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Abstract: The noise characteristics of the Global Navigation Satellite System (GNSS) position time
series can be biased by many factors, which in turn affect the estimates of parameters in the
deterministic model using a least squares method. The authors assess the effects of seasonal signals,
weight matrix, intermittent offsets, and Helmert transformation parameters on the noise analyses.
Different solutions are obtained using the simulated and real position time series of 647 global stations
and power law noise derived from the residuals of stacking solutions are compared. Since the true
noise in the position time series is not available except for the simulated data, the authors paid most
attention to the noise difference caused by the variable factors. First, parameterization of seasonal
signals in the time series can reduce the colored noise and cause the spectral indexes to be closer
to zero (much “whiter”). Meanwhile, the additional offset parameters can also change the colored
noise to be much “whiter” and more offsets parameters in the deterministic model leading to spectral
indexes closer to zero. Second, the weight matrices derived from the covariance information can
induce more colored noise than the unit weight matrix for both real and simulated data, and larger
biases of annual amplitude of simulated data are attributed to the covariance information. Third, the
Helmert transformation parameters (three translation, three rotation, and one scale) considered in
the model show the largest impacts on the power law noise (medians of 0.4 mm−k/4 and 0.06 for the
amplitude and spectral index, respectively). Finally, the transformation parameters and full-weight
matrix used together in the stacking model can induce different patterns for the horizontal and
vertical components, respectively, which are related to different dominant factors.

Keywords: seasonal signal; weight matrix; offset; transformation parameters; noise analyses

1. Introduction

Global Navigation Satellite System (GNSS) techniques play an important role in the discovery
and validation of Earth geodynamic phenomena. Using the GNSS position time series of stations
distributed in global or regional networks, many studies were carried out in wide fields, such as
tectonic motion, sea level uplift, co-seismic and post-seismic deformations, postglacial rebound, Earth
surface mass redistribution, and so on. It is well known that the deterministic function model and
stochastic model jointly affect the interpretation and conclusion of the same geodynamic phenomenon
based on the parameters estimates and uncertainty derived from the post-processing of GNSS precise
positioning [1,2].

Remote Sens. 2018, 10, 1584; doi:10.3390/rs10101584 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-8096-1191
https://orcid.org/0000-0002-1039-5937
http://dx.doi.org/10.3390/rs10101584
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/10/10/1584?type=check_update&version=3


Remote Sens. 2018, 10, 1584 2 of 20

In order to obtain reliable estimates of station velocity, it is crucial to model the characteristics of
stochastic processes in the GNSS position time series [3]. With the contributions of many researchers,
it has been generally accepted that the error in the position time series cannot be described by purely
white noise. Langbein and Johnson analyzed the two-color electronic distance measurements in
California and demonstrated that power law noise dominates at lower frequencies in the geodetic
time series [4]. Zhang et al. estimated the slope of power spectra of the daily position time series
of 10 continuously monitoring Global Positioning System (GPS) sites in southern California with a
19-month time span, and suggested that fractal white noise processes (i.e., power law noise) with
spectral indexes around 0.4 are suitable for the stochastic errors [5]. Wang et al. studied the noise
properties of continuous GPS time series for the Crustal Movement Observation Network of China
(CMONOC) and demonstrated that the white-plus-flicker noise model is preferred for 98.7% of stations
with the unfiltered solutions. Without a common mode error, about 74% of the position time series are
characterized by white-plus-flicker noise and the rest by the combination of white noise and a random
walk noise model [6]. The colored noise influences the error properties in the position time series of
stations from both regional networks and global network. Mao et al. assessed the noise characteristics
of the daily GPS position series of 23 global stations [7]. The results from both power spectral analyses
(PCA) and maximum likelihood estimation (MLE) indicated that a combination of a white and flicker
noise models was able to best describe the noise characteristics of all three components. Using the
homogeneously reprocessed solutions of 275 globally distributed stations, Santamaría-Gómez et al.
found that the best noise model describing the correlated errors in the position time series was a
combination of variable white noise and power law noise models [8]. Williams et al. confirmed the
colored noise exists both in the position time series of global and regional solutions, and the white
noise plus flicker noise is clearly the dominant noise model. Meanwhile, they demonstrated that the
white and flicker noise amplitudes show latitude dependence [9].

The presence of temporally-correlated stochastic error (i.e., colored noise) in the noise analyses
can be caused by many factors. In order to avoid the misinterpretation of time correlation noise
caused by unmodeled periodic signals in position time series, Amiri-Simkooei adopted the least
squares harmonic estimation (LS-HE) method to capture the periodic signals and took the significant
periodic signals as the deterministic part in the functional model [10]. Bogusz and Klos indicated
that the amplitudes of power law noise decrease and the spectral indexes are closer to zero when all
periodicities from the first to ninth harmonics of the residual Chandler, tropical, and GPS draconitic
were considered in the deterministic model compared to the traditional function model [11]. Moreover,
the unmodeled bedrock thermal and environmental loading deformation, or inadequacies in the
models of solar radiation pressure, mapping functions, and a priori zenith hydrostatic delays could
introduce significant periodic signals and time-correlated noise in the position time series [12–14].

Williams pointed out that the undetected offsets could mimic random walk noise and the
effect of offsets estimation in the position time series on velocity uncertainty depends on the noise
properties [15]. The presence of unmodeled transient events (e.g., post-seismic deformation and slow
slip events) will exhibit a significant component of time correlated noise, and the noise can be reduced
after subtracting the transient deformations from the time series [16]. Liao et al. validated that the
spectral indexes of the power law noise before and after the 2008 Wenchuan M8.0 earthquake have
significant differences, which demonstrated that processing the data of the pre- and post-seismic
together is not acceptable [17].

Santamaría-Gómez et al. tested some sources of the time-correlated noise and indicated that the
amplitude of temporal noise depends on the data period rather than the increasing ambiguity fixed
rate or the increasing number of observed satellites [8]. The improved temporal stability of receivers
and satellites contributes to the noise evolution. Moreover, monument noise in the GNSS position time
series is always believed to be a random walk process and the deep-drilled braced monument seems
to have the least amplitude of random walk noise [9]. Jiang et al. indicated that, with the higher-order
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ionospheric (HOI) correction considered, white noise amplitude in the up direction decreased by 81.8%,
while flicker noise amplitudes in the north direction decreased by 67.5% [18].

Using the same data source, the authors assessed the effects of the Helmert transformation
parameters and weight matrix on the seasonal signals in the GNSS position time series, and the
contribution of environmental loading displacements to the seasonal signals was also assessed [19].
It is well known that the combination of deterministic and stochastic models jointly dominates the
estimates. The authors are to assess the impacts of the seasonal signal and weight matrix, as well as the
offset and Helmert transformation parameters on noise properties in the GNSS position time series. The
noise analysis results may be used to refine the a priori stochastic model for the parameters adjustment.
Many researchers focus on the noise characteristics of time series, but the possible systematic errors for
the estimation of colored noise properties caused by the above factors are neglected.

Previous studies focused on the noise analyses for position time series in each direction and the
spatial correlations between any two stations in the regional or global network were neglected when
generating a cumulative solution. In this study, to investigate the effect of the spatial correlations
on the noise analyses and parameters estimation in the deterministic model, the full covariance
information representing the correlations between different stations, are taken into account. During
the analyses of colored noise, the annual and semiannual signals in the position time series were
always modeled. However, the results of mutual effects between the seasonal signals and the noise
analyses results were not available. Moreover, most studies focused on the effects on the velocity bias
and uncertainty of offsets in the position time series [15,20,21]. The authors in this study provide a
different view by assessing the effect of offsets on colored noise; meanwhile, the mutual impacts on
each other between seasonal signals and noise process are also demonstrated. Previous studies always
aligned the precise coordinates of stations to the International Terrestrial Reference Frame (ITRF) using
similarity transformation method before noise analyses [6,17,22], and no transformation parameters
are considered in the stacking of position time series. It is unclear to what extent the transformation
parameters (three translation, three rotation, and one scale parameters) affected noise analyses.

In order to assess the effects of the weight matrix, seasonal signals, offsets, and transformation
parameters on the noise analyses results, this study is organized as follows. The practical position
the data source is introduced and collected in Section 2. Afterward, the processing strategies of the
position time series are described, and simulated data are also generated in this section for further
analyses. Based on the simulated and real GNSS position time series, the results of colored noise
analyses in GNSS position time series are demonstrated in Section 3 and discussed in Section 4. Finally,
the study is concluded in Section 5.

2. Materials and Methods

2.1. Data Collection

Since the official service started on 1 January 1994, the International GNSS Service (IGS) has been
supporting studies into the Earth sciences and fundamental astronomy. Thanks to the contribution
of global analysis centers and the success of the experimental satellite orbit combination in 1993, IGS
now provides users kinds of high-quality, official combined products, which include tracking station
coordinates and clock biases, Earth rotation parameters (ERP), GPS satellite orbit and clock biases, and
global ionosphere maps [23,24].

Thanks to the refinement and optimization of models and methodology in GNSS data processing
over time, the quality of IGS solutions have achieved continuous improvements. It is also necessary to
reanalyze the historical GNSS data collected from the IGS global network in a fully consistent way with
the latest models and methodology. Until now, the IGS has completed two reprocessing campaigns, and
the second one was finalized in 2015. Compared with the first one, there are some main characteristics
in the second reprocessing, including a switch from weekly to daily solutions, a modification for
the yaw-attitude models for the GPS Block IIA/IIR and GLONASS-M satellites [25,26], the Earth
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radiation pressure considered in the dynamic model [27], and the implementation of International
Earth Rotation Service (IERS) 2010 Conventions and IGb08/igs.08.atx reference frame [28]. More
details about the IGS second data reprocessing campaign can be found at the website of IGS (http:
//acc.igs.org/reprocess2.html).

Compared with the solution from the individual analysis center (AC), the combination of
multi-analysis centers (ACs) is thought to be more reliable than, and at least as accurate as, the solution
obtained from each AC. Moreover, the combined solutions with more stations than any individual
AC are generated. In this study, the combined IGS second reprocessed daily solutions are collected
during the time from January 1994 to February 2015. The coordinates of stations, Earth rotation
parameter (ERP), and apparent geocenter motion parameter (GCMP) are processed simultaneously
to obtain consistent combined solutions. Adopting the constraints of no-net-rotation (NNR) and
no-net-translation (NNT) on the selected core stations, the daily combined solutions are aligned to the
IGb08 reference frame [29]. From the comparison between the solutions of ACs and the combinations,
the inter-AC agreement is 1.5 mm and 4 mm for the horizontal and vertical components of stations
coordinates, respectively. Regarding the ERPs, the agreement of 25–40 µas for pole coordinates,
140–40 µas/day for the pole rate, and 8–20 µs/day for the calibrated length of day estimates were
obtained [29]. All the adjusted parameters and their corresponding variance information are stored in
the daily files with the form of solution independent exchange (SINEX). With all this a priori and post
information, the normal equation could be recovered and used for further processing.

2.2. GNSS Position Time Series Processing Strategies

The daily combined solutions from the IGS were used to stack for a cumulative solution in this
study. The stacking model was similar to the Equation (1) of Reference [19], but an additional scale
parameter was considered for some tests in this study.
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2.2.1. Data Preprocess

For the global stations with daily solutions collected from IGS, the longest time span is about
21 years. Blewitt et al. indicated that the estimates of velocity could be biased by the periodic signals
in the position time series, special for the stations with a short time span, and the minimum data span
was suggested for velocity solutions [30]. The stations with a data time span of less than 2 years were
excluded from the daily solutions by using the Gauss elimination method for the normal equation.
Moreover, the station with data gaps larger than 20% were also excluded in the final daily solutions
stacking. The input daily combinations used to stack for a cumulative solution are always affected
by the position/velocity discontinuities, which should be considered in the Equation (1). Most of the
intermittent offsets are caused by seismic event and equipment changes, while the sources of some
offsets are still unknown. Griffiths and Ray indicated that the velocity uncertainty could worsen by
about 40% if the numbers of offsets in the time series doubles [21]. For the detection of offsets in position
time series, different methods are applied by researchers and the manual approach outperforms the
automated ones [20]. Since the authors focus on the effects of known offsets on noise analyses, the
discontinuity information for the second reprocessed position time series is available from the IGS and
was used directly as a priori information in this study.

It is crucial to reduce the time-correlated errors induced by post-seismic deformations (PSDs),
which usually have nonlinear trajectories and can be fitted using logarithmic or exponential curves,
or the superposition of these two parametric models [16]. In this study, the PSDs caused by major
earthquakes were corrected by adopting the parametric models provided by Altamimi et al. [31].

In order to reduce the effects of outliers in the daily solutions on the noise analyses, the
daily solutions were checked station by station for each component. After the corrections of
PSDs, the position time series of each component were fitted. The annual and semiannual signals
were parameterized in the deterministic model, and the discontinuity information was used. The
observations with residuals larger than 5 cm or 5σ were deleted and an iterative process was applied
until no outliers were detected. As a result, about 0.7% of observations were again eliminated and 647
stations (Figure 1) in total with daily solutions were used to obtain the cumulative solution.

Figure 1. The global distributed stations with different observation time span and numbers of offset.
Circle: no offsets found in the time series; square: 1–2 offsets; triangle: 3–4 offsets; hexagon: more than
4 offsets in the time series.
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The average observation time span of all stations was about 10.2 years (Figure 1), the number
of stations with time span larger than 5 years, 11 years, and 17 years were 533 (82%), 260 (40%), and
79 (12%), respectively. There were also 33 stations with observation time span of less than 3 years, and
14 stations with more than a 20-year time span for the position time series. For the selected stations,
there were 403 stations with position/velocity offsets occurring in the time series and one offset occurs
every 7.2 years on average.

2.2.2. Periodic Signals and Weight Matrix

The periodic signals in the GNSS position time series are not only the results of geodynamic
mechanisms, but can also be caused by technique-related systematic errors and data processing
strategies [12,14,32–34]. The periodic signals have impacts on both noise analysis and other parameter
estimations. Since the unmodeled periodic signals could enhance the autocorrelation and appear to be
flicker noise in the stochastic model, the significant signals, except the seasonal ones, were proposed
to be modeled for noise analyses [11,35]. Blewitt et al. indicated that the velocity bias caused by the
periodic signals in the position time series can be neglected when the observation time span is larger
than 4.5 years and the minimum data span of 2.5 years is suggested for the velocity solution [30].
In this study, the effects of unmodeled periodic signals on noise analyses is assumed the same for the
comparison of different stacking solutions, so only the annual and semiannual variations (i.e., seasonal
signals) were considered in the deterministic model. Moreover, the authors focused on the effects of
seasonal signals on noise analyses and no more periodic signals are considered in simulated GNSS
position time series except the seasonal ones.

In order to assess the effects of weight matrices of observations on the noise analyses of the
cumulative solution, the weight matrix derived from the covariance in the daily solution independent
exchange (SINEX) files were used.

2.2.3. Data Simulation and Cumulative Solutions

Since it was difficult to assess the effects of offsets in a time series on noise analyses separately
for the practical GNSS position time series, the simulated daily solutions were generated in this
study. Using the simulated position time series, it was possible to obtain an assessment of effects of
seasonal signals on the noise analyses. Moreover, the simulated data could cooperate with the real
daily solutions to assess the effects of the weight matrix on the noise analyses.

Four cumulative solutions with the IGS second reprocessed daily solutions and three solutions
stacked for the simulated position time series are summarized in Table 1. The annual and semiannual
signals are parameterized in the functional model for all the seven cumulative solutions.

In order to assess the effects of the transformation parameters on the results of noise analyses,
two stacking solutions were obtained with/without the transformation parameters considered in the
functional model with the practical GNSS position time series (i.e., igs_unit_none vs igs_unit_trs). No
more constraints except a loose constraint of 0.1 m were applied for the transformation parameters in
the daily solution stacking. Moreover, the solution igs_cova_none was also stacked and compared
with the solution igs_unit_none to assess the effects of the weight matrix on noise analyses. Using the
practical GNSS position time series, the stacking solution with the Helmert transformation parameters
and full covariance information considered was obtained (igs_cova_trs) to assess the combined effects
of the weight matrix and transformation parameters on noise analyses.



Remote Sens. 2018, 10, 1584 7 of 20

Table 1. Cumulative solutions with different processing strategies for noise analyses. For the solutions
with different labels, “sim” and “igs” mean the data sources, “sim” for simulated and “igs” for real IGS
position time series; “unit” and “cova” mean the weight matrix used for cumulative solutions, “unit”
stands for unit or identity matrix and “cova” means full weight matrix derived from the covariance
information in the IGS daily solutions. For cumulative solutions using the simulated time series,
the “real” and “none” mean offsets parameterized or not, respectively, in the functional model. For
cumulative solutions using the real time series, where the “trs” and “none” mean transformation
parameters estimated or not, respectively.

Data Source Solution Weight Matrix Offsets/Transformation Parameters

Simulate position time series
sim_unit_none unit matrix No offsets
sim_unit_real unit matrix Offsets information from IGS

sim_cova_none covariance No offsets

IGS second reprocessed daily
solutions

igs_unit_none unit matrix No transformation parameters
igs_unit_trs unit matrix Translation, rotation, and scale

igs_cova_none covariance No transformation parameters
igs_cova_trs covariance Translation, rotation, and scale

The estimations of seasonal signals and the linear part in igs_cova_trs were used to simulate
the position time series. A combination of a power law noise and white noise was also added to the
simulated position time series. The spectral indexes of −0.5 ± 0.25 for simulated noise were assumed,
which is comparable with the results of noise analyses in the study of Bogusz et al. [11]. Meanwhile, the
amplitudes of power noise of 5.5 ± 1.5 and 12.0 ± 5.0 mm−k/4 for horizontal and vertical components,
respectively, were assumed, which were derived from the noise analyses of igs_cova_trs and were
almost as much as the flicker noise in the study of Williams et al. [9]. Meanwhile, the white noise with
a Gaussian distribution of 1.0±0.5 and 2.0 ± 1.0 mm for the horizontal and vertical, respectively, was
also added to the position time series.

The final simulated position time series with noise were extracted from the continuous raw
simulated time series to guarantee that the data sampling interval was the same as those of the
real GNSS position time series, and the combined noise was estimated with free available Hector
software [36]. The spectral indexes of power law noise of all stations in the final simulated position
time series were −0.57 ± 0.17, −0.45 ± 0.17, and −0.55 ± 0.15 for the east, north, and up components,
respectively. The amplitudes were 5.8 ± 1.9, 5.1 ± 1.6, and 12.1 ± 3.3 mm−k/4 for the corresponding
components. The estimated amplitudes of white noise were 1.2 ± 0.6, 0.5 ± 0.6, and 2.0 ± 1.0 mm for
the east, north, and up components, respectively.

For the three cumulative solutions derived from the simulated position time series, sim_unit_none
was obtained by neglecting the correlations between stations (i.e., unit matrix used for observations)
and no position/velocity offsets were considered in the deterministic model. In order to assess the
effects of offsets in the GNSS position time series, offset parameters were added in the functional
model using the discontinuity information from IGS (i.e., solution sim_unit_real). The simulated
time series only included the stations’ coordinates, and no Helmert transformation parameters were
simulated and estimated in the cumulative solutions. As a result, it was easy to assess the effect of
the weight matrix on the noise analyses by comparing sim_unit_none to sim_cova_none, and the
solution sim_cova_none was obtained by considering the covariance information from the IGS second
reprocessed daily solutions.

2.2.4. Noise Analyses for Residual Series

Generally, the noise in the GNSS position time series can be described as a power law (PL) process
and has the form of a power spectrum [9]

P( f ) = P0

(
f
f0

)k
(3)



Remote Sens. 2018, 10, 1584 8 of 20

where f is the temporal frequency, P0 and f0 are normalized constants, and k is spectral index. Noises
with a spectral index range from −3 to −1 are non-stationary processes, including the random walk
(RW) process with k = −2. The special process with spectral index of −1 is called flicker noise (FN) and
occurs in almost all electronic devices as a low-frequency phenomenon. Noises with spectral indexes
of −1 < k < 1, including the special case with k = 0 called white noise (WN), are stationary processes
whose unconditional joint probability distribution does not change when shifted in time.

There are several suggested methods to estimate the optimal noise model for the GNSS position
time series. The power spectrum analysis (PSA) can be used to describe the stochastic processes
distinctly by fitting the power at different frequencies with a linear function, and the noise type can be
related to the slope. However, the limitation of the PSA is that the captured noise properties are not
precise enough and not reliable for the low frequency band [4,7,37]. A more reliable technique is the
maximum likelihood estimation (MLE), which is preferred by many researchers in noise analysis. To
estimate the parameters in the stochastic models using MLE, the probability function (Equation (4))
with a Gaussian distribution assumption is maximized by adjusting the estimated parameters:

lik(v̂, Cx) =
1

(2π)N/2(detCx)
exp

(
−0.5v̂TCx

−1v̂
)

(4)

where lik(*) is the likelihood function, det is the determinant of a matrix, v̂ is the post-fitting residuals
between the observations and functional model, N is the length of position time series, and Cx is the
observations covariance matrix. Since we assume the combination of white and power law noise in
the time series, the Cx can be expressed as follows:

Cx = σwn
2 I + σpl

2 Jpl(k) (5)

where σwn
2 and σpl

2 are the amplitudes of the white noise and power law noise, respectively. I is the
identity or unit matrix, and Jpl(k) denotes the covariance matrix of power law noise in the observation,
which is correlated with the spectral index.

The disadvantage of MLE used in noise analyses is the heavy computational burden. In order to
reduce the computation time and to compensate for missing data in the position time series, Bos et al.
developed a fast MLE method, which had been applied in the Hector software [36]. Allan variance and
Hadamard variance can also be used to analyze noise characteristics of position residuals to alleviate
the computational burden [38,39]. In this study, the results of noise analyses were derived from the
residuals of different cumulative solutions described in Section 2.2.3 using the Hector software. Since
the removal of a trend from the position time series can reduce the power of the spectral estimates
significantly, a linear part was subtracted from the simulated noise series and the residuals of different
solutions during noise analyses. The authors limited the focus on the power law noise comparison
between different strategies.

3. Results

The results of the noise analyses are given in this section for both the simulated GNSS position
time series and the practical data. The effect of the weight matrix, offsets, seasonal signals, and
transformation parameters on the noise properties are analyzed in detail.

3.1. Effect of Seasonal Signal on Noise Analyses

It is widely known that the seasonal signals in the GNSS position time series are mostly related
to the Earth surface mass redistribution including atmospheric, non-tidal oceanic, and hydrological
loading deformations. In order to assess the effects of seasonal signals on noise properties in the
position time series, Figure 2 demonstrates the difference of power law noise between the estimation
of simulated noise and the results from sim_unit_none.
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Figure 2. Noise difference between simulated noise and those derived from solution sim_unit_none
for amplitudes (left panel) and spectral indexes (right panel) of power-law noise, with (a,d) for the
east, (b,e) for the north, and (c,f) for the vertical component.

There were 597 (91.2%), 597 (92.3%), and 632 (97.7%) of 647 stations with a smaller amplitude for
sim_unit_none for the east, north, and up component, respectively. The median values of amplitude
differences between the estimation of simulated noise and sim_unit_none were 0.05, 0.03 and 0.08 mm−k/4.
There were also 73, 24, and 93 stations with amplitude differences larger than 0.2 mm−k/4 for the three
components. With the increasing observation time span, the differences of amplitudes and spectral
indexes are decreased and become stable.

Compared with the simulated noise, there were only 3 (0.5%), 8 (1.2%), and 6 (0.9%) stations with
lower spectral indexes for sim_unit_none. For the spectral indexes, the median values of differences
between estimated noise simulation and sim_unit_none were −0.02, −0.01, and −0.01 for east, north,
and up components, respectively. There were also 59, 5, and 5 stations with spectral indexes differences
larger than 0.1 for the three components. For the east component, more stations with a large spectral
indexes difference may be related to the smaller amplitude of the annual signal. There were 164
stations with an observation time span of less than 6 years, and the median amplitudes of the annual
signal were 0.6, 1.1, and 3.1 mm for the east, north, and up components, respectively. Compared with
the amplitudes of north and up components, there were 75% and 92% stations with a smaller annual
amplitude for east component, respectively. Considering the amplitudes of the simulated power law
noise in the simulated observations, the results of the noise analyses of the east component seems to be
more easily affected by seasonal signals, which needs further validation in the future.

Since no colored noise model was assumed in the generation of cumulative solutions, the
systematic bias for the amplitudes and spectral indexes shown in Figure 2 should be induced by
the existence and estimation of seasonal signals in the deterministic model. Bosugz et al. also validated
that the power law amplitudes decreased, and the spectral indexes were much “whiter” when all
periodicities are subtracted from the position time series [11].

The differences of the annual amplitude and phase, between the raw simulated annual signal
and estimation of solution sim_unit_none, are shown in Figure 3. The amplitude difference of the
up component was more scattered than the horizontal components, which is consistent with the
larger amplitude difference of power law noise. The median values of the annual amplitude absolute
difference were 0.15 ± 0.20, 0.09 ± 0.15, and 0.26 ± 0.37 mm for the east, north, and up components,
respectively. Meanwhile, the median values for annual phase absolute difference were 11.52 ± 32.65,
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5.40 ± 18.20, and 4.68 ± 18.80 degrees for the corresponding components. It is also noticed that the
amplitude and phase differences of annual signal decreased with the increasing observation time span
for the horizontal components.

Figure 3. Difference of annual signal between simulated and those derived from the solution
sim_unit_none for amplitudes (left panel) and phase (right panel), with (a,d) for the east, (b,e) for the
north, and (c,f) for the vertical component.

3.2. Effect of the Weight Matrix on Noise Analyses

Both the simulated and real position time series were used to assess the effect of weight on
the noise analyses of residuals. Figure 4 shows the comparison of the noise analyses between
sim_unit_none and sim_cova_none. Since no offsets were simulated in the position time series
and no Helmert transformation parameters modeled in the deterministic model, the differences of
noise properties could be attributed to the weight matrix used for the observations. Compared to the
solution without considering the spatial correlation (i.e., sim_unit_none), the noise of sim_cova_none
with a full weight matrix seemed to more “colored”. There were 643 (99.4%), 646 (99.8%), and 630
(98.4%) stations for sim_cova_none with lower spectral indexes for east, north, and up components,
respectively. The median values of the spectral indexes difference were 0.02, 0.01, and 0.01 for the three
components. Moreover, there were 64, 57, and 35 stations with a spectral indexes difference larger than
0.1 for the east, north, and up components, respectively.

For the amplitude of the power law noise, there were 598 (92.4%), 602 (93%), and 616 (95.2%)
stations for sim_cova_none with a larger amplitude than sim_unit_none for the east, north, and
up components, respectively. The median values of amplitude difference were −0.05, −0.06, and
−0.04 mm−k/4 for the three components. From the comparison of the noise analyses between
sim_unit_none and sim_cova_none, it indicated that the spatial correlation derived from the covariance
information could induce the shift toward flicker noise and enhance the amplitudes of colored noise.
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Figure 4. Noise difference between the solution sim_unit_none and sim_cova_none for amplitudes
(left panel) and spectral indexes (right panel) of power-law noise, with (a,d) for the east, (b,e) for the
north, and (c,f) for the vertical component.

Table 2 lists the statistical results of the annual amplitude and phase differences between
the simulated annual signal and the estimation from different solutions. Compared with the
simulated annual signal, both the amplitude and phase difference of the annual signal derived from
sim_cova_none were more scattered than sim_unit_none. The absolute biases of the annual amplitude
of sim_unit_none were 0.15, 0.09, and 0.26 mm for the east, north, and up components, respectively.
While the median values of sim_cova_none were 1.5 times larger than the ones of sim_unit_none for
each component. This indicates that both the noise characteristics and annual signal could be changed
when the spatial correlation between different stations in the stacking solution was considered using
the covariance information. Since the position time series of different stations could be affected by
each other when the correlations were considered, the abnormal observations, such as the offsets and
outliers in the position time series, should be checked carefully.

Table 2. Maximum and median values with the standard deviation (SD) of the annual amplitude and
phase absolute difference between the raw simulated and solution sim_unit_none and sim_cova_none.
Unit: mm and degree for amplitude and phase, respectively.

Solution Component
Amplitude Phase

MAX MED MAX MED

sim_unit_none
East 1.64 0.15 ± 0.20 179.64 11.52 ± 32.65

North 0.86 0.09 ± 0.15 154.80 5.40 ± 18.20
Up 3.77 0.26 ± 0.37 176.04 4.68 ± 18.80

sim_cova_none
East 1.77 0.23 ± 0.26 175.68 15.84 ± 35.60

North 1.99 0.14 ± 0.22 162.70 11.52 ± 24.28
Up 5.97 0.37 ± 0.63 169.56 6.12 ± 17.88

Using the practical IGS reprocessed daily solutions, the effect of different weight matrices could
be assessed further. Figure 5 shows the difference in power law noise between igs_unit_none and
igs_cova_none. Considering the full weight matrix from the covariance information, a shift towards
more “colored” noise was also found, which is similar to the simulation case. There were 621 (96%),
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632 (97.7%), and 491 (91.3%) stations with lower spectral indexes for igs_cova_none for the east, north,
and up components, respectively. The median values of the spectral indexes difference between
igs_unit_none and igs_cova_none were 0.02, 0.03, and 0.01 for the three components.

Figure 5. Difference between the solution igs_unit_none and igs_cova_none for the amplitudes
(left panel) and spectral indexes (right panel) of the power-law noise, with (a,d) for the east, (b,e) for
the north, and (c,f) for the vertical component.

It was also noticed that the spectral indexes difference decreased with the increasing observation
time span, especially for the horizontal components, which was not similar to the results of simulation.
For the stations with a time span of less than 8 years, the difference could even reach 0.2 or more.
There were 74, 67, and 15 stations with spectral indexes difference larger than 0.1 for the east, north,
and up components, respectively. For the amplitude of the power law noise, there were 605 (93.5%),
627 (96.9%), and 583 (90.1%) stations of igs_cova_none with larger amplitudes for the east, north, and
up components, respectively. The median values of the amplitude difference were −0.05, −0.08, and
−0.06 mm−k/4 for the three components.

3.3. Effect of Offset on Noise Analyses

In order to assess the effects of offsets in the position time series on noise characteristics,
sim_unit_real was obtained by adding offset parameters in the functional model with the discontinuity
information from the IGS for the 403 stations. It was clear that the additional offsets parameterized
in the deterministic model could reduce the colored noise (Figure 6), where the numbers of stations
with spectral indexes closer to zero were 379 (94.0%), 378 (93.8%), and 382 (94.8%) for the east,
north, and up components, respectively. Meanwhile, 295 (73.2%), 319 (79.2%), and 343 (85.1%)
stations of sim_unit_real had a smaller amplitude of power law noise than sim_unit_none for the
three components. It was also found that the more offsets in the position time series, the lower the
spectral indexes difference that were obtained. However, this does not mean that more offsets were
encouraged to be parameterized in the deterministic model to have much “whiter” noise. Instead
of over-parameterization for the offsets in the position time series, it was much wiser to check the
consistency of noise characteristics between the pieces before and after the offsets happening and
decide whether to process the pieces together [16,17,21].
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Figure 6. Noise difference between the solution sim_unit_none and sim_unit_real for amplitudes
(left panel) and spectral indexes (right panel) of the power-law noise, with (a,d) for the east, (b,e) for
the north, and (c,f) for the vertical component. The number of offsets in the postion time series is
shown with different colors.

Although the noise properties in the position time series could be changed by the intermittent
offsets, the annual signal differences induced by the offsets were not significant. The median values of
the annual amplitude absolute difference between sim_unit_none and sim_unit_real were 0.01 ± 0.03,
0.01 ± 0.02, and 0.03 ± 0.06 mm for the east, north, and up components, respectively. For the annual
phase, the median values of the absolute difference between sim_unit_none and sim_unit_real were
0.72 ± 3.60, 0.72 ± 2.94, and 0.36 ± 2.76 degrees for the three components.

3.4. Effect of Helmert Transformation Parameters on Noise Analyses

The solutions with and without Helmert transformation parameters (three translation, three
rotation, and one scale parameters) considered in the functional model were obtained and compared.
Figure 7 demonstrates the difference of power law noise between igs_unit_none and igs_unit_trs
for the selected stations. For the spectral indexes, igs_unit_none had 474 (73.3%), 451 (69.7%), and
426 (65.8%) stations with lower spectral indexes for the east, north, and up component, respectively.
A clear spatial dependence was noticed for the stations with more “colored” noise (i.e., lower spectral
indexes) for igs_unit_trs, especially for the north and up components. For the north component, the
inner continental stations in Asian areas for igs_unit_trs mostly have lower spectral indexes than
igs_unit_none. For the up component, besides the stations in this inner continental region in Asia,
the stations along the Antarctic and Baffin Bay coastline also showed lower spectral indexes for
igs_unit_trs.
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Figure 7. Amplitudes and spectral indexes differences between the solution igs_unit_none and
igs_unit_trs for the global distributed stations.

For the amplitude difference of power law noise between igs_unit_none and igs_unit_trs, there
were 287 (45.4%), 458 (70.8%), and 431 (66.6%) stations with a larger amplitude for igs_unit_none for
the east, north, and up components, respectively. Moreover, the stations with an amplitude difference
larger than 0.4 mm−k/4 were mainly situated within the Europe area. Collilieux et al. indicated that
estimating the transformation parameters over the whole network could aliase the loading signals
into the position time series [40]. Here the authors validated that these additional parameters in the
deterministic model could also induce systematic biases for the colored noise with different regional
patterns and should be considered carefully [19,31].

3.5. Combined Effect of Helmert Transformation Parameters and Weight Matrix on Noise Analyses

It was possible to assess the combined effect of Helmert transformation parameters and weight
matrix on the noise analyses of the practical position time series through the comparison between
igs_unit_none and igs_cova_trs. Considering the transformation parameters and full weight matrix
derived from the covariance information, the noise of the solution igs_cova_trs showed different
characteristics for the horizontal and up components. There were 471 (72.8%) and 499 (77.1%) stations
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for igs_cova_trs with lower spectral indexes for the east and north components, respectively. For the
up component, there were only 249 (38.6%) stations with more “colored” noise (i.e., lower spectral
indexes) for this solution. The stations with a different performance in the noise analyses for up
component were mainly situated in the Europe area (Figure 8). Klos et al. found a strong impact
of the Baltic Sea on the position residuals of stations located in the Europe area and lower spectral
indexes of the up component for stations in this area were obtained [41]. Since the dense stations
were located in the Europe area, this may result in colored noise that can be reduced significantly by
the transformation parameters (especially the scale parameter) for the stations located in this area.
The median values of spectral indexes between igs_unit_none and igs_cova_trs were 0.02, 0.02 and
−0.01 for the east, north, and up components, respectively. Meanwhile, there were also 76, 63, and 117
stations with absolute spectral indexes larger than 0.1 for the three components.

Figure 8. Amplitudes and spectral indexes differences between the solution igs_unit_none and
igs_cova_trs for the global distributed stations.

For the amplitude difference of the power law noise, there was no systematic bias between
igs_unit_none and igs_cova_trs, and there were 382 (59.0%), 235 (36.3%), and 337 (52.1%) stations for
the solution igs_cova_trs with a larger amplitude for the east, north and up components, respectively.
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However, significant amplitude differences were found for stations located in the Europe area and
near the equator. Moreover, there were 14, 15, and 249 stations with absolute amplitude differences
larger than 0.4 mm−k/4 for the three components.

Figure 9 demonstrates the difference of the power law noise between igs_unit_none and
igs_cova_trs over the observation time span. The spectral indexes differences for the stations with a
time span of less than 8 years seemed to be more scattered than the other stations, especially for the
horizontal components. A similar phenomenon was also noticed for the amplitude difference between
igs_unit_none and igs_cova_trs.

Figure 9. Noise difference between the solution igs_unit_none solution igs_cova_trs for amplitudes
(left panel) and spectral indexes (right panel) of the power law noise, with (a,d) for the east, (b,e) for
the north, and (c,f) for the vertical component.

Comparing the results of the noise analyses in Section 3.2, Section 3.4 and this section, it was found
that the effects of the weight matrix and Helmert transformation parameters on the noise analyses
showed different patterns. For most stations selected in this study, the weight matrix could enhance
the colored noise, while the estimated transformaiton parameters were able to reduce the colored noise.
When the two factors were considered together to obtain the stacking solution igs_cova_trs, a new
pattern was again shown for the noise analyses, which could be contributed to the combined effects
of the weight matrix and transformation parameters. For the horizontal components of the solution
igs_cova_trs, the power law noises of global stations were mainly affected by the weight matrix, which
had lower spectral indexes for most stations. However, the transformation parameters estimated in
the functional model had more of an impact than the weight matrix on the power law noise for the up
component. As a result, the transformation parameters, especially for the scale parameter, shifted the
noise of the solution igs_unit_none toward much “whiter”.

4. Discussions

It is critical to have good knowledge about the noise characteristics in the GNSS position time
series to obtain reliable velocity uncertainty, and assuming the only white noise in the position time
series always overestimates the uncertainty of rate. Using the simulated and real GNSS position time
series in this study, cumulative solutions with a least squares method and different strategies were
obtained. The parameters of the power law noise plus white noise were then estimated for the residuals
from different stacking strategies. The authors then assessed the effects of seasonal signals, the weight
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matrix used for observation, offsets in GNSS time series, and Helmert transformation parameters on
the noise analyses of the residuals. Table 3 summarizes the effects of variable factors on the noise of
the residuals.

Table 3. Effects of different variable factors on the noise analyses for the residuals of stacking solutions
with different strategies. The columns of “Amplitude” and “Spectral Index” list the percentage of
stations with smaller or lower values for the latter solution in column “Test”. The values in the
parenthesis are the medians of absolute difference between the two solutions in column “Test”.

Variable Factor Test Comp. Amplitude Spectral Index

Seasonal signals simuation vs.
sim_unit_none

East 91.2% (0.05) 0.5% (0.02)
North 92.3% (0.03) 1.2% (0.01)

Up 97.7% (0.08) 0.9% (0.1)

Weight matrix

sim_unit_none vs.
sim_cova_none

East 7.6% (0.05) 99.4% (0.02)
North 7.0% (0.06) 99.8% (0.01)

Up 4.8% (0.04) 98.4% (0.01)

igs_unit_none vs.
igs_cova_none

East 6.5% (0.06) 96.0% (0.02)
North 3.1% (0.08) 97.7% (0.03)

Up 9.9% (0.07) 91.3% (0.01)

Offsets
sim_unit_none

vs. sim_unit_real

East 73.2% (0.01) 6.0% (0.01)
North 79.2% (0.02) 6.2% (0.01)

Up 85.1% (0.05) 5.2% (0.01)

Transformation
parameters

igs_unit_none vs.
igs_unit_trs

East 45.4% (0.33) 26.7% (0.06)
North 70.8% (0.26) 31.3% (0.04)

Up 66.6% (0.43) 34.2% (0.03)

Transformation
parameters and
weight matrix

igs_unit_none vs.
igs_cova_trs

East 41.0% (0.8) 72.8% (0.03)
North 63.7% (0.08) 77.1% (0.03)

Up 47.9% (0.30) 38.6% (0.02)

From the comparison of effects on noise analyses related to different variable factors (Table 3),
the largest impact on the power law noise was induced by the Helmert transformation parameters,
which could reach 0.5 mm−k/4 and 0.1 for the medians of amplitude and spectral index, respectively.
For simplicity, a flicker noise with an amplitude of 1 mm1/4 was assumed for the position time series
with a 10-year time span, then the bias of the noise characteristics related to transformation parameters
could cause an error of velocity of about 0.05 mm/yr, which should be taken into account for the
increasing demand of high-precision velocity of 0.1 mm/yr [42]. Moreover, the impact could be
enlarged for stations with a shorter time span. For other factors, the effects on velocity uncertainty
may be about 0.01 mm/yr when the noise estimation from the post residuals were used as a priori
information. Further study is also needed to assess the effects on velocity estimations in detail but is
out of the scope of this paper. Blewitt indicated that there is an equivalence between the deterministic
model and stochastic model in the parameter adjustment, the unmodeled functional part could be
shown in the stochastic and vice versa [43]. Any inconsistencies between the deterministic and
stochastic model can cause overestimation or underestimation for the parameters in both models.
However, the accurate deterministic model was used for the simulated time series, but the power law
noise of post residuals could still be biased from the a priori known noise information.

Fritsche et al. indicated that the contribution of GLONASS becomes considerable starting with the
year 2008 for GNSS-related parameters (e.g., stations coordinates, Earth rotation pole parameters) [44].
Distinct peaks were found at periods of 7.8 and 8.2 days in the position time series for analysis centers
with GLONASS data processed in the second reprocess, which was close to the nominal ground
period of the GLONASS satellite (8 days) [29,45]. When all significant periodic signals in position time
series were considered, Bogusz and Klos indicated that the noise should be closer to white noise [11].
Further comparison would be done for noise analysis of station position time series using GPS and
GPS/GLONASS data.
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5. Conclusions

Previous studies estimated the noise properties in the GNSS position time series and always
took the annual and semi-annual signal into account in the functional model. However, they had
seldom assessed the effect of the seasonal signal on the noise analyses. Compared with the simulated
annual signal and noise, the mutual effects of seasonal signals and noise properties on each other
were assessed in this study. Estimating the seasonal signals in the deterministic model resulted in
much “whiter” noise for more than 98% of stations. For stations with an observation time span of
less than 6 years, the spectral indexes difference could even reach 0.2. Meanwhile, the noise in the
simulated position time series could also induce a median bias of 0.26 mm for the annual signal of the
up component.

Using the current discontinuity information for GNSS position time series contributing to the
ITRF2014, the effects of position/velocity offsets in simulated time series on the power law noise were
assessed. The parameterization of the irregular offsets could induce spectral indexes closer to zero and
smaller amplitudes for power law noise.

The effect of the weight matrix on noise analyses was assessed using the simulation as well as
IGS second reprocessed solutions. The comparison indicated that the weight matrix derived from the
covariance information could enhance the colored noise for more than 90% of stations. Moreover, using
the simulated data, the median biases of the annual amplitude caused by different weight matrices
could reach 0.2 and 0.4 mm for the horizontal and up components, respectively. When the additional
Helmert transformation parameters were considered in the deterministic model, the colored noise
of about 70% of stations were weakened for the three components, and a regional characteristic was
also noticed for the spectral indexes difference. Finally, the transformation parameters and full weight
matrix could result in 75% of stations with lower spectral indexes for the horizontal components.
However, the percentage was only 40% for the up component, which indicated that weight matrix
was the dominant factor for horizontal components while the transformation parameters were the
dominant ones for vertical component. In order to obtain a velocity precision of 0.1 mm/yr for
high-precision and long-term Earth science applications, the authors suggested that the Helmert
transformation parameters should be considered carefully in the stacking model of position time series.
Although the systematic bias could be caused by offsets and the weight matrix for the colored noise,
the impacts of these systematic errors on velocity could be neglected.
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