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Abstract: The Mongolian plateau is a hotspot of global desertification because it is heavily affected
by climate change, and has a large diversity of vegetation cover across various regions and seasons.
Within this arid region, it is difficult to distinguish desertified land from other land cover types
using low-quality vegetation information. To address this, we analyze both the effects and the
applicability of different feature space models for the extraction of desertification information with
the goal of finding appropriate approaches to extract desertification data on the Mongolian plateau.
First, we used Landsat 8 remote sensing images to invert NDVI (normalized difference vegetation
index), MSAVI (modified soil adjusted vegetation index), TGSI (topsoil grain size index), and albedo
(land surface albedo) data. Then, we constructed the feature space models of Albedo-NDVI,
Albedo-MSAVI, and Albedo-TGSI, and compared their extraction accuracies. Our results show that
the overall classification accuracies of the three models were 84.53%, 85.60%, and 88.27%, respectively,
indicating that the three feature space models are feasible for extracting information relating to
desertification on the Mongolian plateau. Further analysis indicates that the Albedo-NDVI model is
suitable for areas with a high vegetation cover or a high forest ratio, whilst the Albedo-MSAVI model
is suitable for areas with relatively low vegetation cover, and the Albedo-TGSI model is suitable for
areas with extremely low vegetation cover, including the widely distributed Gobi Desert and other
barren areas. This study provides a technical selection reference for the investigation of desertification
of different zones on the Mongolian plateau.

Keywords: desertification; feature space; Albedo-NDVI; Albedo-MSAVI; Albedo-TGSI; Mongolia

1. Introduction

Desertification is a serious global environmental problem. Under the influence of natural
environmental change and the anthropogenic causes of grassland degradation, ecological and
environmental deterioration, as well as desertification have become more severe in Mongolia [1]. Plant
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species from 1961 to 2006 in the forest steppe, real steppe, mountain steppe, desert steppe, and desert
regions in Mongolia were reduced by 50.0%, 44.7%, 30.3%, 23.8%, and 26.7%, respectively [2]. In 2007,
more than 72% of Mongolia’s land was affected by desertification, with the range of desertification still
expanding [3]. In 2017, the most current data from the Ministry of Natural Environment and Tourism
of Mongolia indicated that 76.8% of the country’s land suffered varying degrees of desertification
with desertification continuing to spread at a rapid rate, affecting the country’s renowned grasslands,
including those in Dornod and Khentii provinces [4]. The increasing desertification problem on the
Mongolian Plateau will have a strong effect on local sustainable development and may become the
biggest obstacle to the transboundary cooperation in this area, for example, the China-Mongolia-Russia
economic corridor issued by the governments of these three countries [5].

International research on desertification monitoring by remote sensing began in the 1970’s [6].
Initially, researchers used land degradation as reflected by the vegetation index to represent
desertification [7–9]. In the 1980’s, studies found that land surface albedo is one of the most important
parameters of the ground radiant energy balance, which determine the radiant energy absorbed
by the underlying surface [10]. Some studies showed that increasing land surface albedo implies a
degradation of land quality [11]. At the beginning of the 21st century, a number of studies found
that texture features, moisture content, and surface albedo changed with a change in ground object
types [12]. At the same time, some researchers found that monitoring changes in vegetation and land
use was not the only way to measure desertification [13,14]. Zeng et al. used the albedo and NDVI
(normalized difference vegetation index) to build the Albedo-NDVI feature space to conduct a study
on desertification [15]. They found that multi-dimensional remote sensing data had clear biophysical
significance and could reflect the surface coverage, hydrothermal combination, and the changes in
land desertification.

However, due to the considerable influence of the soil background on the NDVI, the vegetation
condition cannot be well expressed in areas with sparse vegetation. With a decrease in vegetation
coverage, surface albedo and surface radiation temperatures increase accordingly. Therefore,
the MSAVI (modified soil adjusted vegetation index) was introduced, which fully considers the
bare soil line problem and can better eliminate or reduce the influence of the soil and vegetation canopy
background [16]. After comparing the correlation coefficients of NDVI, MSAVI, and the grassland
vegetation cover, Wu et al. found that the MSAVI was significantly correlated with grassland vegetation
cover [17]. Feng et al. proposed building an Albedo-MSAVI feature space model by replacing NDVI
with MSAVI and applying it to the study of soil salinization [18]. However, Vova et al. carried out
land degradation monitoring in the Govi-Altai province of Mongolia and found that the changes
in the MSAVI were not sufficient to evaluate the land degradation process [19]. This suggests that
changes in pure MSAVI are not a major indicator of land degradation assessment. In fact, in the current
research of desertification information extraction, studies on feature space are still dominated by the
Albedo-NDVI feature space, and diverse feature spaces, such as the Albedo-MSAVI feature space, are
rarely used.

In addition, due to different degrees of desertification, different topsoil textures are produced.
More serious desertification corresponds to rougher the surface soil particle composition. Therefore,
TGSI (topsoil grain size index) is recommended as an evaluation index of land degradation [20,21].
Lamchin et al. used NDVI, TGSI, and albedo as representative indicators of vegetation biomass,
landscape pattern, and micro-meteorology, respectively. Then, desertification information extraction
was conducted on the Hogno Khaan Nature Reserve in Mongolia to complete a dynamic analysis of
desertification [22]. In 2017, Lamchin et al. found that the highest correlations were between TGSI
and albedo at all levels of desertification [23]. This provided a basis for constructing the Albedo-TGSI
feature space model. Combined with the above information, it can be seen that the previous studies
of desertification information extraction are mainly based on the combination of multiple indexes or
on a single feature space model, which lacks the comprehensive evaluation ratio of various special



Remote Sens. 2018, 10, 1614 3 of 17

space models. Determining what kind of feature space is suitable for the extraction of desertification
information regarding the Mongolian Plateau remains a scientific problem that needs to be solved.

In response to this challenge, our study analyzed the effects and applicability of different feature
space models in the extraction of desertification information, with the goal of finding appropriate
extraction approaches for desertification relating to the Mongolian plateau. We used 30-m resolution
remote sensing images to invert the NDVI, MSAVI, TGSI, and albedo data of the study area in Mongolia
and investigated the desertification information based on the feature space models of Albedo-NDVI,
Albedo-MSAVI, and Albedo-TGSI. By comparing and analyzing the results, we attempted to find the
reasonable model(s) under different vegetation cover conditions. This study was expected to provide a
reference for the methods used for the dynamic monitoring of desertification on the Mongolia Plateau.

2. Materials and Methods

2.1. Study Area

The study area is located at 44◦25′N–50◦53′N and 87◦44′E–96◦41′E in the Northwestern part of
Mongolia (Figure 1), adjacent to the Xinjiang Uygur Autonomous Region of China, the Republic of
Tuva, and the Republic of Altai, Russia. In terms of administrative divisions, the study area mainly falls
under the provinces of Bayan-Olgii, Khovd, most of Uvs, parts of Zavkhan province, and Govi-Altai
province. The region mainly consists of plateaus and mountains. The Altai mountains run through
the entire study area and extend from the Northwest to the Southeast of the inner Mongolian plateau,
resulting in a gradual lowering of the topography from West to East. This area has a typical continental
climate, in which the lowest temperature in winter reaches −40 ◦C, the highest temperature in summer
can rise to 40 ◦C, and the annual precipitation is 200–300 mm. The land cover types in this region are
complex, including almost all land cover types in Mongolia, but mainly consist of bare land and desert
grassland. In addition, the region is inhabited by a number of different ethnic groups, including the
Halaha, Burbutt, Bayat, and Kazak. According to 2010 statistics, there were about 326,000 people in
this region [24].
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2.2. Data Sources and Preprocessing

In this study, 19 Landsat 8 OLI (operational land imager) remote sensing images with 30 m
resolution were selected. The imaging data were taken between June 2015 and October 2015, and the
cloud coverage was less than 10%. Landsat 8 OLI images were obtained from the USGS website
(United States Geological Survey) (http://earthexplorer.usgs.gov/).

Auxiliary data of this study include a vector map of Mongolia’s administrative division in 2013,
a 2007 desertification status map of Mongolia [3], a 2015 classified map of Mongolia’s land cover [25],
and the Google Earth online map. The land cover classification data with 30 m resolution was produced
using the object-oriented classification method by the Institute of Geographic Sciences and Natural
Resources Research, Chinese Academy of Sciences. In addition, the overall accuracy of the classified
map of Mongolia’s land cover was 92.75%.

2.3. Method

2.3.1. Principles of Feature Space

Long-term studies have shown that with an increase in desertification, the amount of surface
vegetation gradually decreases, and the NDVI values decreases accordingly. Therefore, NDVI can
be used as an important index to evaluate desertification. Albedo is one of the most important
parameters of the radiation energy balance on the ground, and its values can be changed by soil
moisture, vegetation cover, snow cover, and other land surface conditions. Field verification reveals
that with an increase in the degree of desertification, the surface morphology changes, the surface
roughness decreases, and the surface albedo increases continuously [26,27]. As shown in Figure 2 [28],
there is a significant negative correlation between the NDVI and albedo in different desertification
areas. In the figure, AC represents the high albedo line and reflects the drought situation, which is the
limit of high albedo corresponding to the complete arid land under certain vegetation coverage [13].
BD represents the low albedo line, which involves a sufficient amount of surface water. A, B, C, and D
represents four extreme states. In general, all types of ground objects are contained in the ABCD area
and exhibit different spatial distribution patterns.

Therefore, the Albedo-NDVI feature space can be constructed to invert the variation characteristics
of two-dimensional space composed of NDVI and albedo in the desertification process, and to
effectively extract information regarding desertification.
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2.3.2. The Construction of Feature Space

(1) Pre-processing

A number of steps were involved in the pre-processing of our data. First, remote sensing
images selected were pre-processed, including radiometric correction, and atmospheric correction.
Radiation correction is the process of eliminating all kinds of distortion in image data [29]. In this
study, the radiometric calibration module in ENVI 5.1 was used to achieve radiation correction.
Atmospheric correction is the process of eliminating the radiation error caused by atmospheric
influence and retrieving the true surface reflectance of ground objects [30]. This was completed using
the FLASSH module in ENVI 5.1. Before atmospheric correction, the sensor type, ground elevation,
image generation time, atmospheric model parameters, and result of radiation correction should
be added successively in this module. Finally, with the help of vector data from the Mongolian
administrative division, the remote sensing images were clipped and mosaicked to synthesize the
image map covering the entire study area.

(2) Feature space variables

Based on pre-processed Landsat 8 OLI images, we calculated the NDVI, MSAVI, TGSI, and albedo
using the reflectance data of red, near infrared, blue, green, and short wave infrared band.

The formula for NDVI is as follows [31]:

NDVI = (NIR− RED)/(NIR + RED), (1)

where NIR is near infrared band and RED is red band.
The formula for MSAVI is as follows [32]:

MSAVI = (2NIR + 1−
√
(2NIR + 1)2 − 8(NIR− RED))/2, (2)

The formula for TGSI is as follows [33]:

TGSI = (RED− BLUE)/(RED + BLUE + GREEN), (3)

where BLUE is blue band and GREEN is green band.
The formula for albedo is as follows [34]:

Albedo = 0.356BLUE + 0.13RED + 0.373NIR + 0.085SWIR1 + 0.072SWIR2− 0.0018, (4)

where SWIR1 and SWIR2 are the shortwave infrared bands.

(3) Data normalization processing

First, we identified the maximum and minimum values of NDVI, MSAVI, TGSI and albedo of the
study area, and then used these to process the data normalization processing.

N = [(NDVI−NDVImin)/(NDVImax −NDVImin)]× 100%, (5)

M = [(MSAVI−MSAVImin)/(TGSImax − TGSImin)]× 100%, (6)

T = [(TGSI− TGSImin)/(TGSImax − TGSImin)]× 100%, (7)

A = [(Albedo−Albedomin)/(Albedomax −Albedomin)]× 100%, (8)

(4) Quantitative relation calculation

In order to further reveal the relationship between multiple feature space variables, we uniformly
arranged 738 points in the whole study area, and the corresponding points values of NDVI, MSAVI,
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TGSI, and albedo were extracted. Then, SPSS software was used for the statistical regression analysis of
the four feature space variables and to investigate their quantitative relations with each other. Finally,
we selected three groups of highly correlated feature space variables to construct the feature space
models of Albedo-NDVI, Albedo-MSAVI, and Albedo-TGSI.

2.3.3. Classification of Desertification

According to the research conclusions made by Verstraete and Pinty in 1996, different
desertification lands can be effectively separated by dividing the Albedo-NDVI feature space in
the vertical direction into changing trends of desertification [35]. In addition, the location of the
vertical direction in Albedo-NDVI feature space can be well fitted by a simple binary linear polynomial
expression as follows:

DDI = K×NDVI−Albedo, (9)

where “DDI” was the desertification divided index and K was determined by the slope of the straight
line fitted in the feature space.

According to the research conclusions made by Ma et al. in 2011, DDI values can be divided
into five different levels by the natural break (Jenks) classification [28]. These five desertification
levels are severe desertification, high desertification, medium desertification, low desertification,
and non-desertification. The natural break classification method is based on natural grouping
inherent in the data, and its boundary is set to the position where the data values are relatively
different [36]. The method computes each kind of classification situation, and automatically selects the
classification situation with the minimum variance values, so as to obtain the optimal classification
result. In addition, it effectively aggregates similar classes and maximizes the differences between
classes. Finally, the Albedo-MSAVI and Albedo-TGSI feature space models were constructed using the
same method to extract desertification information. To make the results of extracting desertification
information more realistic, it is necessary to separate the information regarding sand and water from
other desertification information. In general, the reflectance of sand in each band (excluding the thermal
infrared band) is high. When the reflectance data of multiple bands are added together, the sand must
be the highest. Therefore, we can use this feature to extract sand information. When the feature space
model is used to extract desertification information, water is usually classified as non-desertification
and low desertification. However, in order to obtain more realistic and objective classification results,
we suggest extracting water from non-desertification or low desertification areas. In 2007, Bao et al.
found that the albedo of water was much lower than that of vegetation cover [37]. Therefore, we can
make use of this feature to extract information on water.

For the process of extracting sand information, we first summed up the reflectance of the blue,
green, red, nir, swir1, and swir2 bands, and obtained the multi-band synthetic remote sensing images.
Then, the synthetic images were classified into six categoriesusing the natural break classification
method and the category with the highest values could be identified as sand.

For the process of extraction water information, we used the Albedo-NDVI and Albedo-TGSI
feature space models to extract the desertification information, and then identify water by its
classification as “non-desertification”. When we used the Albedo-MSAVI feature space model to
extract the desertification information, water was usually classified as low desertification. Therefore,
we used the natural break classification to divide water from non-desertification and low desertification
areas, respectively.

2.3.4. Accuracy Assessment and Comparison

To verify the accuracy of the models, 375 verification points were uniformly selected throughout
the study area. Then, the verification points were interpreted by visual interpretation based on Landsat
8 true color images and a Google Earth map. Finally, we constructed the confusion matrix and acquired
the producer, user and overall classification accuracy as well as the Kappa coefficient. The producer
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accuracy is the number of correctly classified samples of a particular category divided by the total
number of reference samples for that category; the User’s Accuracy is the number of correctly classified
samples of a particular category divided by the total number of samples being classified as that
category [38]. The overall classification accuracy was calculated by the confusion matrix, which is
equal to the sum of correctly classified pixels divided by the total number of pixels [39]. The calculation
of the Kappa coefficient was also based on the confusion matrix. The results of the three feature space
models were compared to the 2007 desertification status map of Mongolia as well as the 2015 land
cover map of Mongolia. The obvious feature differences were investigated and discussed.

3. Results

3.1. Quantitative Relationships among Feature Space Variables

The linear formula and correlation coefficient results of the four feature space variables (NDVI,
MSAVI, TGSI, and albedo) are shown in Figure 3a–e. Here, it shows that the albedo has a significant
negative correlation with NDVI and MSAVI, with correlation indexes of 0.708 and 0.7298, respectively
(Figure 3a,b), while TGSI has a positive correlation with a correlation index of 0.7151 (Figure 3c).
The linear and nonlinear relationships between TGSI and NDVI as well as MSAVI are extremely
weak, both of which are less than 0.2 (Figure 3d,e). Therefore, the three sets of feature space variables
with the strongest correlation were selected to construct the feature space models of Albedo-NDVI,
Albedo-MSAVI, and Albedo-TGSI, respectively.
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3.2. Results and Comparison

Table 1 shows the K values of the three feature space models. Table 2 indicates the range of DDI
values for different desertification areas. The K values and the range of DDI values in the various
desertification areas are different for the three feature space models. These include the highest albedo
values, the lowest NDVI values, and almost no vegetation coverage in the severe desertification areas.
However, the non-desertification areas covered by vegetation have the highest NDVI and the lowest
albedo values.

The area and spatial distribution of desertification differed according to the feature space model
used, as shown in Table 3 and Figure 4. Table 3 represents the statistics of the extraction results
regarding desertification. Figure 4 shows the spatial distribution characteristics of desertification areas
as extracted by the different models.

Table 1. Statistical table of K values for the three feature space models.

Feature Space Models K

Albedo-NDVI 0.55
Albedo-MSAVI 0.38
Albedo-TGSI −0.75

Table 2. The different ranges of DDI (desertification divided index) values for land at different stages
of desertification.

Model Level DDI

Albedo-NDVI

severe desertification <−0.23
high desertification −0.23 to −0.19

medium desertification −0.19 to −0.15
low desertification −0.15 to −0.05
non-desertification >−0.05

Albedo-MSAVI

severe desertification <−0.51
high desertification −0.51 to −0.41

medium desertification −0.41 to −0.30
low desertification −0.30 to −0.14
non-desertification >−0.14

Albedo-TGSI

severe desertification <−1.10
high desertification −1.10 to −0.94

medium desertification −0.94 to −0.78
low desertification −0.78 to −0.46
non-desertification >−0.46

Table 3. Statistical analysis of desertification information extraction results by Albedo-NDVI,
Albedo-MSAVI, and Albedo-TGSI.

Level
Albedo-NDVI Albedo-MSAVI Albedo-TGSI

Area (km2) % Area (km2) % Area (km2) %

severe 36,474.01 11.47 39,789.19 12.51 46,527.76 14.63
high 75,588.28 23.78 72,539.47 22.82 88,625.83 27.87

medium 101,489.64 31.92 97,466.09 30.66 93,847.18 29.52
low 60,513.16 19.03 62,743.63 19.73 47,583.62 14.97
non 7123.82 2.24 8203.43 2.58 4867.86 1.53

water 11,544.11 3.63 11,983.89 3.77 11,300.88 3.55
sand 25,224.58 7.93 25,231.90 7.93 25,204.47 7.93
total 317,957.60 100 317,957.60 100 317,957.60 100
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Figure 4a shows the results of desertification information extracted from the Albedo-NDVI
feature space model. The area of desertification extracted from this model accounts for 86.20% of
the total area, of which severe desertification accounts for 11.47%, high desertification accounts
for 23.78%, medium desertification accounts for 31.92%, low desertification accounts for 19.03%,
non-desertification accounts for 2.24%, water accounts for 3.63%, and sand accounts for 7.93% of the
total area. The figure shows that non-desertification areas are mainly distributed along the Eastern and
Western borders of Bayan-Olgii province, the Eastern mountainous areas of Uvs province, the Northern
mountainous areas of Zavkhan province, and scattered areas in the sporadic Northern areas of Khovd
province. Low desertification areas are widely distributed in Bayan-Olgii province, the central part
of Uvs province, the central part of Khovd province, and near the lakes found within the study
area. Medium desertification areas are evenly distributed in Bayan-Olgii province and Uvs province,
whilst high desertification areas are mainly distributed in the Southwestern part of Zavkhan province,
in Govi-Altai province, the Southern part of Khovd province, the central part of Bayan-Olgii province,
east of Uvs lake, and in a ribbon stretching from the Northwest to the Southeast of the Western part
of Uvs province and Khovd province. Most of the severe desertification areas are accompanied by
high desertification, mainly distributed in Southwestern Zavkhan province, southern Khovd province,
Northern and Southern Govi-Altai province, east of Uvs lakes, and adjacent to the sandy areas. At the
same time, land degradation has begun in the areas around rivers and lakes, and most of these have
become low or medium desertification areas.

Figure 4b is the result of desertification information extraction based on the Albedo-MSAVI feature
space model. The area of desertification extracted from this model accounts for 85.72% of the total
area, of which severe desertification accounts for 12.51%, high desertification accounts for 22.82%,
medium desertification accounts for 30.66%, low desertification accounts for 19.73%, non-desertification
accounts for 2.58%, water accounts for 3.77%, and sand accounts for 7.93%. This figure shows that the
spatial distribution of various ground objects as obtained by the Albedo-MSAVI model is basically
similar to that of the Albedo-NDVI model. The difference between the two methods is that the
non-desertification and low desertification areas extracted by Albedo-MSAVI are larger, while the
medium and high desertification areas extracted by Albedo-MSAVI are smaller than those extracted
by the Albedo-NDVI model.

Figure 4c is the result of desertification information extraction based on the Albedo-TGSI feature
space model. The area of desertification extracted from this model accounts for 86.99% of the total
area, of which severe desertification accounts for 14.63%, high desertification accounts for 27.87%,
medium desertification accounts for 29.52%, low desertification accounts for 14.97%, non-desertification
accounts for 1.53%, water accounts for 3.55%, and sand accounts for 7.93%. These results show that the
non-desertification areas are mainly distributed along the Western border of Bayan-Olgii province,
the Northeastern parts of Uvs province, and a small area within the Northern region of Zavkhan
province. Low desertification areas are widely distributed in the mountainous areas of the central
part of Bayan-Olgii province, the central part of Uvs province, and near the lakes in Khovd province.
The medium desertification areas are distributed in the western part of Govi-Altai province, the central
part of Khovd province, and the Northeastern part of Uvs province. High desertification areas are
mainly distributed in the southern parts of Zavkhan province, Govi-Altai province, Southern Khovd
province, the central part of Bayan-Olgii province, and east of Uvs lake. Most severe desertification
areas are associated with high desertification, mainly in Southern Zavkhan province, Southern Khovd
province, east of lake Uvs, and the adjacent sand areas. At the same time, land degradation has begun
in areas near rivers and lakes in the region, and most of the areas, except those affected by sand,
have undergone low or medium desertification.
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3.3. Accuracy Assessment

Table 4 shows the confusion matrices of the three feature space models, and the specific
classification accuracy is shown in Table 5. The results showed that the overall classification accuracy
of the Albedo-NDVI model was 84.53% with a Kappa coefficient of 0.8046, Albedo-MSAVI model
was 85.60% with a Kappa coefficient of 0.8193, and Albedo-TGSI model was 88.27% with a Kappa
coefficient of 0.8518. The producer and user accuracy of each type of ground object extracted by
the Albedo-NDVI model were 75.00% and 96.43% for severe desertification, 84.54% and 88.17%
for high desertification, 87.18% and 83.61% for medium desertification, 84.31% and 70.49% for low
desertification, 68.42%and 76.47% for non-desertification, 89.47% and 94.44% for water, and 91.67%
and 91.67% for sand. The producer and user accuracy of each type of ground object extracted by
the Albedo-MSAVI model was 80.56% and 90.63% for severe desertification, 83.51% and 91.01%
for high desertification, 86.32% and 87.83% for medium desertification, 88.24% and 69.23% for low
desertification, 78.95% and 75.00% for non-desertification, 94.74% and 94.74% for water, and 88.89%
and 91.43% for sand. The producer and user accuracy of each type of ground object extracted by
the Albedo-TGSI model was 88.89% and 91.43% for severe desertification, 90.72% and 92.63% for
high desertification, 90.60% and 87.60% for medium desertification, 80.39% and 75.93% for low
desertification, 73.68% and 87.50% for non-desertification, 89.47% and 94.44% for water, and 91.67%
and 91.67% for sand. Therefore, we found that the three models mentioned in this study have a
relatively high classification accuracy. The overall classification accuracy of the Albedo-TGSI model,
the producer accuracy of severe desertification and high desertification areas, and the Kappa coefficient
were the highest. The overall classification accuracy of the Albedo-MSAVI model was slightly higher
than that of the Albedo-NDVI model. At the same time, the Albedo-MSAVI model had the highest
producer accuracy for non-desertification and low desertification areas.

Table 4. Confusion matrices of the three feature space models.

Model Level Severe High Medium Low Non Water Sand

Albedo-NDVI

severe 27 6 0 0 0 0 3
high 0 82 11 4 0 0 0

medium 0 4 102 11 0 0 0
low 0 0 6 43 2 0 0
non 0 0 2 3 13 1 0

water 0 0 0 0 2 17 0
sand 1 1 1 0 0 0 33

Albedo-MSAVI

severe 29 3 0 1 0 0 3
high 2 81 10 4 0 0 0

medium 0 3 101 13 0 0 0
low 0 0 2 45 4 0 0
lon 0 0 1 2 15 1 0

water 0 0 0 0 1 18 0
sand 1 2 1 0 0 0 32

Albedo-TGSI

severe 32 1 0 0 0 0 3
high 0 88 4 5 0 0 0

medium 0 6 106 5 0 0 0
low 1 0 8 41 1 0 0
non 0 0 2 2 14 1 0

water 0 0 0 1 1 17 0
sand 2 0 1 0 0 0 33



Remote Sens. 2018, 10, 1614 12 of 17

Table 5. The user and producer accuracy of Albedo-NDVI, Albedo-MSAVI, and Albedo-TGSI.

Model Level Producer Accuracy (%) User Accuracy (%)

Albedo-NDVI

severe 75.00 96.43
high 84.54 88.17

medium 87.18 83.61
low 84.31 70.49
non 68.42 76.47

water 89.47 94.44
sand 91.67 91.67

Albedo-MSAVI

severe 80.56 90.63
high 83.51 91.01

medium 86.32 87.83
low 88.24 69.23
non 78.95 75.00

water 94.74 94.74
sand 88.89 91.43

Albedo-TGSI

severe 88.89 91.43
high 90.72 92.63

medium 90.6 87.6
low 80.39 75.93
non 73.68 87.5

water 89.47 94.44
sand 91.67 91.67

4. Discussion

In desertification extraction studies, researchers have tried to extract information by deciphering
ground cover types. In terms of the landscape pattern, the land covers in desertification areas are usually
classified as desert steppe and barren. However, when the desertification information is obtained through
the interpretation of land cover, it is often interpreted from a macroscopic perspective. In this study,
the results of Albedo-NDVI, Albedo-MSAVI, and Albedo-TGSI were compared to the 2015 Mongolia
land cover classification map. The contrasting results showed that the desertification area obtained
by image interpretation accounts for 81.43% of the total area, which is lower than the desertification
extraction results in this study. The land cover interpretation is not being sensitive enough regarding
low quality vegetation information, resulting in the misclassification of some land cover information,
such as desert steppe and barren areas. When the vegetation coverage of desert steppe remained at
about 10% (using the land cover classification map of Mongolia), it was very similar to the real steppe
with low coverage. In addition, it was easily classifiable as real steppe, leading to an underestimation
in the area of desertification. When the vegetation coverage of desert steppe was reduced to about 5%,
the similarity with land classified as barren became high. In the 30-m resolution image, it was difficult to
distinguish between desert steppe and barren, resulting in the overestimation of severe desertification
and high desertification, and the underestimation of medium desertification. Therefore, the actual results
of the desertification area in this region should be greater than 81.43%, as indicated on the land cover
interpretation map. In addition, it is more similar to the results of the above three models.

Figure 5 represents a comparison of the land cover interpretation product and the Albedo-MSAVI
model inversion results. Figure 5a,b do not represent the same type of results, with (a) being a land cover
map reflecting desertification or non-desertification land cover types, while (b) is a model inversion
result showing the degree of desertification. As desertification will inevitably lead to changes in land
object types and special land cover types, land cover maps can, indirectly reflect the present situation
of desertification. From our study, we found that the similarity between water- and sand information
obtained by the two different methods was high, but the results of other land objects were quite
different. Through visual comparison, five zones with significant differences were selected in Figure 5.
Regarding Zone 1, the non-desertification areas in the Eastern part of Uvs province and the Western part
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of Zavkhan province differed greatly. The results of the land cover map based on eCognition software
showed much greater non-desertification than those of the distribution map, showing different degrees
of desertification. For Zone 2, the results of the Albedo-MSAVI retrieval showed that the Southern part
of Zavkhan province mainly exhibited areas of severe and high desertification, while the interpretation
of images suggested that half of the Southern part of Zavkhan province consisted of non-desertification
areas (interpretation classified as real steppe). With regards to Zone 3, the interpretation of images
showed that the Southern part of Uvs province was barren, portraying areas of high and severe
desertification. However, the Albedo-MSAVI model exhibited far fewer areas of high desertification
than the interpretation of the image in the high desertification region. For Zone 4, the retrieved
results of the Albedo-MSAVI model showed that the area East of Uvs Lake was mainly an area that
contained high and severe desertification. However, the interpretation results showed that the degree
of desertification in this region was relatively light (interpretation classified this area as desert steppe).
For Zone 5, the land cover map showed that most of the areas of Khovd province and the Southern
part of Govi-Altai province were barren, namely, the areas of high and severe desertification. On the
other hand, the distribution map of the degree of desertification showed far fewer barren areas than the
remote sensing image interpretation results in the high desertification region.
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The results obtained from this study were very similar to the desertification data released by
Mongolia. The 2007 desertification data of Mongolia also shows that the high and severe areas of
desertification are strip-shaped and extend from the Northwest to the Southeast. Land degradation
was indicated to have begun near the country’s rivers and lakes, most of which had become areas
of low desertification [3]. The area selected for this study lies in the Northwestern part of Mongolia,
associated with serious desertification. In this region, there is less area that is covered by forests and
steppe grasslands. Therefore, the actual desertification situation in the region should be higher than
the average desertification level of 76.8% announced by Mongolia in 2017 [4]. It may be closer to the
results of this study.

Compared to previous studies on the extraction of desertification information, the data sources
chosen in this study have a higher resolution, and a variety of surface reference variables were
introduced to build corresponding feature spaces. Previous studies on desertification mostly used
MODIS data as the basic data source to extract large-scale desertification information [40–42]. However,
the spatial resolution of MODIS data is 500 m, making the retrieval of fine detail difficult. Therefore,
Landsat 8 images with a spatial resolution of 30 m, as used in this study, can greatly increase the level of
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detailed information and thereby, improve accuracy. Furthermore, most other studies on the extraction
of desertification information, involved a variety of indexes that were chosen to form a decision tree
classification or to construct an Albedo-NDVI feature space [43–45]. In this study, MSAVI and TGSI
were introduced to replace NDVI to build different models, and the results were more accurate than
the single Albedo-NDVI model.

A comparison of the results from the three models reveals that the effects of desertification
extracted by each method differs, but each method has its own advantages in extracting desertification
information at different levels. The Albedo-TGSI model was used to extract the largest area
of desertification, accounting for 86.99% of the total area, followed by the Albedo-NDVI model
at about 86.20%, and the Albedo-MSAVI model at about 85.72%. At the same time, the area
and accuracy of severe and high desertification areas extracted by the Albedo-TGSI model were
the highest, far exceeding the results obtained by the Albedo-NDVI and Albedo-MSAVI models.
Its spatial distribution extends from the Southwestern part of Zavkhan province to a wide area
in the Southern part of Zavkhan province and from the Southern part of Khovd province and
parts of Govi-Altai province to cover most of Khovd province and the Southern part of Govi-Altai
province. However, the areas of medium desertification, low desertification, and non-desertification
extracted by the Albedo-TGSI model were smaller than those obtained by the other two methods.
The spatial changes were mainly reflected in the disappearance of the scattered non-desertification
areas in the Northern part of Khovd province and the decrease in both the low and medium
desertification levels. A comparison between Albedo-NDVI and Albedo-MSAVI showed that the
results of the two classifications were highly similar. However, the areas of non-desertification,
low desertification, and water extracted by the Albedo-MSAVI model were all larger than those
obtained by the Albedo-NDVI. The accuracy of non-desertification, low desertification, and water
extracted by the Albedo-MSAVI was far higher than that of the other two models. Thus, we can
conclude that the Albedo-MSAVI model is the most sensitive to vegetation under the condition of
low vegetation coverage. In addition, this model can fully extractinformation relating to areas of
non-desertification and low desertification. The Albedo-TGSI model has the highest sensitivity to
surface soil changes and can fully extract information relating to areas of high and severe desertification.
Presently, the Albedo-NDVI model is a widely accepted model and can be used to accurately acquire
desertification information in regions with higher vegetation coverage.

5. Conclusions

By constructing the feature space models of Albedo-NDVI, Albedo-MSAVI, and Albedo-TGSI,
this study, with a high resolution (30 m), has obtained the results regarding the extraction of
desertification information of Northwestern Mongolia, analyzed the mechanism of three feature
space models, and compared these with previous studies on desertification information extraction.
This study has proven that it is feasible to extract desertification information using the feature space
models of Albedo-NDVI, Albedo-MSAVI, and Albedo-TGSI. Moreover, these models are preferable to
the traditional method of extracting desertification information by land cover classification. In addition,
the results of the different desertification extraction models vary. Therefore, in the vast area that
comprises the Mongolian plateau, different methods for the extraction of desertification information
should be chosen for different regions and different surface features. The traditional Albedo-NDVI
model can be used in areas with high vegetation coverage and high forest ratios (such as the Northern
and Eastern parts of the Mongolian plateau). The Albedo-MSAVI model can be used to extract
desertification information in areas with relatively low vegetation coverage on the Mongolian Plateau
(such as the Western Mongolian Plateau and Eastern Mongolia). The Albedo-TGSI model can be used
for regions with extremely low vegetation coverage and for the widely distributed Gobi Desert and
bare land (such as the Southwestern regions of the Mongolian plateau). Based on the three models and
the land cover characteristics of the Mongolian plateau, dynamic monitoring of desertification on the
Mongolian plateau can be realized in the future.
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