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Abstract: Spectral-based vegetation indices (VI) have been shown to be good proxies of grapevine
stem water potential (Ψstem), assisting in irrigation decision-making for commercial vineyards.
However, VI-Ψstem correlations are mostly reported at the leaf or canopy scales, using proximal
canopy-based sensors or very-high-spatial resolution images derived from sensors mounted on small
airplanes or drones. Here, for the first time, we take advantage of high-spatial resolution (3-m)
near-daily images acquired from Planet’s nano-satellite constellation to derive VI-Ψstem correlations
at the vineyard scale. Weekly Ψstem was measured along the growing season of 2017 in six vines
each in 81 commercial vineyards and in 60 pairs of grapevines in a 2.4 ha experimental vineyard in
Israel. The Clip application programming interface (API), provided by Planet, and the Google Earth
Engine platform were used to derive spatially continuous time series of four VIs—GNDVI, NDVI,
EVI and SAVI—in the 82 vineyards. Results show that per-week multivariable linear models using
variables extracted from VI time series successfully tracked spatial variations in Ψstem across the
experimental vineyard (Pearson’s-r = 0.45–0.84; N = 60). A simple linear regression model enabled
monitoring seasonal changes in Ψstem along the growing season in the vineyard (r = 0.80–0.82). Planet
VIs and seasonal Ψstem data from the 82 vineyards were used to derive a ‘global’ model for in-season
monitoring of Ψstem at the vineyard-level (r = 0.78; RMSE = 18.5%; N = 970). The ‘global’ model,
which requires only a few VI variables extracted from Planet images, may be used for real-time
weekly assessment of Ψstem in Mediterranean vineyards, substantially improving the efficiency of
conventional in-field monitoring efforts.

Keywords: Google Earth Engine; grapevine; irrigation; Planet; time series; stem water potential;
VI; vineyard

1. Introduction

Deficit irrigation is a commonly used irrigation strategy in vineyards aiming to achieve
high-quality berries for premium wine production [1]. However, to optimize grape quality and
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production deficit, irrigation should be properly controlled. Proper irrigation management is also
compulsory to achieve uniform quality of berries across the vineyard area. An effective method to
guide irrigation management of wine grapes is continuous spatial (across the vineyard) and temporal
(along the season) monitoring of grapevine water status [2]. Water status is typically quantified by
measuring vine stem water potential (Ψstem), which provides an indication of the impact of soil water
content on grapevine water status [3]. To achieve an accurate picture of the water status variability
across the entire vineyard area, continuous Ψstem measurements are required from as many vines as
possible. This task requires substantial human resources, making it time consuming.

Emerging precision agriculture tools such as proximal and remote sensing offer possible
replacement, or at least support, of conventional in-field monitoring techniques [4,5]. Proximal
and remote sensing tools may be used to provide the required information for irrigation management
control [6], as well as to allow spatial consideration of irrigation needs across the crop field [7]. Remote
and proximal sensing have been used for monitoring vegetation dynamics [8] and processes including
water status [9–11], plant nutrient content [12,13], plant diseases [14,15] and crop phenotyping [16].
The information received from sensors mounted on drones or small airplanes can be applied to develop
site-specific irrigation and other management decisions [17]. Thermal sensors mounted on airplanes
or drones may provide information on plant water status through the use of the crop water stress
index [18–20]. Crop water stress index (CWSI), which is based on crop canopy temperature [21], has
been recognized as a reliable index for monitoring in-field water status variability within a vineyard
area [22–25]. CWSI has been shown to correlate with Ψstem, though typically displaying different
correlations for different dates along the season [26,27].

Another approach is to use vegetation indices (VIs) derived from spectral bands as proxies
for water status parameters and/or yield production. For example, Espinoza et al. [28], found that
the normalized difference vegetation index (NDVI) and the green normalized difference vegetation
index (GNDVI) derived from very-high-spatial resolution images (2.6 cm) were both correlated with
pre-harvest leaf stomatal conductance (gs; r = 0.56 and 0.65, respectively) and yield production
(r = 0.68 and 0.73, respectively) in a cabernet sauvignon vineyard near Benton City, Washington.
Baluja et al. [22] found strong correlations of spectral-based vegetation indices such as, GNDVI,
NDVI and the modified simple ratio (MSR) with gs (r = 0.84, 0.87 and 0.88, respectively) and Ψstem

(r = 0.76, 0.82 and 0.81, respectively) using images acquired from an unmanned aerial vehicle in a
commercial rain-fed tempranillo vineyard in Spain. Their results imply that VIs can serve as good
water stress indicators in vineyards when using very-high-spatial resolution images (10 cm) that
allow the extraction of pure canopy pixels. As expected, they also found high correlations of thermal
data with gs and Ψstem; however, the correlation changed along the season [22], meaning that a
per-date calibration should be derived in order to provide recommendations for irrigation scheduling
throughout the season.

Zarco-Tejada et al. [29] proposed a normalized photochemical reflectance index (PRInorm) using a
combination of the re-normalized difference vegetation index (RDVI), which is sensitive to canopy
structure, and a red edge index, sensitive to chlorophyll content (R700/R670), to detect xanthophyll
pigment changes and normalize for leaf area and chlorophyll content level reduction induced by water
stress. They found that PRInorm was highly correlated with midday gs (r = 0.89) and leaf water potential
(ΨLeaf; r = 0.88) in an experimental pinot noir vineyard in California. Lower correlations were also
obtained with original PRI (r = 0.72 and 0.7, respectively) and NDVI (r = 0.57 and 0.62, respectively) [29].
Using leaf-level spectroradiometer measurements, Rodríguez et al. [30] and Maimaitiyiming et al. [31]
showed that water status parameters such as equivalent water thickness (EWT), ΨLeaf, Ψstem and gs

can be derived from spectral-based VIs in vineyards.
Though promising, most of these studies (including some not mentioned here) are conducted

at the leaf-level or make use of sensors mounted on small airplanes or drones, offering a limited
monitoring technique in terms of coverage area. The financial cost of ground or aerial sensing can
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hardly allow their application on a daily basis. Also, historically, the satellite spatial and/or temporal
resolution has been too coarse for in-field water status monitoring [32].

A constellation of nano-satellites (using a large number of small compact satellites at the same
time) was recently suggested to overcome this spatio-temporal limitation [33]. Planet [34] is an example
of such a company operating a large number of CubeSat 3U form (10 × 10 × 30 cm) nano-satellites,
providing daily images with 4 wavebands (RGB + NIR) at a high spatial resolution of 3 m since
early 2016.

In this study, we make use of the high spatio-temporal resolution images provided by Planet to
compare four different VIs with midday Ψstem measured weekly along the growing season of 2017 in
81 commercial vineyards and in one experimental vineyard (Mevo Beitar) in Israel. We examine the
use of simple regression and multivariable linear models, with several VI-based metrics extracted from
the VI time series, to predict spatio-temporal variability in Ψstem along the growing season. The main
goal is to provide a high-resolution satellite remote sensing tool to support real-time deficit irrigation
management in high-quality commercial vineyards.

2. Materials and Methods

2.1. The Study Region

Our study was undertaken over 81 commercial vineyards and one experimental vineyard in Israel
during the 2017 growing season. The study targeted three regions, Judea, Upper Galilee, and Golan
Heights, located in hilly areas in the central and northern parts of Israel (approximately 110 km apart;
Figure 1a) in which grapevines are grown in small commercial vineyards for premium high-quality
wine production. All of the vineyards were subjected to a Mediterranean climate, characterized by
rainfall limited to the mild winter months and hot dry summers.

Figure 1. (a) Location of the three regions with the 82 vineyards used in this study shown on a Google
Earth map, and (b) aerial photograph of the experimental vineyard at Mevo Beitar in the Judea region
(location marked with a red star in (a). The 60 plots at Mevo Beitar vineyard in which stem water
potential (Ψstem) was measured in two grapevines per-plot along the 2017 growing season is shown
in (b).

In the Golan Heights region, vineyards typically consisted of cabernet sauvignon (32%), merlot
(16%) and other red and white species (Table A1). Located at elevations of 600–1120 m above sea level
(m.a.s.l.), these vineyards receive a mean annual rainfall amount of c. 800 mm y−1. The minimum and
maximum mean air temperatures in this region during 2017 were −5.6 ◦C and 34.3 ◦C for January and
August, respectively.
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In the Upper Galilee, vineyards consisted of cabernet sauvignon (22%), chardonnay (17%) and
other red and white species (Table A1), which were grown at elevations of 710–830 m.a.s.l. The mean
annual rainfall amount in the Upper Galilee region is 670 mm y−1, with minimum and maximum
mean air temperatures of −0.6 ◦C and 33.8 ◦C for January and August 2017, respectively.

In the Judea region, vineyards mainly consisted of merlot (40%), cabernet sauvignon (22%) and
other red species (Table A1). Vineyards are typically located at elevation of 600–740 m.a.s.l., receiving a
mean annual rainfall amount of c. 535 mm y−1. Minimum and maximum mean air temperatures in
this region were 2 ◦C and 38.2 ◦C for January and August 2017, respectively.

2.2. Characteristics of the Vineyards and Irrigation Strategy

Vine spacing in the 82 vineyards was at most 1.5 m × 3 m. Soils are quite homogenous in the
Golan vineyards, consisting mainly of brown alluvial soils in the northern vineyards and peat soils in
the southern vineyards. In Galilee and Judea vineyards, soils are much more heterogeneous, consisting
mainly of basaltic and brown terra rossa soils.

The Mevo Beitar experimental vineyard, located within the Judea region (31◦43′ N; 35◦06′ E;
red star in Figure 1a), covers a total area of 2.4 hectares. The average elevation of the vineyard
area is 700 m.a.s.l. Grapevines (Vitis vinifera L. cv. Cabernet Sauvignon) were planted in 2011 in
a northwest-to-southeast direction with a vine and row spacing of 1.5 m and 3.0 m, respectively
(Figure 1b). The height of the canopy typically varies between 2.0 m and 2.5 m.

Irrigation in the 82 vineyards was through a surface drip irrigation system using unilateral
cordons trained to vertical shoot positioning (VSP) on a 2-m-high two-wire trellis system. The irrigation
control unit was set manually to be as close as possible to the agricultural standard practice [2,35].
The irrigation strategy used in the vineyards is of deficit irrigation based on ETo (reference
evapotranspiration) information provided by the Israel Meteorological Service (IMS) from a nearest
IMS station to the vineyard. In practice, irrigation was applied approximately once a week, with a
daily amount that ranged between 0.8 and 1.43 mm per day in Mevo Beitar. Deficit irrigation started
on DOY 131 (DI start; Figure 2) and was applied throughout the season until EOS. DI ranged along the
season between 14% and 25% of the vine evapotranspiration (ETc) [2], while ETc was calculated from a
modified leaf area index to crop coefficient ratio for vines [36,37].

Figure 2. Daily time series of the four vegetation indices and weekly measured midday stem water
potential (Ψstem) along the grapevine growing season at Mevo Beitar (VIs are averaged values over all
pixels within the vineyard area). Important phenological stages are shown (Pre—the pre-season period
when vines are leafless and understory vegetation is absent or dry; SOS—start of season, coincident
with budburst stage; POS—peak of season, corresponding to full bloom stage; EOS—end of season,
the harvest stage). DI start is the date when deficit irrigation started (DOY 131). Horizontal grey bar
indicates the period of expansive presence of understory weeds and grasses in the vineyard.
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Other specific characteristics of the 81 commercial vineyards are summarized in Table A1.

2.3. Measurements of Midday Stem Water Potential in Vineyards

Measurements of Ψstem were conducted periodically by a team of agronomists hired by the
growers, approximately once a week in six grapevines per vineyard in each of the 81 commercial
vineyards throughout the 2017 growing season. Ψstem was measured prior to irrigation at solar noon
(from 12:00 to 14:30), using a portable pressure chamber (model Arimad 2, Kfar Charuv, Israel and
Arimad 3000, MRC, Hulon, Israel) according to the procedures described in [38]. Six sunlit, mature,
fully expanded leaves from each vineyard were double bagged (plastic bags covered with aluminum
foil) 1.5 h prior to measurement. The leaves were disconnected from the vines by sharp cutting of the
leaf petiole and quickly placed in the pressure chamber. The time elapsing between leaf excision and
chamber pressurization was less than 25 s. The six grapevines were selected by visual observation as
representative of the entire vineyard.

At the experimental vineyard in Mevo Beitar (Figure 1a, Figure A1), we measured Ψstem in 60
plots (c. 5 m2 each) approximately every week during the 2017 growing season in order to monitor
the spatial variability in Ψstem across the vineyard area. Each plot contained two grapevines (total
N = 120 vines), from which 4 leaves were taken for Ψstem measurements. The Ψstem measurements in
Mevo Beitar were conducted using a portable pressure chamber (Arimad 3000, MRC, Hulon, Israel), as
described above.

2.4. Vegetation Indices

We used four VIs in this study: the enhanced vegetation index (EVI), the soil-adjusted vegetation
index (SAVI), and the abovementioned GNDVI and NDVI. These four VIs, as many others, are based
on the ratio of solar reflection at the visible bands (RGB) to that at the near infrared (NIR) waveband
(Table 1). The four VIs used here are regularly used in studies for tracking changes in plant-related
traits, such as leaf growth (e.g., leaf area index), transpiration and evapotranspiration, as well as CO2

uptake and aboveground biomass from optical sensors mounted on unmanned aerial vehicles and/or
satellites [9,17,39–42] (see also Box 1 in [32]).

Of the four VIs, NDVI is the most widely used [32]. Although NDVI has some saturation issues
over dense vegetation [43], it was shown to be very reliable in monitoring vegetation dynamics,
particularly in natural [8] and agricultural [16] Mediterranean vegetation systems. GNDVI, which
is quite similar to NDVI, with the difference being that it uses the green instead of the red band
(Table 1), is considered to be more sensitive to changes in chlorophyll-a concentrations compared to
NDVI [44,45]. EVI and SAVI were both designed to overcome the saturation drawbacks in NDVI
and GNDVI [43,46]. With a canopy background adjustment factor, both indices are considered to be
efficient in terms of reducing soil background effects, with SAVI apparently being the most effective in
that sense [43].

The four VIs were derived using the four spectral bands provided by Planet’s images following
the formulations given in Table 1.

Table 1. Formulation and source of the four vegetation indices used in this study.

Index Formulation 1 Reference

GNDVI GNDVI =
ρ(λ NIR) − ρ(λ Green)
ρ(λNIR) + ρ(λ Green)

[45]

NDVI NDVI =
ρ(λ NIR) − ρ(λ Red)
ρ(λ NIR) + ρ(λ Red)

[47]

EVI 2 EVI = G · ρ(λ NIR) + ρ(λ Red)
ρ(λNIR) + C1·ρ(λRed) − C2·ρ(λBlue) + L1

[43]

SAVI 3 SAVI = (1 + L2)·
ρ(λ NIR) − ρ(λ Red)

ρ(λNIR) + ρ(λRed) + L2
[48]

1 ρ is the surface reflectance and λ# is the wavelength of a spectral band #. 2 The gain factor G = 2.5; coefficients
C1 = 6.0 and C2 = 7.5; and the canopy background adjustment factor L1 = 1.0 are the standard values used for EVI.
3 A standard canopy background adjustment factor L2 = 0.5 for SAVI.
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2.5. Phenological Stages

We defined here three main phenological stages, which may be observed through changes in the
VI time series (Figure 2). The three stages are: start of season (SOS), which corresponds to the time
when the vines started their growth around DOY 80–90 (budburst stage), approximately one month
prior to the start of the irrigation; peak of season (POS), when the canopy of the vines reached their
full capacity (around DOY 120–140; full bloom stage); and end of season (EOS), around DOY 240–250,
the harvest stage.

Expansive understory presence in the form of volunteer weeds and grasses occurs in Israeli
vineyards around DOY 50–85 prior to SOS (see in Mevo Beitar vineyard; Figure 2). This understory
vegetation was treated with herbicide in most of the Galilee vineyards and mechanically removed at
the end of the spring in the Golan vineyards and in most of the vineyards in the Judea region.

Finally, pre-growth season (Pre) was defined here as the time when green vegetation (including
understory weeds and grasses) is absent or dry in the vineyard, at approximately DOY 30 (Figure 2).

2.6. Satellite Data

2.6.1. Planet Satellites

Planet [34] is a commercial company running a constellation of small, standardized CubeSat 3U
form factor (10 × 10 × 30 cm) nano-satellites of approximately 4 kg in mass. Planet currently operates
more than 175 of the so-called ‘Doves’ PlanetScope (PS) nano-satellites, providing unprecedented daily
nadir-pointing high-resolution land surface imaging of the entire earth. Planet’s PS satellites provide
images at a spatial resolution of 3 m (nadir ground sampling distance) in four spectral bands (RGB and
NIR), with an equatorial overpass time of 9:30–11:30 a.m. (local time) [33], sometimes even three times
a day (i.e., from different Doves). Planet Team currently provides a series of application programming
interface (API) tools, such as Clips API [49].

In this study, a total of 3015 clipped PlanetScope Ortho Tiles were downloaded for 2017 using the
Clips API for the vineyard areas within the three regions of interest (Figure 1a). Tiles were downloaded
as TIFFs, often including several files for a specific date with also missing images in some dates due to
cloudy conditions (<10% missing data). Figure A1 shows a true RGB color Planet image of Mevo Beitar
vineyard alongside the plots where Ψstem were measured (see Section 2.3), for comparison of scales.

2.6.2. Building Time Series of Planet’s Vegetation Indices in Google Earth Engine

We used Google Earth Engine (GEE; https://earthengine.google.com/), which is a freely available
cloud-based geospatial processing platform that combines a large catalog of satellite imagery and
geospatial datasets with planetary-scale analysis capabilities [50]. All downloaded PS-clipped TIFFs,
as well as the shapefile vector layers of the 82 vineyards (i.e., polygons), were uploaded as image- and
feature collections to GEE. Then, GEE JavaScript API was used to: (1) calculate the four vegetation
indices (VIs) for all images; (2) merge the number of images to a single image per date using a
maximum value criteria (i.e., creating an image mosaic by selecting the maximum value for each pixel
from all available images for that day) [43]. In this way, noisy data caused by cloud contamination
and/or sensor view uncertainties were eliminated from the image; (3) generate time series of the four
VIs; (4) calculate the time series of the averaged VI over the entire area of the vineyard (i.e., over all
pixels within the vineyard area), for the 82 vineyards, and for the 60 plots within the vineyard area of
Mevo Beitar (Figure 1b).

2.6.3. Time Series Analysis

To further eliminate noisy data in the time series, smoothing techniques are usually applied [32].
However, these techniques need the time series to be complete or at least have a predefined seasonal
signal [51]. Because we aim at predicting Ψstem from VIs without having prior information on the
seasonal behavior of the vineyard, conventional smoothing techniques could not be used. Instead,

https://earthengine.google.com/
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we adopted a simple weekly average approach similar to a moving average on a complete time
series to eliminate noisy data. We calculated the weekly average VI value (VI avg) for each vineyard.
In addition, for the time series analysis the maximum and minimum VI values in each week were
extracted (VI max and VI min, respectively). To further eliminate noise of background signal related to
soil and/or understory vegetation, the VI avg was scaled by dividing it by the VI avg value at POS.

Another important variable used in the time series analysis is ∆VI, which is defined as the
difference between the VI avg at POS and that at Pre, when green vegetation is absent in the vineyard.
This ∆VI represents the difference in fractional vegetation cover between the two periods due to
leaf expansion and canopy development of the vines. This means that vineyards with vines of less
developed canopies will display a small ∆VI compared to those with more developed canopies.
Because Ψstem is from the vines and VI is a mixed signal from vines and background signal, we would
expect a negative correlation between ∆VI and the slope of the VI–Ψstem relationship, meaning a
weak VI response (steeper slope) to seasonal variations in Ψstem, in vineyards with small ∆VI (less
developed canopies).

2.7. Statistical Analysis

Three models were tested in this study:

1. A multivariable linear model with five variables (VI avg, VI max, VI min, ∆VI and day of year)
was used to predict weekly Ψstem (one model per week) in Mevo Beitar vineyard (hereafter,
MB-Mult model).

2. A single linear regression model was used in Mevo Beitar to predict Ψstem from VIs for the
entire season using the VI time series (hereafter, MB-Reg model).

3. A single ‘global’ multivariable linear model with the same variables as in MB-Mult was used
to predict seasonal Ψstem from VI time series of the 81 commercial vineyards (hereafter,
Global-Mult).

In Global-Mult, variables from all four VIs were first used in a single multivariable model with a
total of 20 variables, five variables per VI. Then, to avoid multicollinearity issues in the model only the
statistically significant variables (p < 0.05) with the highest size effect in the model were maintained,
one VI per variable (total of five variables). The Global-Mult with the five variables was then used to
predict Ψstem in the experimental vineyard of Mevo Beitar, comparing it with MB-Mult and MB-Reg.
It should be noted that in MB-Mult and Global-Mult, the values of the variables change along the
season, while the value of ∆VI remains the same.

Pearson’s r of the correlation, coefficient of determination (R2), and root square mean error (RMSE)
were used as measures of model performance and to compare between the models. The size effect
of each variable in Global-Mult, which is the effectiveness of the variable in predicting Ψstem, is
presented as LogWorth, defined as −log10(p-value). The larger the LogWorth, the stronger is the effect
of the variable in the model. All statistical analyses were carried out using JMP® software version 14.0
(SAS Institute Inc., Cary, NC, USA).

3. Results

3.1. Deriving Midday Stem Water Potential for Mevo Beitar Vineyard

Figure 2 shows daily time series of the four vegetation indices alongside the Ψstem, while both VI
and Ψstem were averaged over the entire vineyard area at Mevo Beitar. In general, all four VIs showed
a decreasing trend similar to that of the Ψstem consequential to soil water depletion and increasing
atmospheric demand for evapotranspiration. The inherent soil-background reduction capacity of SAVI
is well noted in Figure 2, displaying the lowest values in comparison to the other three VIs (GNDVI,
NDVI and EVI).
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Low VIs values in DOYs 30–50 (Pre stage) are related mainly to soil background and dry
understory vegetation. Peak VI at POS is from the fully developed canopies of the vines at this
time of the season, at the start of the irrigation.

MB-Reg was significant for all four VIs (p < 0.01), with r = 0.80–0.82 (Figure 3). High VI values
were generally associated with less negative Ψstem at the time when DI started, while low VI values
were associated with more negative Ψstem, reflecting the water stress condition of the vines towards
EOS (DOY 245).

Figure 3. The correlation between the time series of VI avg and the measured Ψstem in Mevo Beitar
vineyard. Regressions presented are for the four VIs: (a) GNDVI, (b) NDVI, (c) EVI and (d) SAVI.
Shaded band indicates 99% confidence intervals for the regression line.

Table 2 summarizes the statistics of MB-Mult for the four VIs. Here, again, SAVI showed a better
performance than the other three indices, likely due to its higher capacity in reducing soil background
effects. GNDVI, NDVI and EVI show quite similar r scores, with NDVI showing a slightly better
performance than GNDVI and EVI (Table 2). The highest r scores were mostly obtained from DOY 189
towards EOS (DOY 245), although with a generally higher RMSE as well.

With the exception of one week (DOY 168), models were generally statistically significant along the
season with an average r score > 0.64 (Table 2). It should be noted, though, that the week corresponding
to DOY 168 was particularly cloudy, which likely affected Planet-derived VI and consequently the
MB-Mult models in this particular week.
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Table 2. Statistics of the per-week multivariable linear models (MB-Mult) using the four Planet-derived
VIs (GNDVI, NDVI, EVI and SAVI). The model with the highest Pearson’s-r and lowest RMSE (in MPa)
scores is indicated in bold for each date. Low/high r and RMSE scores along the season are denoted
with blue/red colors per VI.

DOY
r RMSE (MPa) Ψstem (MPa)

GNDVI NDVI EVI SAVI GNDVI NDVI EVI SAVI Average Std

126 0.45 0.56 2 0.56 2 0.60 3 0.091 0.084 0.084 0.081 −1.008 0.126
140 0.51 1 0.48 1 0.47 0.53 1 0.049 0.050 0.050 0.048 −0.633 0.103
154 0.72 3 0.76 3 0.76 3 0.78 3 0.094 0.088 0.088 0.086 −0.728 0.149
168 0.32 0.32 0.30 0.28 0.129 0.129 0.129 0.130 −0.990 0.226
175 0.46 0.56 1 0.56 1 0.55 1 0.065 0.061 0.061 0.061 −1.089 0.130
189 0.78 3 0.76 3 0.76 3 0.78 3 0.086 0.090 0.090 0.086 −1.056 0.178
196 0.76 2 0.77 2 0.77 2 0.79 3 0.087 0.085 0.085 0.082 −1.250 0.145
203 0.76 3 0.74 3 0.73 3 0.75 3 0.124 0.128 0.128 0.125 −1.408 0.198
217 0.84 3 0.81 3 0.81 3 0.82 3 0.108 0.116 0.116 0.115 −1.196 0.447
245 0.84 3 0.79 3 0.79 3 0.81 3 0.147 0.166 0.166 0.160 −1.364 0.285

Average 0.64 0.65 0.65 0.67 0.098 0.099 0.100 0.097 −1.072 0.199

Statistically significant models are marked: 1 p < 0.05; 2 p < 0.01; 3 p < 0.001.

Figure 4 shows high-resolution maps of Ψstem in Mevo Beitar vineyard from MB-Mult using SAVI
for selected dates. The spatial pattern of Ψstem varies throughout the growing season (Figure 4). Ψstem

in DOY 154 was relatively high across the vineyard compared to other dates because of the DI start in
DOY 131 (Figure 2) and the relatively lower atmospheric demand compared to the following weeks.

Figure 5 shows the difference (∆Ψ) between the Ψstem derived from MB-Reg and MB-Mult
(both using SAVI). ∆Ψ in Figure 5 was calculated as the absolute Ψstem value from MB-Reg minus
the absolute Ψstem value from MB-Mult. Thus, blue colors indicate lower values of Ψstem (more
stressed) in MB-Reg than in MB-Mult, while red colors mean that Ψstem was higher (less stressed) in
MB-Reg than in MB-Mult. Most of the maps in Figure 5 show a uniform distribution of ∆Ψ across the
vineyard, which means that MB-Reg was able to reproduce the spatial variability in Ψstem close to that
predicted by MB-Mult, though with some differences in magnitude. Yet, at both ends of the growing
season, before and after the DI start (DOY 126 and 245), ∆Ψ across the vineyard shows a significant
spatial variability.

These results indicate that the measures from both models are consistent with one another for
much of the season. Thus, for irrigation management, either approach could be used to monitor relative
difference (spatial variability) within the field at Mevo Beitar, to the extent that such information could
be used to improve the efficiency of ground operations.
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Figure 4. High-resolution Ψstem maps of Mevo Beitar vineyard derived from MB-Mult (the
multivariable regression model) using SAVI for selected weeks along the season. Plots Ψstem measured
values are also shown in circles. Note that all figures in this panel use the same legend and scale.
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Figure 5. The difference between the Ψstem maps retrieved from MB-Mult and MB-Reg, both using
SAVI (∆Ψ). ∆Ψ is the absolute Ψstem value from MB-Reg minus the absolute Ψstem value from
MB-Mult; therefore, blue color indicates a lower Ψstem value (more stressed) in MB-Reg compared
to MB-Mult, while red color indicates a higher Ψstem value (less stressed) in MB-Reg compared to
MB-Mult.

3.2. Vegetation Indices and Stem Water Potential in Vineyards across Rainfall Gradient

The Pearson’s r of the VI-Ψstem linear fit using all data from the 82 vineyards together was positive
and significant (p < 0.001), with 0.58 < r < 0.68 for the four VIs (Figure 6). Once again, SAVI was
demonstrated to be the most successful index in tracking seasonal changes in Ψstem in the 82 vineyards
(Figure 6d).

The per-vineyard Pearson’s r of the VI-Ψstem linear fits ranged between 0.72 and 0.97, with an
average r of 0.85 ± 0.06 (Figure 7). Linear fits, though, differed between vineyards in terms of intercept
and particularly in slope (Figures 6 and 7).
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Figure 6. Linear relationships between Planet-derived VI avg: (a) GNDVI, (b) NDVI, (c) EVI and
(d) SAVI, and Ψstem in 82 vineyards (grey lines). The general linear fit using all data is also shown
(black bold line).

Figure 7. Pearson’s-r, number of data-dates available along the season (N), slope and intercept of the
linear fit of VI avg vs. Ψstem in single vineyards (see 82 vineyards in Table A1). The r, N, slope and
intercept were averaged over the four VIs. Error bars denote ±1σ. Mevo Beitar vineyard is indicated
in red.
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Background effects of soil and/or understory vegetation were likely responsible for the different
slopes of the linear fits (Figures 6 and 7). Vineyards with a large background effect had more
pronounced slopes, meaning weak VI response to seasonal changes in Ψstem. This background
effect may be noted as a negative correlation between ∆VI and the slope of the VIs-Ψstem linear fit in
Figure 8.

Figure 8. The relationship between the ∆VI and the slope of the VI-Ψstem linear fit in the 82 vineyards.
Notice that a larger slope signifies weaker response of VI to increasing stress (i.e., to decreasing Ψstem).

Figure 8 shows that for vineyards with a small ∆VI (weak VI response to Ψstem change), or, in
other words, with grapevines of less developed canopies and thus a larger background effect, the slope
of the VIs-Ψstem linear fit was steeper than for vineyards with a large ∆VI. This suggests that ∆VI is
an important variable in predicting Ψstem and may assist in distinguishing between vineyards with
different levels of background effect.

The performance of each of the four VIs in a multivariable regression model (one model per
VI) was quite similar (r = 0.76, for the four VIs), with a slight improvement (r = 0.78; RMSE = 18.5%;
Figure 9) when using variables from different VIs in Global-Mult (Table 3). Global-Mult, though,
was a significant improvement over the simple linear regression model used with the VI time series
(0.58 < r < 0.68, Figure 6).
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Figure 9. Results of predicted (using the ‘global’ multivariable regression model) vs. observed Ψstem in
the 82 vineyards along the 2017 growing (dashed line indicates 1:1 slope).

Table 3. Size effects (LogWorth) and estimates of the variables used in the ‘global’ multivariable
regression model (i.e., the coefficients of the variables used in the linear model). The table was arranged
from the variable with the highest to the lowest effect in the model.

Variable Estimate 1 σ 2 t-Ratio 3 LogWorth p-Value 4

DOY −0.0062 0.00045 −13.59 37.906 <0.0001
∆NDVI 2.5164 0.37276 6.75 10.596 <0.0001

SAVI avg 0.6570 0.09927 6.62 10.219 <0.0001
NDVI max −2.4509 0.43914 −5.58 7.508 <0.0001
NDVI min −1.0344 0.37159 −2.78 2.261 0.0055
Intercept −0.3885 0.13803 −2.81 0.0050

1 The estimated coefficient value of the variable in the model. 2 The standard deviation on estimated coefficient
value. 3 The t-Ratio of the estimated variable in the model. 4 The significance of the variable in the model.

As for the size effect (LogWorth) of each variable in the model, DOY was the one with the strongest
effect (Table 3). The variable with the next-strongest effect was ∆NDVI, meaning a strong background
effect in the vineyards, as already suggested by the relationship shown in Figure 8. The SAVI avg had
also a significant effect, comparable to the size effect of ∆NDVI (Table 3).

3.3. Predicting Stem Water Potential at Mevo Beitar Vineyard Using Single ‘Global’ Model

Figure 10 shows the comparison between measured Ψstem averaged over the 60 plots at Mevo
Beitar vineyard during the season of 2017 and predicted Ψstem using MB-Reg, MB-Mult and
Global-Mult.
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Figure 10. (a) Observed and predicted Ψstem at Mevo Beitar vineyard for the 2017 growing season.
Predicted Ψstem was derived using the site-specific per-week multivariable MB-Mult model, the
site-specific MB-Reg model, and the Global-Mult model. Red and blue shaded bands in (a) indicate
model uncertainties in MB-Reg and Global-Mult, respectively, while error bars in MB-Mult and
observations denote ±1σ. Scatterplot of observed vs. predicted Ψstem for (b) MB-Reg and (c)
Global-Mult.

Global-Mult is shown to reproduce seasonal changes in observed Ψstem at Mevo Beitar with
a fairly high accuracy (R2 = 0.84; RMSE = 0.12; bias = 0.07, Figure 10a,c), at least as good as the
site-specific models of MB-Reg (R2 = 0.84; RMSE = 0.11; bias = −0.02, Figure 10a,b) and MB-Mult
(Figure 10a). Thus, Global-Mult appears to present a useful tool for seasonal (weekly) predictions of
Ψstem in Mediterranean vineyards.

4. Discussion

Management of spatial variability within a vineyard can increase profits significantly by allowing
optimization of yield quantity and quality [52,53]. Technologies and methodologies are currently being
developed to allow variable-rate irrigation in drip irrigated vineyards and orchards [54,55]. Since the
current state of the art for irrigation decision-making uses time- and labor-consuming measurement of
Ψstem [2,35,36,56], remote sensing methodologies successfully acting as stem water potential proxies
have particular appeal. That said, there remains a challenge in finding remotely acquired data that: (a)
has sufficiently reliable correlation with Ψstem, (b) is affordable and accessible, and (c) has both high
spatial and temporal resolution, each of which are necessary in order for the method to be useful for
high frequency irrigation scheduling.

This study showed a significant correlation between vegetation indices derived from
high-resolution Planet images (3-m) and Ψstem in Mediterranean (Israel) vineyards. Previous studies
have shown that CWSI and NIR-based indices, like GNDVI and NDVI, may be good indicators of
water status in grapevines through correlations with leaf stomatal conductance (gs) and water potential
(ΨLeaf and Ψstem). However, these relationships were mostly observed at the canopy- [22,28,29] or
leaf [30,31] levels using manual spectroradiometers or sensors mounted on small airplanes and drones.
As far as the authors are aware, this is the first study that shows such a relationship using images of
coarser spatial resolution acquired from satellites, and more specifically from Planet nano-satellites.

One of the main challenges when using satellite information is the spatial resolution of the
images, which is often coarser than the targeted object and may induce a mixed-pixel signal effect. For
example, understory vegetation was shown to affect satellite spectral signals in complex vegetation
systems comprised of multi-canopy layers [32]. The multi-canopy layer, vertical mixed-pixel effect was
further corroborated in a simulation model by Chen et al. [57], implying that understory vegetation
may significantly affect satellite signals. In our case, understory expansion reaches its maximum at
~DOY 60, while vines budburst occurs later at DOY 80–90. Background effect in the vineyards, which
may include the signal from soil and/or understory vegetation, was observed through a different
VI-Ψstem linear fit in terms of magnitude of slope (slope ranged between 0.5 and 2), meaning that some
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vineyards experienced weak VI response to seasonal changes in Ψstem, while others experienced a
stronger response to Ψstem changes. This differential response is due to the fact that in vineyards with
grapevines of more developed canopies, and consequently less exposed understory cover seen from
the satellite, the VI signal is mostly coming from the vines while in vineyards with less developed
vines much of the VI signal comes from the ground.

To overcome this mixed-pixel effect, we used the difference between the VI signal at the POS,
which corresponded mainly to the grapevines, and that of the understory derived at the Pre (∆VI).
That way, background effects were eliminated allowing vineyards with diverse soil and understory
vegetation characteristics to be compared and used in a single ‘global’ model. Results from the
Global-Mult model showed that ∆NDVI had a significant size effect, being a key factor in predicting
Ψstem, with only day of year having a stronger size effect and SAVI avg a similar effect (Table 3).

In Mevo Beitar, a highly variable vineyard, weekly based correlations (Pearson’s r) of GNDVI,
NDVI, EVI and SAVI vs. Ψstem were within the range of 0.28–0.84, with an average value of 0.65 for all
indices (Table 2). These results were quite similar to previously reported VI-Ψstem correlations found
by others using very-high-resolution images [22,29]. When time series were used in the regression
instead of date-specific data, correlations were even higher (0.80 < r < 0.82). A simple linear regression
model (MB-Reg) was sufficient to reproduce temporal, as well as spatial variations in Ψstem in the
experimental vineyard.

In general, correlations from simple specific-date regressions between vegetation indices and Ψstem

were also high for the 81 commercial vineyards (r = 0.72–0.97; Figure 7), implying that Planet-derived
time series of vegetation indices like, GNDVI, NDVI, EVI and SAVI may be good indicators of water
status at the vineyard-scale level.

Finally, the Global-Mult model with spectral-based indices derived from Planet satellites was
proposed to predict Ψstem in Mediterranean vineyards. After deriving ∆NDVI, SAVI avg, NDVI max
and NDVI min of a specific vineyard a real-time Ψstem estimation may be provided for that vineyard at
a weekly basis. The Global-Mult shows promise in improving the efficiency of in-field conventional
monitoring efforts.

5. Conclusions

The relationship between stem water potential and vegetation indices was evaluated in
Mediterranean vineyards through the use of high spatial resolution Planet nano-satellite imaging
on the freely available GEE cloud computing system for the first time. Using JavaScript API in GEE
allowed fast computation of the derivation of time series of vegetation indices for the area of the 82
vineyards, showing potentials for real-time monitoring in small-size agricultural fields.

The four vegetation indices tested in this study (GNDVI, NDVI, EVI and SAVI) showed significant
correlation with stem water potential, with SAVI displaying a slightly better performance, likely due
to its capacity for reducing soil effects. Correlations using of the four vegetation indices were high for
measurements across the vineyard area (0.89 < r < 0.82 for MB-Reg and 0.64 < r < 0.67 for MB-Mult)
and along the season (r = 0.92 for both MB-Reg and Global-Mult), allowing predictions of stem water
potential variability in space and time.

A method to reduce the background effect of understory vegetation and soil, which accounts for
the fractional cover of the vines, was also presented. The fractional cover of the vines was retrieved as
the difference in the value of the vegetation index at the peak of season and prior to the appearance
of green vegetation in the vineyard (∆VI). This ∆VI, was negatively correlated with the slope of the
vegetation index to stem water potential relationship, meaning that vineyards with a low fractional
cover have weak VI response to changes in measured stem water potential. Using the ∆VI allowed the
development of a ‘global’ multivariable model for predicting stem water potential in vineyards with
different background (soil and understory presence) characteristics.

Overall, the approach presented here shows promise in exploiting these technologies, which
include resolving the mixed-pixel problem in agricultural as well as in the ecological monitoring of
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natural vegetation systems from satellites. The tools developed here, i.e., the combination of Planet
images and GEE platform, with the aforementioned mixed-pixel separation approach, may be also
used for water status monitoring of agricultural fields other than vineyards.

Finally, pending further verification and validation, the proposed ‘global’ model presented here
may be used for real-time irrigation management along the season from the abovementioned weekly
values extracted using daily Planet images. Using the ‘global’ model could substantially improve
sampling efficiency of conventional water status monitoring. The methodology developed in this
study should be further examined with supporting information on soil texture, LAI/fractional cover
and understory vegetation. Moreover, a comparison with freely available satellite images like those
from Sentinel-2, which have coarser spatial (10–20 m) and temporal (5 day) resolution than Planet,
should be conducted.
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Appendix A

Figure A1. A true RGB color Planet image (from 3 June 2016) of Mevo Beitar vineyard with location of
the 60 Ψstem measurement plots.
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Table A1. General characteristics of the 82 vineyards used in this study. The region, size of the vineyard
(in hectares) and species are shown alongside the minimum (most negative) seasonal Ψstem (MPa) in
the vineyard and the DI start and EOS dates. In bold is Mevo Beitar vineyard.

# Region Size (ha) Species Red/White Ψstem (MPa) DI Start EOS

1 Golan 1.74 Cabernet Franc red −1.376 14-May 27-Aug
2 Golan 1.34 Chardonnay white −1.721 28-May 10-Sep
3 Golan 0.95 Chardonnay white −1.518 28-May 10-Sep
4 Golan 1.30 Cabernet Sauvignon red −1.806 28-May 10-Sep
5 Golan 0.85 Cabernet Sauvignon red −1.500 28-May 10-Sep
6 Golan 0.70 Cabernet Sauvignon red −1.427 28-May 10-Sep
7 Golan 1.16 Cabernet Sauvignon red −1.743 28-May 10-Sep
8 Golan 1.00 Cabernet Sauvignon red −1.543 14-May 05-Sep
9 Golan 1.42 Cabernet Sauvignon red −1.533 14-May 05-Sep
10 Golan 2.07 Merlot red −1.432 14-May 14-Aug
11 Golan 1.30 Petit Verdot red −1.729 28-May 10-Sep
12 Golan 1.81 Syra red −1.583 14-May 13-Aug
13 Golan 1.13 Syra red −1.445 14-May 14-Aug
14 Golan 1.30 Chardonnay white −1.340 29-May 11-Sep
15 Golan 1.21 Chardonnay white −1.338 29-May 11-Sep
16 Golan 2.13 Chardonnay white −1.556 29-May 11-Sep
17 Golan 3.13 Chardonnay white −1.485 29-May 11-Sep
18 Golan 0.84 Cabernet Sauvignon red −1.504 05-Jun 03-Sep
19 Golan 1.47 Cabernet Sauvignon red −1.366 29-May 11-Sep
20 Golan 1.77 Cabernet Sauvignon red −1.550 29-May 11-Sep
21 Golan 1.36 Pinot Gris white −1.463 29-May 04-Sep
22 Golan 1.98 Cabernet Sauvignon red −1.486 22-May 07-Sep
23 Golan 2.42 Cabernet Sauvignon red −1.545 23-May 18-Sep
24 Golan 2.11 Cabernet Sauvignon red −1.161 05-Jun 07-Sep
25 Golan 2.05 Merlot red −1.638 29-May 18-Sep
26 Golan 1.58 Merlot red −1.410 25-Jun 10-Sep
27 Golan 0.96 Merlot red −1.568 25-Jun 07-Sep
28 Golan 3.88 Merlot red −1.621 12-Jun 10-Sep
29 Golan 1.17 Petit Verdot red −1.258 13-Jun 18-Sep
30 Golan 2.39 Sauvignon Blanc white −1.511 19-Jun 23-Aug
31 Golan 0.87 Syra red −1.807 06-Jun 05-Sep
32 Golan 0.96 Syra red −1.765 23-May 18-Sep
33 Golan 1.22 Syra red −1.807 05-Jun 31-Aug
34 Golan 3.60 Syra red −1.554 12-Jun 16-Aug
35 Golan 2.51 Viognier white −1.368 15-May 31-Aug
36 Golan 2.36 Viognier white −1.520 15-May 07-Sep
37 Golan 0.76 Cabernet Sauvignon red −1.479 08-May 11-Sep
38 Golan 2.60 Cabernet Sauvignon red −1.540 19-May 11-Sep
39 Golan 1.56 Malbec red −1.469 08-May 11-Sep
40 Golan 1.98 Merlot red −1.601 19-May 11-Sep
41 Golan 2.77 Merlot red −1.419 19-May 11-Sep
42 Golan 3.98 Sangiovese red −1.581 19-May 11-Sep
43 Golan 1.52 Syra red −1.712 19-May 11-Sep
44 Golan 1.00 Tinta Cao red −1.104 08-May 11-Sep
45 Galilee 2.97 Cabernet Franc red −1.270 10-May 18-Jul
46 Galilee 1.35 Petit Syra red −1.009 10-May 18-Jul
47 Galilee 2.95 Viognier white −1.073 10-May 18-Jul
48 Galilee 1.81 Malbec red −1.151 10-May 18-Jul
49 Galilee 2.99 Chardonnay white −0.869 10-May 18-Jul
50 Galilee 2.54 Chardonnay white −1.195 02-May 29-Aug
51 Galilee 2.64 Muscat Caneli white −1.486 02-May 29-Aug
52 Galilee 3.84 Merlot red −1.431 02-May 29-Aug
53 Galilee 2.87 Viognier white −1.356 02-May 15-Aug
54 Galilee 3.59 Chardonnay white −1.441 02-May 15-Aug
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Table A1. Cont.

# Region Size (ha) Species Red/White Ψstem (MPa) DI Start EOS

55 Galilee 4.81 Roussanne white −1.196 06-Jun 29-Aug
56 Galilee 3.67 Cabernet Sauvignon red −1.594 06-Jun 29-Aug
57 Galilee 4.26 Cabernet Sauvignon red −1.536 06-Jun 29-Aug
58 Galilee 3.35 Gewurztraminer white −1.246 02-Jun 15-Aug
59 Galilee 3.65 Pinot Noir red −1.243 24-May 16-Aug
60 Galilee 3.06 Tannat red −1.528 24-May 16-Aug
61 Galilee 5.46 Cabernet Sauvignon red −1.770 24-May 30-Aug
62 Galilee 2.43 Cabernet Sauvignon red −1.611 24-May 30-Aug
63 Judea 1.43 Merlot red −1.989 15-May 11-Sep
64 Judea 1.28 Cabernet Sauvignon red −1.961 29-May 11-Sep
65 Judea 1.83 Cabernet Sauvignon red −1.758 14-May 20-Aug
66 Judea 1.08 Petit Verdot red −1.624 14-May 20-Aug
67 Judea 1.23 Syra red −1.826 14-May 20-Aug
68 Judea 1.13 Syra red −1.799 14-May 20-Aug
69 Judea 0.49 Merlot red −1.928 15-May 28-Aug
70 Judea 0.73 Merlot red −1.928 15-May 28-Aug
71 Judea 2.40 Cabernet Sauvignon red −1.400 10-May 05-Sep
72 Judea 1.27 Cabernet Sauvignon red −1.514 14-May 27-Aug
73 Judea 1.27 Cabernet Sauvignon red −1.566 14-May 27-Aug
74 Judea 1.18 Cabernet Sauvignon red −1.593 14-May 27-Aug
75 Judea 0.73 Merlot red −1.675 14-May 13-Aug
76 Judea 0.55 Malbec red −1.773 21-May 27-Aug
77 Judea 0.63 Merlot red −2.232 15-May 28-Aug
78 Judea 0.89 Merlot red −1.840 15-May 28-Aug
79 Judea 1.55 Merlot red −1.926 15-May 28-Aug
80 Judea 2.01 Cabernet Sauvignon red −1.792 15-May 11-Sep
81 Judea 1.26 Cabernet Sauvignon red −2.021 22-May 11-Sep
82 Judea 1.39 Cabernet Sauvignon red −1.928 15-May 11-Sep
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