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Abstract: The trihedral corner reflector (TCR) is widely used as the calibration device in monostatic
synthetic aperture radar (SAR) calibration, and the performance of the TCR in radiometric calibration
has been studied and verified in depth. As for the bistatic SAR system calibration problem, there
have been few published studies. There is a lack of knowledge regarding the exact bistatic radar
cross-section (RCS) pattern of TCR with different bistatic angles, and it is also not clear whether
the TCR can be used as the calibration target in bistatic SAR. Moreover, the bistatic and monostatic
radar cross-section (RCS) characteristics of the TCR are different, even if the bistatic angle is very
small. Therefore, the feasibility, design, and deployment requirements of the TCR for bistatic SAR
calibration should be carefully investigated. In this paper, we outline the theoretical and practical
requirements that need to be satisfied when choosing appropriate calibration devices for bistatic
radiometric calibration. Based on these requirements, we analyzed the bistatic RCS patterns using
electromagnetic simulation, and concluded that the TCR is feasible for bistatic SAR calibration under
relatively small bistatic angles (less than 6◦). The change of TCR boresight with the bistatic angle
is not considered generally. However, we found that the TCR boresight and peak RCS will change
with the bistatic angle. We have also proposed that the bistatic angle can be extended to 20◦ by
taking the change of the TCR boresight into account. In this condition, we should get the TCR
boresight according to the bistatic angle and then align it during the deployment. Both of these two
conditions have their own unique advantages. Different error sources of TCR RCS from manufacture,
misalignment, and deformation were investigated quantitatively with simulations, which can provide
a theoretical basis for how to design a suitable TCR and guarantee the calibration accuracy for bistatic
calibration. In addition, simulation results are different from those of monostatic calibration. Through
experiments, we have further verified the feasibility by comparing the quality of bistatic SAR images
and point target energy with several typical bistatic angles as the TCR boresight is considered or not.
If the bistatic angle is larger than 6◦, taking the TCR optimum boresight into account can improve
imaging quality and point target energy.

Keywords: bistatic SAR; trihedral corner reflector; radiometric calibration; RCS; electromagnetic
simulation

1. Introduction

The radiometric calibration theory and technique of the monostatic SAR system have been
considerably improved in the past, and the relevant problem has been extensively studied and well
understood [1–3]. Numerous canonical passive reflectors have been proven to be suitable as monostatic
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calibration targets such as spheres, dihedrals, and trihedrals. From the first decade of this century,
great interest in the bistatic synthetic aperture radar (SAR) system has been arisen rapidly given its
special merits in various microwave remote sensing applications [4–6]. However, for the bistatic SAR
system, the calibration problem is significantly more complex, and limited bistatic SAR calibration
theory and experiments have been reported in the literature. The main reason may be due to the lack of
suitable calibration targets introduced by the bistatic SAR observation geometry. Therefore, the design
of appropriate calibration targets and the investigation of their performances in the SAR image are the
first and foremost issues in bistatic SAR radiometric calibration.

At present, several bistatic calibration methods based on point targets have been proposed, which
can be roughly divided into two categories. One idea is to use an active calibration target with a
high radar cross-section (RCS) over a large frequency range that can be easily configured for different
bistatic angles [7–9]; however, active calibration targets are expensive and complex to manufacture.
The other view is to utilize passive calibration targets. In 2003, a passive cross-polarization bistatic
calibration target was designed for RCS measurements [10]. Although this device performed well over
a wide frequency range, it was very complicated to design and manufacture. Trihedral corner reflectors
(TCRs) are generally considered not suitable for bistatic SAR calibration with large bistatic angles [11].
One bistatic SAR experiment has been reported using TCR, but failed to perform bistatic radiometric
calibration [12], which may be due to the lack of an exact bistatic RCS pattern and not considering the
design and deployment requirements. Theoretically, spheres can be considered as good calibration
targets at arbitrary bistatic angles, but their relative low RCS restricts their practicability.

The TCR is perhaps the most practical device for calibrating monostatic SAR systems.
The monostatic RCS pattern of TCR has a 3-dB beamwidth of approximately 40◦ in both the azimuth
and elevation dimensions, which means that it is much more tolerant to field alignment errors [13].
It is also relatively inexpensive to manufacture, and can be produced in large quantities. Consequently,
the TCR have been used as the standard calibration target in monostatic SAR radiometric calibration
for many years. However, knowledge on the bistatic calibration performance of TCR is inadequate or
questionable; in particular, its feasibility for bistatic SAR with different bistatic angles is not so clear.
Therefore, it is important and meaningful to analyze the TCR RCS characteristics, reexamine their
feasibility, and subsequently analyze the design and deployment requirements of this classical passive
calibration target in bistatic SAR radiometric calibration.

The TCR has a very narrow bistatic pattern when the bistatic angle is used as an independent
variable [8]. Therefore, it should be noted that the bistatic pattern discussed in this paper used the
incident angle as an independent variable, rather than the bistatic angle, and we just analyzed the RCS
characteristics of the TCR for bistatic SAR tandem mode radiometric calibration. The bistatic SAR
tandem mode, whose transmitting and receiving antennas are spatially separated by a fixed distance
(i.e., baseline) along the flight track of the SAR platform, can ensure that the bistatic angle is unchanged
during the movement. One example for the tandem mode is the interferometric cartwheel [14].
Similarly, there are other distributed spaceborne SAR or constellation systems with a relatively small
and fixed bistatic angles [15,16] along, across, or at the hybrid of the flight tracks. For example,
TanDEM-X is the first genuinely bistatic SAR system in space, and the working mode includes
monostatic, bistatic, and alternating bistatic mode. The first bistatic spaceborne SAR experiments was
made as the bistatic angle is 1.8◦, and then obtained the good quality bistatic image [17]. The Argentine
SAOCOM constellation comprises two L-band satellites, SAOCOM-1A and SAOCOM-1B, which will
be monitoring for the mitigation of the effects of natural disasters.

This paper is structured as follows. Section 2 is devoted to outlining the requirements of the
calibration target for radiometric calibration. The bistatic RCS pattern of the TCR is analyzed in
Section 3 through electromagnetic simulations as the bistatic angle fixed in azimuth. Section 4 analyzes
the various error factors of the TCR RCS quantitatively, including machining, deployment, and thermal
deformation errors. In Section 5, the quality of the bistatic SAR images of the TCR with different bistatic
angles are analyzed. The discussion and conclusions are finally drawn in Sections 6 and 7, respectively.
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2. Requirements of Calibration Target for Radiometric Calibration

Knowing how to select a calibration target is critical when evaluating the feasibility of a certain
calibration target for bistatic SAR radiometric calibration. The calibration targets, including passive
corner reflectors and active calibration targets, play an important role in SAR radiometric calibration.
In the following, we discuss the basic requirements that should be considered when designing suitable
calibration targets for radiometric calibration, including the beamwidth, the stability of the RCS, and
the signal-to-clutter ratio (SCR). These requirements are derived from monostatic SAR radiometric
calibration in principle; however, they are also prerequisites for determining the feasibility of bistatic
SAR calibration targets.

2.1. The Beamwidth Requirement

For an antenna or reflector pattern, the beamwidth is a physical quantity that characterizes the
angle range between certain power points (generally half power or so-called 3 dB) of the main lobe,
when referenced to the peak effective radiated power of the main lobe. The wider the 3-dB beamwidth
of a calibration target, the easier it is to align to the SAR antenna. The beamwidth requirement is that
the beamwidth of the calibration target should be larger than the SAR antenna beamwidth, especially
the azimuth beamwidth of the calibration target. Using the Sentinel-1 SAR calibration as an example,
the first criterion can be expressed mathematically as follows [18]:

BWcal > φa + ∆φy = BWSAR (1)

where BWSAR is the beamwidth of the Sentinel-1 SAR antenna given by the sum of the SAR antenna
azimuth beamwidth φa and the yaw attitude stability of antenna ∆φy; and BWcal is the monostatic
azimuth beamwidth of the calibration target, which should be larger with respect to the BWSAR.
Obviously, Equation (1) is still valid for a bistatic situation, when BWcal stands for the bistatic azimuth
beamwidth of the calibration targets.

In fact, the TCR has a wide monostatic pattern (TCR RCS versus incident angle), but a very narrow
bistatic pattern (TCR RCS versus bistatic angle) that is different from the pattern we usually define [8],
and the 3-dB bistatic beamwidth can be written as:

ϑ ≈ 14.5
◦

a[m] · f [GHz]
(2)

where a is the length of the hypotenuse sides of the TCR, and f is the frequency. The 3-dB bistatic
beamwidth is less than 4◦ for a 0.4-m TCR at X-band. It should be noted that the beamwidth and
bistatic pattern discussed in this paper used the incident angle as an independent variable, and not the
bistatic angle (angle between the incident and backscattered wave), if not specified.

2.2. The Stability of RCS Requirement

The RCS of the target determines the power density returned to the radar for a particular power
density incident on the target [19], so a natural requirement for a calibration target is that its RCS
should be stable to allow radiometric calibration results with repeatability, where the stability of RCS
refers to variation over frequency, due to the frequency having a great influence on the target RCS.
For passive calibration targets, according to electromagnetic theory, the target RCS or backscattering
characteristic can be divided into three regions, including the Rayleigh region (ka < 0.5), resonance
region (0.5 < ka < 20), and optical region (ka > 20) [20], where k = 2π

λ is the wavenumber, and a
represents the feature size (e.g., radius of a sphere, interleg length of a TCR) of the passive target.
Passive calibration targets will show a stable RCS when they work within the optical region. As shown
in Figure 1, the target RCS is stable, and can be estimated accurately in the optical region. Therefore,
the requirement for the stability of the RCS is that the feature size of the TCR must meet the optical
region. We calculated that a > 0.1 can ensure RCS stability at the X-band.
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Figure 1. Radar cross-section (RCS) of a perfectly conducting sphere normalized to the optics value πa2.

2.3. The SCR Requirement

To work as a calibration target, the target must be distinguished from the surrounding background
scatterers (often termed clutter), which means that the target must have a large enough RCS to ensure
sufficient visibility. The measure of visibility in a SAR image is the target SCR, and is defined as [13]:

SCR =
σT

pq〈
σC

pq
〉 =

σT
pq sin θi〈

σo
pq

〉
pa pr

(3)

where σT
pq is the RCS of the calibration target, σC

pq is the background clutter RCS, σo
pq is the normalized

average clutter RCS (i.e., the clutter backgrounding coefficient), the subscript pq stands for the
transmitted and received polarization of the radar signal, θi is the radar incident angle, and pa, pr are
the azimuth and range sampling interval of the SAR images, respectively.

Generally, the SCR is directly related to radiometric calibration accuracy [21], as shown in Figure 2.
A SCR of at least 25 dB is desired to guarantee that the radiometric calibration error is less than 0.5 dB,
which is normally used as a fundamental requirement for the SAR radiometric calibration experiment.
The bistatic backscattering coefficient of dry grass, when the radar incident angle is 20◦, is likely to
be −10 dB at the X-band [22], and we can obtain a calibration target RCS of at least about 11 dBm2

when the SCR is 25 dB, and the azimuth and range sampling interval are both 0.5 m. In practice,
the background reflections should be as small as possible. It is important to carefully consider the
deployment of calibration targets to restrict the influence of background clutter [23].Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 19 
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Figure 2. Upper (blue) and lower (red) limits of the radiometric calibration errors vs. signal-to-clutter
ratio (SCR).
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3. Bistatic RCS Characteristics

To select and design proper calibration targets, knowledge of the bistatic RCS characteristics of
calibration targets is indispensable according to the requirements listed in Section 2. The term RCS is a
measure of power scattered in a given direction when a target is illuminated by an incident wave from
radar. The RCS can be expressed by the electric field strength [20]:

σ = lim
R→∞

4πR2 |Er|2

|Ein|2
(4)

where Ein is the electric field strength of the incident wave impinging on the target, Er is the electric
field strength of the scattered wave at the radar, and R is the range from the radar to the target.

This definition applies to both monostatic and bistatic target RCSs. However, the target RCS
depends on the transmitting and receiving direction. Therefore, the bistatic RCS is generally not equal
to the monostatic RCS. Figure 3 depicts both monostatic and bistatic radar configurations. A monostatic
system uses a single location for both the transmitter and receiver, whereas a bistatic system locates
the transmitter and receiver separately, and the angle between the transmitter and receiver is the
bistatic angle.
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Figure 3. The monostatic and bistatic radar configurations.

At present, there have been many studies on monostatic RCSs for different types of targets, but
little information on bistatic RCSs. The TCR is widely used as a calibration target in monostatic SAR
radiometric calibration, but the characteristic of its real bistatic RCS, especially the exact bistatic RCS
pattern, is not clear in bistatic SAR calibration. In order to solve this problem, we considered two
approaches in the following: one based on the monostatic bistatic equivalence theorem, and the other
was electromagnetic simulation at the X-band (9.6 GHz), and the TCR had inner-leg dimensions of
0.4 m to acquire stable RCS characteristics within the optical region.

3.1. Monostatic Bistatic Equivalence Theorem

The monostatic bistatic equivalence theorem indicates that the bistatic RCS can be approximated
by the monostatic RCS measured on the bistatic angle bisector and measured at cos β

2 times lower than
the true frequency for small bistatic angles [24], which can be written by:

σ

(
f , α− β

2
, α +

β

2

)
≈ σ

(
f cos

β

2
, α, α

)
(5)

where α is the incident angle and β is the bistatic angle.
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Consider a TCR with sides comprised of isosceles right triangles. With the geometry defined as
per Figure 4, by using geometrical optics approximation theory, the RCS of a TCR can be formulated
as [25]:

σ(θ, ϕ) =
4π

λ2 A2(θ, ϕ) (6)

A2(θ, ϕ) =

 l4
(

4c1c2
c1+c2+c3

)2
i f c1 + c2 ≤ c3

l4
(

c1 + c2 + c3 − 2
c1+c2+c3

)2
i f c1 + c2 ≥ c3

(7)

where c1, c2, c3 are each assigned one of:

c1

c2

c3

 =


cos θ

sin θ sin ϕ

sin θ cos ϕ

(8)

where λ is the radar wave length, A is the effective aperture of a trihedral, θ is the elevation angle, and
ϕ is the azimuth angle.

Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 19 

 

approaches in the following: one based on the monostatic bistatic equivalence theorem, and the other 
was electromagnetic simulation at the X-band (9.6 GHz), and the TCR had inner-leg dimensions of 
0.4 m to acquire stable RCS characteristics within the optical region. 

3.1. Monostatic Bistatic Equivalence Theorem 

The monostatic bistatic equivalence theorem indicates that the bistatic RCS can be approximated 

by the monostatic RCS measured on the bistatic angle bisector and measured at cos
2
β  times lower 

than the true frequency for small bistatic angles [24], which can be written by: 

, , cos , ,
2 2 2

f fβ β βσ α α σ α α   − + ≈   
   

 (5) 

where α  is the incident angle and β  is the bistatic angle. 
Consider a TCR with sides comprised of isosceles right triangles. With the geometry defined as 

per Figure 4, by using geometrical optics approximation theory, the RCS of a TCR can be formulated 
as [25]: 

( ) ( )2
2

4, ,Aπσ θ ϕ θ ϕ
λ

=  (6) 

( )

2
4 1 2

1 2 3
1 2 32

2
4

1 2 3 1 2 3
1 2 3

4

,
2

c cl if c c c
c c c

A

l c c c if c c c
c c c

θ ϕ

  
 + ≤ + +  = 

 
+ + − + ≥  + + 

 (7) 

where 1 2 3, ,c c c  are each assigned one of: 

1

2

3

cos
sin sin
sin cos

c
c
c

θ
θ ϕ
θ ϕ

 
 = 
 
 

 (8) 

where λ  is the radar wave length, A  is the effective aperture of a trihedral, θ  is the elevation 
angle, and ϕ  is the azimuth angle. 

 
Figure 4. The monostatic RCS observation geometry of the trihedral corner reflector (TCR). Figure 4. The monostatic RCS observation geometry of the trihedral corner reflector (TCR).

As shown in Figure 5, the bistatic RCS azimuth patterns versus the azimuth angles of the TCR
under different bistatic angles were simulated by using the monostatic bistatic equivalence theorem.
It can be seen that the main lobe of the RCS patterns were very wide and flat, and the bistatic RCS
values for different bistatic angles obtained by the monostatic bistatic equivalence theorem were similar
to the monostatic RCS value near the peak. However, the azimuth angles corresponding to the peak
RCS were different due to the monostatic RCS measured on the bistatic angle bisector.
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3.2. FEKO Electromagnetic Simulation

FEKO is a simulation software for three-dimensional (3D) structural electromagnetic field analysis,
and offers a variety of core algorithms such as the Method of Moments (MOM), Physical Optics (PO),
Multilevel Fast Multipole Method (MLFMM), Finite Element Method (FEM), Uniform Theory of
Diffraction (UTD), and several of the above algorithms are used together. In addition, theoretical
analysis or simulation computation has been used as a standard for RCS analysis and evaluation of the
calibration target. Paper [26] has concluded that FEKO’s RCS is more reliable and accurate than the
results of the normal anechoic chamber. So, we give the results of FEKO electromagnetic simulation.
Combining the MOM with the MLFMA to calculate the RCS of TCR under different bistatic angles
has the advantages of shortening the calculation time and having a high accuracy. The bistatic RCS
observation geometry of TCR is shown in Figure 6, where θ is the elevation angle, ϕ is the azimuth
angle, and β is the bistatic angle. We get the bistatic RCS azimuth pattern at different bistatic angles
with the elevation angle fixed at 54.74◦ and the bistatic angle illustrated in the azimuth.
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Figure 6. The bistatic RCS observation geometry of the TCR.

As shown in Figure 7, the bistatic RCS azimuth patterns of the TCR were simulated using the
FEKO electromagnetic simulations. It can be seen that the main lobe of the bistatic RCS pattern became
highly rippled and dramatically lower with the bistatic angle increasing. Furthermore, the peak RCS
and beamwidth varied greatly for different bistatic angles, so even in the case of a small bistatic angle,
the monostatic and bistatic RCS characteristics are different. However, the peak RCS for different
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bistatic angles corresponded to different azimuth angles, which was the same as the results obtained
by using the monostatic bistatic equivalence theorem.
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By comparing the results of the FEKO electromagnetic simulations (see Figure 7) and those
of the monostatic bistatic equivalence theorem (see Figure 5), it was found that the peak RCS and
the beamwidth of the two results were different for the same bistatic angle. The TCR is specifically
designed to be a backscatter, and the coherent addition of the waves work only in that direction.
In most of the other directions, i.e., the bistatic condition, there is very little scattering, and in all of
the other directions, the scatter is less than in the backscatter [24]. It has a narrow backscattering
lobe, with the beamwidth of the lobe proportional to the wavelength divided by a characteristic
length of the trihedral, so the TCR would be the worst case for the monostatic bistatic equivalence
theorem. Therefore, it is not suitable to use the equivalence theorem to compute the bistatic RCS of
TCR. For these reasons, the computation of the bistatic RCS characteristics of the TCR in this paper
were based on the FEKO electromagnetic simulations.

As shown in Figure 7, when the bistatic angle is larger than 6◦, the ripples are too large and
dramatic to align the peak RCS pointing of the TCR with the SAR antenna’s boresight. Therefore,
the RCS becomes unpredictable, which would degrade the SAR image quality and induce radiometric
calibration errors. For bistatic angles of less than 6◦, the bistatic RCS patterns of TCR are wide, with
a beamwidth up to 30◦, so it satisfies the beamwidth requirement of the calibration target when the
bistatic SAR is working in tandem mode. On the other hand, the peak RCS is more than 15 dB, and
also satisfies the SCR requirements that were discussed in Section 2.

As is widely known, the TCR boresight of the maximum RCS is θ = 54.74
◦
, ϕ = 45

◦
for monostatic

SAR. We got the bistatic RCS azimuth patterns (Figure 7) with the elevation angle fixed at 54.74◦.
The results of previous studies about TCR for bistatic SAR calibration may be obtained in this case [11].
However, we found the elevation angle of the peak RCS for different bistatic angles are different,
as shown in Figure 8a. The main lobe is gradually disappearing and the energy is moving to the
side lobe when the bistatic angle is greater than 20◦, so we set 20◦ as the upper limit for the range of
feasible bistatic angle. Then, we got the bistatic RCS azimuth patterns of the TCR as the elevation
angle corresponding to its individual peak RCS, as shown in Figure 8b. It can be seen that the bistatic
RCS patterns are still wide and flat, even when the bistatic angle increases beyond 6◦. These azimuth
patterns in Figure 8b are different from those of Figure 7, and the peak RCSs are larger than those of
Figure 7 at the same bistatic angle. So, we concluded that the TCR can be used as the bistatic calibration
target as the bistatic angle increases below 20◦. In this condition, we should align the TCR boresight
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according to the bistatic angle during the deployment, instead of just fixing the elevation angle at
54.74◦. However, the lower peak RCS will affect the SCR as the bistatic angle become larger.
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Combined with the electromagnetic simulation results and the above analysis, the results can
be divided into two aspects. On the one hand, if we don’t consider the change of TCR boresight
with the bistatic angle, the TCR is not suitable for bistatic SAR calibration under large bistatic angles.
Furthermore, the TCR meets the requirements of the calibration target for bistatic radiation calibration
under the condition of small bistatic angles (less than 6◦) when the bistatic SAR is working in tandem
mode. On the other hand, we have also proposed that the bistatic angle can be extended to 20◦ by
taking the change of the TCR boresight into account. In summary, if the TCR is aligned with the
optimum boresight according to the bistatic angle during the deployment, it can also work at relatively
large bistatic angles at the cost of sacrificing the SCR.

4. Error Factors of TCR RCS

In Section 3, the bistatic RCS characteristics of the TCR were analyzed, which indicated that the
TCR could meet the requirements listed in Section 2. For practical calibration of a bistatic SAR, it is
very important to ensure the accurate RCS of the calibration targets. There are several error factors
that can introduce a change of RCS for the TCR, including that limited machining accuracy will mainly
cause the interplate to be nonorthogonal and the interleg length to not reach the standard during the
manufacturing process. Moreover, the TCR deviates from the design route during the deployment,
or the attitude error (yaw, pitch, and roll) caused the deviation of the platform, which will result in
the pointing deviation. In addition, thermal deformation caused by the environment will also change
the interleg length. Proper control of the above errors will guarantee or improve the accuracy of the
bistatic SAR radiometric calibration. In order to meet the RCS accuracy requirement, we analyzed
the error factors such as interplate orthogonality, machining error of length, pointing deviation, and
thermal deformation quantitatively with electromagnetic simulations. Furthermore, the machining
tolerance, deployment requirements for pointing, and deformation tolerance are recommended in
this section.

4.1. Interplate Orthogonality

The interplate orthogonality means ensuring the angle between the two plates is 90◦ at their
intersections, but in practical manufacturing, the plates need to be assembled together such as using
welding or other techniques, so it is difficult to ensure the orthogonality between the two plates. When
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analyzing the bistatic RCS observation geometry of the TCR (see in Figure 6), points A and B move
n
◦

outward or inward, and each point moves n
◦
/2 (n = 0, 0.1, 0.2, 0.3, 0.4, 0.5), respectively. In this

condition, points A and B are still in the XOY plane, and OA = OB = b = 0.4 m; we can calculate the
azimuth bistatic RCS pattern.

Define ∆σ as the peak RCS reduction of the trihedral:

∆σ = σmax − σ (9)

where σmax is the peak RCS of the ideal TCR, and σ is the peak RCS of the TCR with errors. The effect
of the interplate angle deviations on RCS can be obtained, and we can also calculate the relationship
between the interplate angle errors and the peak RCS errors, as shown in Figure 9.

1 
 

 

Figure 9. The effect of interplate angle error on the RCS at different bistatic angles.

When only the angle between the two vertical plates is varied, we found that the RCS changes
were negligible, as the interplate angle was smaller than 0.5◦. For monostatic calibration, the interplate
angle error will result in a reduction in RCS. However, the effect of interplate angle error on the RCS
at different bistatic angles is irregular, which may be due to the complexity of the bistatic system,
and the interplate angle error will change the original structure of the TCR. Even in the case of small
bistatic angle (less than 6◦), the RCS errors are negative numbers, as the interplate angle is less than
90◦ (i.e., the interplate angle errors are negative numbers). The errors were more severe when the
interplate angle was more than 90◦, rather than less than 90◦. The current level of machining can
ensure the interplate angle error is less than 0.5◦, and the maximum RCS error will not exceed 0.2 dB
for different bistatic angles. Generally, the RCS loss of the TCR is about 0.23 dB if the interplate angle
deviation is 0.5◦ for monostatic calibration [27]. So, RCS errors due to interplate angle errors are more
severe for monostatic calibration at this machining level. Moreover, the interplate angle deviation will
only cause a loss of RCS, and will not affect the beamwidth and stability requirements when the TCR
is used as a bistatic calibration target.

4.2. Machining Error of Length

The limited machining accuracy will also cause the length of the TCR to not be up to the standard.
Figure 10 shows the curve with the machining errors of length and RCS errors. The absolute value of
the RCS error is probably proportional to the machining error of length. Again, the changes were more
severe when the length decreased rather than increased. In general, the current machining accuracy of
length can be guaranteed up to 1 mm, and the relative RCS errors are less than 0.1 dB for different
bistatic angles. Figure 10 also shows that a length error of less than 1 mm can result from an RCS error
of less than 0.1 dB at the X-band for monostatic calibration, where the RCS error is a little larger than
the result of bistatic calibration. Moreover, when the length error exceeds 2 mm, we found that only
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the bistatic angle is 20◦, and the RCS error is larger than that of the monostatic calibration. Similar to
the interplate orthogonality, the machining error of length does not affect the application of the TCR
for bistatic radiometric calibration.
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Figure 10. The effect of machining error of length on the RCS at different bistatic angles.

4.3. Pointing Deviation

In radiometric calibration, it is important to align the TCR boresight with respect to the SAR
antenna boresight. Either the attitude measurement errors of the SAR platform and antennas or
the pointing of the TCR in the field deployment process will cause the pointing deviation and
the final radiometric calibration errors. Here, we focused on the latter from the view of the TCR
deployment requirements.

Using a TCR with an interleg length of 0.4 m and a bistatic angle of 2◦ as an example, the bistatic
peak RCS is 20.25 dB, and the corresponding boresight is in the direction: θ = 54.62

◦
, ϕ = 44

◦
, which

were obtained from the simulation results in Figure 8. The bistatic RCS pattern was calculated in the
range of 50

◦ ≤ θ ≤ 60
◦

and 40
◦ ≤ ϕ ≤ 50

◦
, and compared with the peak RCS. The contour map of the

azimuth and elevation misalignments is shown in Figure 11.
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The RCS reduction becomes greater with the incident direction deviation from the optimum
boresight increasing. As shown in Figure 12, we can also get the effect of the pointing deviation on the
RCS for different bistatic angles. In the radiometric calibration, it is possible to control the pointing
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deviation within 0.5◦ generally. Furthermore, an azimuth deviation of less than 0.5◦ and elevation
deviation of less than 0.5◦ could introduce no more than 0.5-dB RCS loss at the X-band. However,
a pointing deviation of less than 0.5◦ in azimuth and elevation could make the resulting RCS within
about 0.1 dB of the peak value for monostatic calibration [25]. By comparing the two results, we found
that the RCS loss due to pointing deviation was more severe for bistatic calibration. Moreover, the RCS
loss was more severe for elevation misalignments than for azimuth misalignments, so the elevation
angle should be adjusted as accurately as possible in deployment.
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Figure 12. The effect of pointing deviation on the RCS at different bistatic angles. (a) Azimuth
pointing deviations and corresponding RCS errors; (b) elevation pointing deviations and corresponding
RCS errors.

4.4. Thermal Deformation

The thermal deformation caused by environment mainly changes the length of the TCR, which is
similar to the machining error of length. The thermal deformation can be calculated according to the
temperature range, and then the relationship between thermal deformation and the corresponding
bistatic RCS error can be obtained from Figure 10. Aluminum is commonly used for the construction of
plates; the linear thermal expansion coefficient of the aluminum is 23× 10−6/◦C as the measurement
temperature is 20 ◦C. For the TCR with a length of 0.4 m, the length will change −0.552–0.368 mm
in the temperature range of −40 ◦C to 60 ◦C. According to Figure 10, it can be seen that the relative
change on RCS is very small (less than 0.05 dB) for this temperature range.

To sum up the errors in the above Sections 4.1–4.4, it can be concluded that RCS errors due to
interplate orthogonality and machining errors of length were more severe for monostatic calibration
under the current machining accuracy, and the thermal deformation is similar to the matching error
of length. However, the effect of the pointing deviation on the RCS errors was more severe for
bistatic calibration when the misalignment is the same. These results indicate that these error factors
can introduce different RCS errors for monostatic and bistatic calibration, so we cannot replace the
conclusions of monostatic calibration with those of bistatic calibration. Moreover, these results will
have important reference values and guidance significance for guaranteeing the calibration accuracy
for bistatic SAR calibration.

5. Simulation Experiments

One basic purpose of radiometric calibration is to obtain the absolute calibration constant, which
is the corresponding relation between the target RCS and its pixel value in a SAR image. Therefore,
either the accurate RCS or accurate pixel value is critical to calibration accuracy. We have described
the theoretical requirements, bistatic RCS characteristics, and error factors of the TCR RCS with
electromagnetic simulations. In this section, based on the electromagnetic simulation results, bistatic
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SAR imaging simulation experiments were conducted to analyze the bistatic image quality and the
point target energy, and these were compared with several typical bistatic angles as the TCR boresight
is considered or not. The bistatic SAR imaging system parameters are shown in Table 1 and the imaging
algorithm is the Range–Doppler (RD) algorithm.

Table 1. System parameters used in the simulation dataset.

Simulation Data Parameters

Frequency 9.6 GHz (X-Band)
Bandwidth 100 MHz
Pulse width 1.5 µs

Altitude 2 × 104 m
Velocity 150 m/s

Antenna azimuth beamwidth 0.5◦

Azimuth sampling rate 300 Hz
Range sampling rate 120 MHz

The SAR image quality of a point target is a precondition that determines whether to use this
target as a calibration target or not. The most common image quality parameters for SAR images are
the shape of the impulse response function (IRF). As for a point target, the IRF takes the form of a
Dirac delta function, and the image quality parameters of the point target are shown in Figure 13.
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The most important image quality parameters of the point target include [28]: (1) impulse response
width (IRW); (2) peak side lode ratio (PSLR); and (3) integral side lobe ratio (ISLR). These features
are often considered sufficient to judge the quality of the impulse response performance. The IRW
refers to the 3-dB width of the main lode, which is also known as image resolution. The PSLR and
ISLR are related to the image contrast. PSLR is the ratio of the highest side lobe power to the peak
of the response, and the PSLR is usually less than −13 dB. ISLR is the ratio of the energy contained
in the side lobe to the energy contained in the main lobe of the impulse response, and the ISLR
is usually about −10 dB. The point target accounts for only one or two pixels in the SAR images.
Generally, the upsampling operation is a necessary pre-processing step in order to measure the above
parameters accurately.

The integral method is commonly used to obtain the absolute calibration constant by measuring
the response of the targets. The integrated point target energy is mainly obtained by the difference
between the energy of the point target in the integration area and the energy of the adjacent same
background area. Typically, the region centered on the peak point is used to describe the target, which
includes the target region and the background region [23].

Ecr = En −
(

Ncr

Nclt

)
· Eclt (10)
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where En is the summed energy in the target region, Eclt is the energy in the background region,
Ncr is the number of the samples in the target region, and Nclt is the number of samples in the
background region.

In the following simulation experiments, the bistatic scattering data, containing amplitude and
phase information, obtained by electromagnetic simulations were used in the SAR echo simulation and
imaging processing, and then the image quality parameters and point target energy were analyzed.
The simulation results were shown in Figures 14–16 without the consideration of the TCR boresight,
and the image quality analysis parameters and point target energy are shown in Table 2. We can
conclude that the main lobe of the TCR image became wider as the bistatic angle increased, which
degrades the resolution of the image (i.e., IRW). Otherwise, the point target energy drops quickly with
the bistatic angle increasing. Therefore, the increase of bistatic angles will deteriorate the quality of the
bistatic SAR image and the point target energy.
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Figure 14. The simulation results for the 2◦ bistatic angle without the consideration of the TCR optimum
boresight. (a) The point target image after upsampling 48 times; (b) the azimuth profile based on the
results of the electromagnetic simulation.
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Figure 15. The simulation results for 6◦ bistatic angle without the consideration of the TCR optimum
boresight. (a) The point target image after upsampling 48 times; (b) the azimuth profile based on the
results of the electromagnetic simulation.
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Figure 16. The simulation results for 20◦ bistatic angle without the consideration of the TCR optimum
boresight. (a) The point target image after upsampling 48 times; (b) the azimuth profile based on the
results of the electromagnetic simulation.

Table 2. Image quality analysis parameters of the TCR. IRW: impulse response width, PSLR: peak side
lode ratio, ISLR: integral side lobe ratio.

Bistatic Angle IRW (m) Range PSLR Range ISLR Azimuth PSLR Azimuth ISLR Energy

2◦ 2.5521 −13.3511 −10.2050 −13.2756 −10.2737 49.8635
6◦ 2.7604 −13.3257 −10.1887 −13.3436 −10.4011 44.1211

20◦ 3.4895 −13.3577 −10.2092 −13.1612 −10.4430 34.3275

As shown in Figures 17–19, the simulation results were obtained as the change of TCR boresight
is considered, and image quality analysis parameters and point target energy of the TCR are shown
in Table 3. As long as the bistatic angle is less than 20◦, the image quality was good, and the image
quality analysis parameters could meet the general image quality requirements. Otherwise, comparing
the simulation results for the 2◦ bistatic angle in Figures 14 and 17, it can be seen that whether the TCR
boresight is considered or not has little effect on imaging when the bistatic angle is small (less than 6◦).
In addition, if the bistatic angle is larger than 6◦, taking the TCR optimum boresight into account can
improve the imaging quality and point target energy by comparing the parameters in Tables 2 and 3.
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Figure 17. The simulation results for 2◦ bistatic angle with the consideration of the TCR optimum
boresight. (a) The point target image after upsampling 48 times; (b) the azimuth profile based on the
results of the electromagnetic simulation.
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Figure 18. The simulation results for 6◦ bistatic angle with the consideration of the TCR optimum
boresight. (a) The point target image after upsampling 48 times; (b) the azimuth profile based on the
results of the electromagnetic simulation.
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Figure 19. The simulation results for 20◦ bistatic angle with the consideration of the TCR optimum
boresight. (a) The point target image after upsampling 48 times; (b) the azimuth profile based on the
results of the electromagnetic simulation.

Table 3. Image quality analysis parameters of the TCR.

Bistatic Angle IRW (m) Range PSLR Range ISLR Azimuth PSLR Azimuth ISLR Energy

2◦ 2.6041 −13.3613 −10.2023 −13.2855 −10.3628 49.8637
6◦ 2.0313 −13.3295 −10.2343 −13.29544 −10.2122 47.5656

20◦ 1.7187 −13.3458 −10.3923 −13.29661 −10.1582 44.3411

6. Discussion

After discussing the requirements of SAR radiometric calibration for calibration targets in
principle, the feasibility of the TCR for bistatic SAR radiometric calibration at the X-band was
investigated. Both electromagnetic simulations and SAR imaging simulation results demonstrated
that the TCR can be used as a bistatic SAR calibration target for relatively small bistatic angles
(less than 6◦) if the boresight for different bistatic angles is not considered. Moreover, the bistatic angle
can be extended to 20◦ by taking the change of the TCR boresight into account, which has solved
the problem that the TCR is not suitable for a large bistatic angle [11]. However, the lower peak RCS
will affect the SCR as the bistatic angle becomes larger. In order to design an appropriate TCR as the
bistatic calibration target, the interleg dimension must be large enough to ensure the target stable
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RCS characteristics within the optical region. Furthermore, since the SCR is closely related to the
radiometric calibration accuracy, if there is to be no more than a 0.5-dB measurement error, the SCR
must be at least 25 dB. Otherwise, the target deployment sites should be chosen carefully to consider
the clutter characteristics. To further prove the feasibility, the quality of the bistatic SAR images were
compared with typical bistatic angles as the TCR boresight is considered or not. However, if the bistatic
angle is larger than 6◦, taking the TCR optimum boresight into account can improve the imaging
quality and point target energy.

The most important considerations when design a suitable TCR for bistatic calibration are the
interplate orthogonality, the machining error of length, the pointing deviation, and the thermal
deformation. Generally, the simulation results at the X-band imply that if an interplate angle deviation
is less than 0.5◦, the length error is less than 1 mm, and the pointing deviation is less than 0.5◦,
the resulting RCS will be within 0.5 dB of the peak value. Under the same accuracy, the requirements
regarding those error factors for monostatic and bistatic calibration are different.

The main motivation behind analyzing the TCR is that the bistatic RCS characteristics of the TCR
are not so clear, and whether it can be used as a bistatic calibration target is questionable. Moreover,
compared to active calibration targets and some passive calibration targets, the performance of TCR is
that it is simple to manufacture, efficient to work, and has a relatively high bistatic RCS. Although
we have analyzed how to design the TCR at the X-band, it can be easily extended to other bands
that are similar to the bistatic SAR. In this paper, the feasibility of the TCR in bistatic tandem mode
was validated, i.e., the mode where the bistatic angle appears in the azimuth (along track) direction.
However, it was still valid if the bistatic angle was in the slant range (across track) direction or
their hybrid.

It must be admitted that the TCR does have limitations in bistatic SAR calibration. First,
the feasibility of the TCR is limited to the mode that the bistatic angle is fixed. The bistatic SAR
imaging modes are diversified, such as the tandem mode, translation invariant mode, constant velocity
mode, and general mode [29]. However, the TCR has a very narrow bistatic pattern regarding the
bistatic angles [8] and the 3-dB bistatic beamwidth corresponding to the bistatic angles is less than 4◦

for a 0.4-m TCR at the X-band, so it cannot be configured to calibrate all of the bistatic modes, especially
bistatic modes with a large time-variable bistatic angle. Second, the TCR cannot be configured for all
of the bistatic angles due to their rippled bistatic RCS pattern or lower SCR. We concluded that TCR
can only be used as a radiometric calibration target for relatively small bistatic angles (less than 6◦).
If the TCR is aligned with the optimum boresight, it can also work well, as the bistatic angle is less
than 20◦. For the time-variable bistatic angle or larger bistatic angle (more than 20◦), maybe we should
analyze an active calibration target.

7. Conclusions

The RCS characteristics and the requirements of radiometric calibration for bistatic SAR were
analyzed based on the electromagnetic simulations. We concluded that the TCR could be used as a
bistatic calibration target for relatively small bistatic angles (less than 6◦). TCR are generally considered
not suitable for bistatic SAR calibration with large bistatic angles, but we have proposed that if we
consider the TCR boresight changes with the bistatic angle, the bistatic angle can be extended to 20◦.
Both of these two conditions have their own advantages and disadvantages. If the change of TCR
boresight with the bistatic angle is not considered, we just place it according to the TCR boresight of the
monostatic calibration; however, it is not suitable for large bistatic angles (more than 6◦). In addition,
the TCR was considered a good calibration target at a bistatic angle of less than 20◦, but we need to
know the optimum boresight in advance and align the TCR boresight with respect to the SAR antenna
boresight during the deployment. To further verify the feasibility, bistatic SAR image quality and
point target energy were analyzed. The importance of the study lies in that we can make full use of
the advantages of the TCR, and then solve the problem of applicability and a design that is suitable
TCR for bistatic radiometric calibration. Furthermore, the simulation results support that attention
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should be paid to ensure orthogonality between the three plates, interleg dimensions, and alignment,
which will have reference value and guidance significance for the design and utilization of TCR RCS
in bistatic SAR calibration.
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