User’s 0.95 ± 0.001 0.93 ± 0.002 0.95 ± 0.004 0.90 ± 0.003

Producer’s 0.91 ± 0.005 0.87 ± 0.008 0.91 ± 0.001 0.85 ± 0.007
Overall 0.93 ± 0.001

Notes: the best classification results were marked with bold font, and the worst classification results were marked
with italic font.

3.2. Area and Distrubution of Surface Water in the MYRB from 1990 to 2017

The study region encompasses over 680,000 km2 divided into two categories: surface water
and non-water. The minimal and maximal surface water extents for each of the studied years are
given in Figures 7 and 8. The yearly minimal surface water extents in 1990, 2000, 2010, and 2017 are
14,751.23 km2, 14,403.48 km2, 13,601.48 km2 and 15,697.42 km2, respectively. Over the same time
period, the yearly maximal surface water extents are 18,174.76 km2, 20,671.83 km2, 19,097.73 km2

and 18,235.95 km2, respectively. The total areas of the small surface water and large surface water,
whose areas larger than 50 km2 in the MYRB, are tabulated in Table 4 for each of the studied periods.
There was a surge in yearly maximal surface water extent between 1990 and 2000, which may be due
to the catastrophic floods of the Yangtze River in 1998.
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Table 4. Areas and change rates of large surface water and others of minimal and maximal surface
water extent in the study periods.

Period
Minimal Surface Water Maximal Surface Water

Large Surface Water Small Surface Water Large Surface Water Small Surface Water

Area (km2) Change Rate (%) Area (km2) Change Rate (%) Area (km2) Change Rate (%) Area (km2) Change Rate (%)

1990 6869.90 - 7881.33 - 8630.48 - 9544.28 -
2000 6944.94 1.09 7458.54 −5.36 10263.01 18.92 10408.82 9.06
2010 6752.51 −2.77 6848.97 −8.17 8595.81 −16.24 10501.92 0.89
2017 9328.19 38.14 6369.23 −7.00 12284.79 42.92 5951.16 −43.33

In order to quantify specific areal extents of surface water in the four sub-basins of the MYRB.
Areas of surface water in these sub-basins were calculated in the study periods, shown as Table 5 and
Figure 9.

Table 5. Minimal and Maximum Surface water extent in the four sub-basins of the MYRB in the
study periods.

Period
Minimal (km2) Maximal (km2)

HjRS MMS DtLS PyLS HjRS MMS DtLS PyLS

1990 2460.83 3905.78 3977.60 4653.30 3480.74 5529.63 4416.59 4747.23
2000 2361.32 3864.66 3819.39 4618.39 3622.48 5683.64 5521.68 5842.19
2010 2293.17 3408.31 3551.97 4357.58 3092.42 5352.60 5168.93 5483.36
2017 2170.22 4768.98 4204.66 3906.24 2519.38 5217.12 5141.00 5357.59
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Figure 9. Dynamics of surface water extents in four sub-basins based on minimal and maximal extent.
(A) Areal changes in minimal surface water extent in all four sub-basins. (B) Area changes in maximal
surface water extent in all four sub-basins.



Remote Sens. 2018, 10, 1635 13 of 18

4. Discussion

4.1. Comparison with JRC Yearly Water Classification History

In this section, our surface water results were compared with the JRC Yearly Water Classification
History (v1.0) [6]. The JRC Yearly Water Classification History (v1.0) dataset contains maps of the
location and temporal distribution of surface water from 1984 to 2015. The dataset was generated
using 3,066,102 scenes from Landsat 5, 7, and 8 acquired between 16 March 1984 and 10 October 2015.
Each pixel was individually classified into water/non-water using an expert system. By means of
classification of the seasonality of water throughout the year, surface water was divided into seasonal
surface water and permanent surface water. Our yearly minimal and maximal surface water was
compared with the permanent surface water and total surface water (seasonal surface water and
permanent surface water) of JRC results, respectively. Two typical regions from two sub-basins (MMS
and DtLS) were selected to demonstrate the similarities and differences between our results and JRC
Global Surface Water, shown as Figure 10. In these figures, it can be seen that the contours and shapes
of the surface water obtained by the two methods are comparable. JRC Global Surface Water defined
seasonal and permanent surface water by the appearance of surface water in each month through
processing every image, and the results are comprehensive. However, the method proposed in this
paper is simpler and faster, and the seasonal surface water can be obtained by subtracting the minimum
surface water from the maximum surface water.
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Figure 10. Comparisons between our results and Joint Research Centre (JRC) Yearly Water
Classification History (Minimum represents minimal surface water, Maximum represents maximal
surface water, JRC_PW represents permanent surface water of the JRC Yearly Water Classification
History, and JRC_All represents the sum of the annual seasonal surface water and permanent surface
water.). (A) Two results in the typical area of the Middle Mainstream Section (MMS) in 2000. (B) Two
results in the typical area of the MMS in 2010. (C) Two results in the typical area of the Dongting Lake
Section (DtLS) in 2000. (D) Two results in the typical area of the DtLS in 2010.

4.2. Surface Water Changes Influenced by Natural and Human Factors

The yearly surface water extent in the MYRB fluctuated over the past 27 years, influenced by both
natural and human factors. The maximal annual precipitation occurred in 1998 and 2010 (shown in
Figure 2), which is consistent with the maximal surface water in 2000 and 2010. Particularly, the yearly
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maximal surface water extent of the MYRB had dramatically changed between 1990 and 2000 because
of the catastrophic floods in 1998. The dynamics of yearly maximal surface water extent in the four
sub-basins were similar to the overall situation of the MYRB. Nevertheless, as the annual permanent
water, minimal surface water mainly reflects the surface water conditions of lakes, reservoirs, and rivers,
and was less affected by the annual precipitation. On the aspect of human activities, both the population
and Gross Domestic Product (GDP) in the MYRB increased rapidly in recent decades. Especially the
GDP has grown sharply since the late 1990s [71], accompanying with urbanization and industrial
production, resulting in that part of the seasonal surface water has become the built-up areas [72].
However, the large water bodies of yearly minimal and maximal surface water extent clearly changed
by 38.14% and 42.92%, respectively, during 2010–2017, mainly due to China’s increasing emphasis
on environmental protection and water conservation, especially the protection of key lakes and
reservoirs. Meanwhile, relatively small water bodies disappeared over the course of urbanization,
keeping the balance of the overall surface water extent. The yearly minimal surface water extent of
HjRS (2460.83 km2 in 1990, 2361.32 km2 in 2000, 2293.17 km2 in 2010 and 2170.22 km2 in 2017) and
PyLS (4653.30 km2 in 1990, 4618.39 km2 in 2000, 4357.58 km2 in 2010 and 3906.24 km2 in 2017) showed
continuous changes, but the yearly minimal surface water extent of MMS and DtLS changed from
3408.31 km2 to 4768.98 km2 and from 3551.97 km2 to 4204.66 km2 respectively in 2010–2017 (shown
in Table 5 and Figure 9A), these diversities were partially owing to the activities for water resource
conservation directed by the local governments.

4.3. Advantages and Limitations of Using GEE

For this work, the GEE provided a robust platform and processing environment, providing
free accessibility to a series of Landsat image data and to the rapid assessment of surface water
dynamics in the MYRB. The GEE platform is designed to allow petabyte-scale data processing,
analysis, and visualization [38]. The GEE contains more than 200 common datasets, more than
5 million images, including the Landsat scenes, MODIS collections, Sentinel-2 images, and many other
remote-sensing images and vector-based datasets. It also provides an integrated environment including
cloud-computing and classical algorithms. Compared with traditional image processing tools, such as
ENVI, the GEE can process massive images quickly and in batches. In addition, its processing power
is constructed based on Google Cloud, not subject to time and place. Scientists can share data and
codes via URLs based on the GEE’s convenient mechanism. The platform serves as a uniform access
interface to a variety of data types, free from image bands, projection, resolution, or bit-depth, making
multi-sensor analysis feasible [38].

However, there are a few limitations to using the GEE to monitor land cover. First, if further
analysis is required, it is time-consuming to download large-scale classification results, since the
pixel-based map contains a high amount of small patches that increase the data volume. Second, there
is a lack of entire control of the GEE platform, and the raw images are on line, not in-house.
Programs conducted by government agencies may be apprehensive about the accessibility in further
research. In addition, the algorithm provided by GEE is not fully explained in some cases.

5. Conclusions

In this paper, a method of extracting yearly minimal and maximal surface water based on the GEE
was proposed, which utilized the algorithm of estimating cloud cover for pixels, images mosaicing
based on feature index and random forest classification. And a comparison with existing datasets
was present. Using the GEE and Landsat images, temporal changes in the extent of surface water in
the Middle Yangtze River Basin were identified through obtaining the minimal and maximal surface
water extent in the year of 1990, 2000, 2010 and 2017. Specifically, the areal extent of the surface water
in the MYRB showed that yearly minimal surface water had changed to 14,403.48 km2 in 2000 from
14,751.23 km2 in 1990, and then changed to 13,601.48 km2 in 2010 and changed to 15,697.42 km2 in
2017. Yearly maximal surface water areas had changed from 18,174.76 km2 to 20,671.83 km2 first,
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then consecutively changed to 19,097.73 km2 and 18,235.95 km2. The surface water dynamics in
the four sub-basins of the MYRB and natural and human factors resulting in these changes were
further discussed. The result of this study enhances an understanding of the implications of surface
water variations in the developing countries and offers a critical reference for future monitoring and
restoration efforts to utilize water resources in the MYRB.

In the proposed method, the pixels with values exceeding certain thresholds of cloud Score,
NDVI and NDWI were removed, eliminating a large number of obvious non-water pixels quickly, thus
improved the efficiency of the subsequent classification, but also brought some uncertainty, for example
water pixels under the cloud may be directly removed.

Although the GEE has gradually become a platform for large-scale remote sensing research,
its potential has not been fully explored. This study presents a quick and feasible method for detecting
yearly minimal and maximal surface water extents using the GEE. The methodology, combined with the
resources available through the GEE, can be easily extended to other domains with similar problems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/10/1635/s1,
Text S1: Code of water extraction.
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