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Abstract: The Clumping Index (Ω) was introduced to quantify the spatial distribution pattern of
vegetation elements. It is crucial to improve the estimation accuracy of vital vegetation parameters,
such as Leaf Area Index (LAI) and Gross Primary Production (GPP). Meanwhile, the parameterization
of Ω is challenging partly due to the varying observations of canopy gaps from different view angles.
Many previous studies have shown the increase of Ω with view zenith angle through samples of gap
size distribution from in situ measurements. In contrast, remote sensing retrieval algorithms only
assign a constant value for each biome type to roughly correct the clumping effect as a compromise
between the accuracy and efficiency. In this paper, analytical models are proposed that estimate the
directional clumping index (Ω(θ)) of crop and forest at canopy level. The angular variation trend and
magnitude of crop Ω(θ) was analyzed within row structure where vegetation elements are randomly
spaced along rows. The forest model predicts Ω(θ) with tree density, distribution pattern, crown
shape, trunk size, and leaf area and angle distribution function. The models take into account the
main directional characteristics of clumping index using easy-to-measure parameters. Test cases
showed that Ω(θ) magnitude variation for black spruce forest was 102.3% of the hemispherical
average clumping index (Ω̃), whereas the Larch forest had 48.7% variation, and row crop variation
reached 32.4%. This study provided tools to assess Ω(θ) of discontinuous canopies.

Keywords: gap fraction; vegetation; zenith angle; directional variation

1. Introduction

Canopy clumping affects the gap fraction and redistributes radiation interception within the
canopy [1–4]. The assumption of random distributions causes underestimation of leaf area index (LAI)
as compared to considering clumping, since the clumping phenomenon of natural forest increases
the gap fraction [5–7]. Therefore, the effective LAI that was indirectly obtained from gap fraction
measurements needs to be interpreted together with the clumping condition to approach the actual
LAI, i.e., the one-sided leaf area per unit horizontal ground surface area [8–11].

Clumping index (Ω) is a commonly used vegetation dispersion parameter that quantifies the level
of foliage distribution non-randomness in real case [12], with Ω = 1 for completely randomly distributed
foliage, Ω > 1 for regular spatially distributed foliage, and 0 < Ω < 1 for clumped foliage [13,14].

The difficulties in assigning Ω are due to its multiple scale and directional variation. First,
the clumping effect exist at different scales, such as at shoot level, among canopies level, and at the
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ecosystem level [7,15–20]. Second, canopy level Ω varies with zenith angle so that the directional
change of clumping index has attracted more and more attention [16,19,21–23].

Due to this complexity, the study and application of Ω faces accuracy-efficiency-robustness
trade-off [19]. In field campaigns, Ω is derived from gap size statistics or gap fraction, as measured by
many ground based optical instruments, such as the Tracing Radiation and Architecture of Canopies
(TRAC) system [18] or fish-eye photographs [24]. In situ measured Ω can accurately depict the
site-specific Ω variation, but lack efficiency. Nevertheless, it is risky to extrapolate the values or
relationships beyond the site.

In operational retrieval of MODIS LAI product, the algorithm assigns a single clumping factor
to each biome type [25]. This is the most simplified method but it guarantees the robustness. Chen
et al. [4] developed a satellite level regression model for hemispherical average clumping index from
an angular index that is called the normalized difference between hotspot and dark spot (NDHD),
which made it possible to retrieve global time series average clumping index [9,26,27]. The NDHD
method balances the need for computational efficiency while including the pixel specific information.
However, the directional variation of clumping index has not been included.

The angular variation of directional clumping index (Ω(θ)) contains abundant vegetation structure
information [28]. Discontinuous crop and forest are two representative examples. The directional
variation pattern of the clumping effect reflects various vegetation canopy morphologies [29,30].

Furthermore, the directionality of clumping index is necessary to be taken into account in
vegetation monitoring for two reasons. One reason is the observed clumping varies along with
the view direction, which results in the uncertainty in using single clumping index value. Another
reason is the accuracy of Ω estimation has an apparent influence on LAI and Gross Primary Production
(GPP). Ω estimation error directly and linearly affects LAI retrievals. Normally, LAI measurements
from optical instruments and sensors are referred to as effective LAI (LAIe), the product of Ω and
actual LAI (LAI) (half the total leaf area) (LAIe = Ω·LAI). Garrigues et al. [31] tested LAI retrieval
sensitivity while using digital hemispherical photography over 10 crop types. The clumping index
induced difference in LAI estimation at 30-m scale was as high as 31% (relative root-mean-square
error or relative RMSE). Weiss [14] suggested that the accurate estimation of clumping index for each
zenith angle will increase LAI estimation accuracy. Piayda et al. [32] applied angularly dependent
leaf clumping index in determining LAI, which led to a 30% higher estimation when compared to
the indirect measurements using LAI-2000, but matched precisely with the direct measurements
using litter traps. Chen et al. [33] tested the effects of ignoring foliage clumping characteristics in
global GPP mapping, and found that neglecting clumping index will increase the uncertainty in GPP
estimation, particularly in tropical regions. Using accurate LAI, but ignoring clumping index, causes
an overestimation of global GPP by 12%; applying the effective LAI without considering the clumping
effect would underestimate global GPP by 9%. Comparing the effect of clumping index on LAI/GPP
estimation and the directional variation magnitude of Ω [2,21], it is necessary to apprehend that if
angular variation is not provided as well as the average, large errors can occur in the inverted leaf
angle distribution and LAI for canopies with direction dependent clumping [34].

Many studies have discussed the directional variation of Ω using the gap size distribution
measurements from in situ instruments, such as TRAC or digital hemispherical photography.
The efficiency in data measurement is the bottleneck in wide application of the gap size distribution
model. Kuusk [22] developed a simulation model that had extended the understanding of directional
clumping effect, but it was difficult to be applied for practical calculations, as many input parameters
cannot be measured. Kucharik [21] modeled the directional clumping index using an empirical
equation to extend its availability for more species, although the accuracy of coefficients is restricted in
the regression hull. This paper aims to propose analytical models to estimate directional clumping
index of crop and forest at canopy level.

According to the Beer’s law [35], the clumping index can be estimated as a function of gap fraction
of vegetation canopy. Crop canopy illustrates an apparent clumping index angular dependence due
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to its gap fraction variation in discrete periodic row structures [22,36,37]. Fan et al. [37] proposed an
analytical model for the crop clumping index using the directional average gap fraction, where each
hedgerow was regarded as the integration of four parts with different average LAI. This assumption led
to an accurate expression of crop clumping index, although the integration component is incorrect in
concept. Peng et al. [38] rectified the method and applied the directional clumping index in retrieving
crop albedo. The average gap fraction of forest was estimated according to the interaction between
light regime and the canopy, such as the widely used Geometric-Optical (GO) model that was proposed
by Li et al. [39], Nilson [7], and Xu [40]. In the GO model, forest gap fraction is the complement of the
projected area fraction on the ground. Nilson [7] proposed the gap probability was determined by the
number of trunks occurring in the shadowed region of a single tree. It is assumed each tree crown
was ellipsoid, which fits most practical cases. The measurements and simulations [21] suggest that the
largest gaps between crowns are a major cause of the canopy clumping effect.

This paper proposed analytical models for crop and forest directional clumping index based on
gap fraction estimation. To extend the applicability of the model, we emphasized the angular variation
of Ω due to the first-level structure, i.e., the row structure of crop, and the abundance of crown shapes
coupled with complex tree spatial distribution of forest.

Section 1 introduced the importance of clumping index and the necessity of directional clumping
index according to the previous studies. Section 2 introduces the derived analytical model of angular
clumping index variation for crop and forest. Section 3 demonstrates validation of the model, while
using in situ results to validate the reliability of the proposed methods, and we evaluated the variation
range of Ω(θ). Section 4 analyzes the influence of various parameters on directional clumping index
using the proposed methods. Section 5 summarizes the main conclusion and proposes the limitations
in the model and analysis. The symbols used in this paper are listed in Table 1.

Table 1. List of symbols used in the clumping index (Ω) models.

Symbol Description Unit

θ Zenith angle, µ = cos θ degree
ϕ Azimuth angle degree
p Gap fraction dimensionless
Ω Clumping index (Ω) dimensionless

LAI Leaf area index dimensionless
u Leaf volume density m−1

Gθ Mean projection of unit foliage area along the direction of zenith angle θ dimensionless

A/A1/A2/H Row period width, row width, gap width, and crop height, respectively.
A = A1 + A1 for any ϕ

m

a1/a2 Row width and gap width, respectively, in the direction perpendicular to the row m
R Radius of the tree crown m
H Height (or depth) of the tree crown m
dt Trunk diameter at breast height, DBH m
ht Trunk height m

CCR Crown closure, counting overlapped crown projection multiple times dimensionless
CCA Crown closure, counts overlapped crown projection once dimensionless

P Probability dimensionless
N Average number of trees in unit area dimensionless
M Average number of trees in a quadrat defined by the Poisson distribution dimensionless

m1
Average group number of trees in a sample area defined by the Neyman
distribution dimensionless

m2 Average number of trees in each group dimensionless
ρ Leaf reflectance dimensionless
T Leaf transmittance dimensionless
rh

g Bi-directional reflectance of soil dimensionless
rd

g Directional-hemispherical reflectance of soil dimensionless
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2. Modeling and Evaluation

Crop Ω generally varies with azimuth angle, whereas forest Ω is generally symmetric in the
azimuth dimension. Different algebraic models are firstly proposed for their respective directional
clumping index estimation.

Simulation is a practical choice to validate algebraic expression. The Monte Carlo (MC) method
was employed for crops [38]. The morphological statistics was proposed for forests, which quantifies
the gap fraction through automatic counting that is based on virtual forest scenarios. Simulated results
can capture the general variation trends of directional gap fractions and provide reference results.

2.1. Analytical Method for Crop and Forest

2.1.1. Crop Model

We regard the crop as clumps of vegetation elements at the canopy level [37]. The vegetation
elements are randomly distributed within hedgerows [41]. Following the Beer’s law, the average gap
fraction of the vegetation canopy is a function of view zenith angle and its structural parameters,
including clumping index, LAI, and leaf angle distribution [42],

p(θ, ϕ) = exp(−Ω(θ)
Gθ

µ
LAIa) (1)

where p(θ, ϕ) is the gap fraction; Ω(θ) refers to the directional clumping index; Gθ is a parameter to
describe canopy structure; µ is the cosine of zenith angle θ; and, LAIa denotes the spatially-averaged
leaf area index.

The average gap fraction of hedgerow crop canopy can be estimated using Yan et al.’s
algorithm [41].

p(θ, ϕ) =
1
A

 (
A1 − H tan θ − 2 sin θ

Gθ u

)
e−

Gθ u H
cos θ

+
(

A2 − H tan θ + 2 sin θ
Gθ u

)
 (2)

where A is a row unit consisting of canopy width (A1 = a1/ sin ϕ) and row spacing (A2 = a2/ sin ϕ)
at a relative azimuth angle of ϕ with the row direction; a1 and a2 represents the canopy width and row
spacing that vertical to the row direction. H is the height of the crop. Then, Ω(θ) can be calculated
from the average gap fraction, p(θ, ϕ), i.e.,

Ω(θ) = −
µ ln

(
p(θ, ϕ)

)
Gθ LAIa

(3)

where the equivalent LAI (LAIa), includes the influence of foliage and non-foliage elements.
Kucharik et al. [16,21] proposed that the canopy clumping index is a function of path length

through the canopy. More specifically, it is a function of the effective path length in proportion to the
encountered vegetation elements, as it is related to the energy attenuation in the canopy. For crop
canopy, this effective path length does not count the row gap. Therefore, the maximum effective path
length shows ups and downs while penetrating more rows and row gaps at increasing zenith angles,
which is illustrated as the line A–E in Figure 1.

Accordingly, the variation of Ω(θ) with zenith angle can be pinpointed while using the local
feature angles, θci, corresponding to the peaks of the Ω(θ) curve with zenith angle (Figure 2).
The feature angles are determined by the row structure,

θci = tan−1
(

iA
H

)
θdi = tan−1

(
iA+A1

H

) (4)
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where i = 1, 2, 3, . . . i denotes the number of rows that photons penetrated through in the crop canopy;
and A = A1 + A2 = a1/ sin ϕ + a2/ sin ϕ. The subscript c and d corresponds to the local peak and
valley value.

Ω(θ) increases along with zenith angle before reaching the first feature angle (Figure 2). In practice,
if the fluctuation (normally < 0.05) can be tolerated for Ω(θ), we can regard Ω(θ) as approximately
stable after the first turning point θc. Therefore, θc can be used to predict the main Ω(θ) trend, which is
regarded as the range angle of Ω(θ),

θc = tan−1
(

A
H

)
(5)
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Figure 2. Crop Ω(θ) along with zenith angle for different leaf area index (LAI). Other simulation
parameters: a1 = 0.2, a2 = 0.3, H = 1, rh

g = 0.22, ρ = 0.0999, T = 0.1303.

2.1.2. Forest Model

The derivation of forest Ω(θ) uses the average gap fraction (3), which is referred to Nilson’s
model [7]. We modelled the tree crown as vertical ellipsoid for three reasons. First, the vertical ellipsoid
is axially symmetrical, which accords with our assumption that the variation of clumping index along
with azimuth angle is not considered. Second, the crowns of different species can be discriminated
though the ratio between crown depth and crown width, which is related to the variation of the
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clumping index along with zenith angle. Third, the ellipsoid can be easily parameterized using crown
depth and crown width in the model.

For randomly distributed forest, the gap fraction at canopy level can be expressed as

pθ = e−nπR2
√

1+( h
2R )

2
tan2 θ (1−p1(θ)) (6)

where pi(θ) is the intra-crown directional gap fraction of the tree, h/2R is a crown shape factor that
discriminates different trees types or species, and nπR2 is the crown closure where the overlapped
regions of crown projections have been multiply counted, i.e., CCR = nπR2. Combining (3) and (4),

Ω(θ) =
CCR sin θ

√
tan−2 θ + ( h

2R )
2
(1 − p1(θ))

G LAIa
(7)

However, (6) and (7) do not consider the trunk, which can affect optical measurements for some
high trees with tall or wide trunks [43]. The average gap fraction at canopy level, incorporating trunk
effects, can be expressed as

pθ = e−n(πR2
√

1+( h
2R )

2
tan2 θ+dt ht tan θ) (1−p1(θ)) (8)

and the directional Ω(θ) can be expressed as

Ω(θ) =

CCR sin θ

(√
tan−2 θ + ( h

2R )
2
+ dt ht

πR2

)
(1 − p1(θ))

G LAIa
(9)

Alternatively, if we count the overlapped regions of crown projections only once in the canopy
closure calculation, then CCA = 1 − e−n πR2

, since it is equivalent to the canopy gap fraction at the
nadir direction. Then, the canopy average gap fraction and Ω(θ) can be expressed as, respectively,

pθ = (1 − CCA)

√
1+( h

2R )
2

tan2 θ (1−p1(θ)) (10)

and

Ω(θ) = −
ln(1 − CCA) sin θ

√
tan−2 θ + ( h

2R )
2
(1 − p1(θ))

G LAIa
(11)

if considering the tree trunk,

pθ = (1 − CCA)
(

√
1+( h

2R )
2

tan2 θ+
dtht
πR2 tan θ) (1−p1(θ)) (12)

and

Ω(θ) = −
ln(1 − CCA) sin θ

(√
tan−2 θ + ( h

2R )
2
+ dtht

πR2

)
(1 − p1(θ))

G LAIa
(13)

Equations (7) and (9) are Ω(θ) expressions for multiple counted canopy closure, and Equations
(11) and (13) are Ω(θ) expressions for once counted canopy closure.

2.2. Simulation Method of Directional Clumping Index

To evaluate the performance of the analytical model, we used the Monte Carlo simulation
methods to obtain cross validation information when considering the ground measurements are limited.
Compared to the analytical methods, the Monte Carlo simulations are based on the repeated random
sampling and statistical analysis. They provide numerical solutions to the unknown parameters
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with the same simplifications and assumptions as the analytical methods so that the results can be
inter-compared. Here, comparing with current clumping index models is not applicable because of the
definition difference. The models aim to obtain the average clumping index Ω̃ rather than directional
clumping index Ω(θ).

For crop, we used a Monte Carlo (MC) method to simulate the Ω(θ), as in Section 2.2.1. For forest,
we used a virtual forest scenario to simulate the forest gap fraction and Ω(θ) to provide validations
for the algebraic model. The detailed setting of the forest scenario is described in Section 2.2.2.
The procedure of obtaining canopy-level directional gap fraction is introduced in Section 2.2.3.
This simulation mainly reflects the inter-crown gap fraction variation, as this dominantly causes
the gap size distribution function to deviate from random at canopy level [19,21].

2.2.1. Crop Directional Clumping Index Simulation

The MC method simulated the radiative transfer process of photons in the canopy by generating
the incident photons, determining the scenarios regarding photons colliding with leaves or soil,
randomly assigning the scattering direction, calculating the free paths of the photons, and counting the
photons satisfying specific conditions. The detailed procedures and parameter setting was introduced
in [38].

A set of parameters from maize canopy was set as the hypothesis example (a1 = 0.2, a2 = 0.3,
H = 1, rh

g = 0.22, ρ = 0.0999, T = 0.1303, Table 1).
We calculated Ω(θ, ϕ) while using the MC method for the same scenario. In the MC method,

the radiative photon transfer process in the canopy is simulated for predefined canopy structural
parameters. Each photon was traced and collisions were recorded. The statistics from many photon
behaviors approximately reflect actual canopy characteristics and provide validation. Therefore,
the gap fraction is the fraction of photons penetrating the canopy, and Ω(θ, ϕ) can be calculated from
Equation (3).

2.2.2. Forest Scenario Settings

Our goal was to directly count the gap fraction by traversing, so we must first construct a forest
scenario. The main problems involve how to depict each tree and how to define the distribution pattern
for multiple trees. The scenes can be extended to be infinite through juxtaposing identical scenes.

The basic tree crown shape is modelled as a generalized ellipsoid as in the analytical forest model
(Section 2.1.2). Then the crown shape could be defined by the major and minor axis lengths. The trunk
was treated as a cylinder defined by height and radius at breast height. We defined similar trees in
each simulation for efficiency, but this could be easily extended to various tree shapes by introducing
random offsets. Then, we define the tree positions according to the different distribution patterns.
If the trees are distributed randomly, the distribution follows Poisson’s law [8,44,45].

However, trees are likely to cluster in different sized groups rather than truly distribute randomly.
Chen and Leblanc [8] assumed the distribution of the groups and the trees in each group both followed
Poisson’s law. This dual Poisson or Neyman distribution fits the actual situation better than the simple
Poisson’s law [45–47]. The Neyman distribution PDF can be expressed as

PN(x; m1; m2) = e−m1
mx

2
x!

∞

∑
j=1

[m1 e−m2 ]
j

j!
jj (14)

where m2 = 1 implies that the tree distribution is close to, but not the same as, the random case.
Canopy closure is directly linked to the gap fraction. Thus, the simulation was conducted using

increasing m (Poisson distribution) and m1 (Neyman distribution), corresponding to increasing stand
density (trees/m2).
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2.2.3. Forest Directional Clumping Index Simulation

The whole forest canopy was segmented into small inclined cylinders along the view direction,
while considering the leaf distribution heterogeneity (Figure 3). Average LAI can be calculated for
each cylinder according to the tree distribution pattern, i.e., the predefined leaf volume density and
cylinder height (related to view zenith angle, θ). Assuming leaves distribute homogeneously within
each cylinder, Ω(θ) is 1 for each cylinder at any zenith angle. The cylinder gap fraction pi can be
calculated according to Beer’s law as a function of u,

pi = exp
(
− Gθ

cos θ
u H

)
(15)

where the canopy height is converted to cylinder height through cos θ, and Gθ = 0.5. The average gap
fraction, p(θ), of the whole canopy can be calculated as the average over all cylinders, and Ω can be
obtained from (3).
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Figure 3. Calculation processes for forest average gap fraction.

Key parameters for the simulation include the average LAI of each tree, tree height, crown depth,
crown radius, tree density, and parameters defining the tree distribution pattern and research area size.

2.3. Forest Ground Measurements

In this paper, two groups of forest Ω(θ) ground measurements were used to validate the analytical
model. The ground measurements were collected from published field campaigns and new in
situ experiments. Simulation parameters for forest characteristics were set according to practical
forest features. The first group of data was obtained from an old Black Spruce (Picea mariana) forest,
near Candle Lake, Saskatchewan [8,18] while using TRAC with a measurement error of about 5%.

A second group of measurements was collected at the Saihanba experimental site within Hebei
Province in China (117.32◦E, 42.40◦N). The domain was covered by steppe and forest steppe, with Larch
(Larix gmelinii (Rupr.) Rupr.), one of the main tree types.

We measured the Larch gap fraction using hemispherical photographs obtained from a Canon
EOS 50D camera with a fish-eye lens, providing orthographic projection and a 180◦ field of view
(Figure 4). The camera setting is introduced in [48]. 53 images were taken within the 45 m × 45 m
square. The upward looking hemispherical photograph was further processed using Hemiview 2.1
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software (http://www.delta-t.co.uk/product/hemiview/, 5 June 2017) to calculate canopy multiple
angle gap fraction. Each hemispherical image was divided into 18 concentric rings between 0◦ and 90◦

zenith angle, with a zenith resolution of 5◦. The directional gap fraction is calculated for each zenithal
ring. The measurement error mainly depends on the threshold setting to discriminate vegetation from
sky conditions, which is about 1–3%. Simulation parameters are listed in Table 2, column 2, as collected
from the field measurements.
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Figure 4. Upward-looking hemispherical photograph and corresponding visual (360◦) view of
Larch stand.

Table 2. Forest structure parameters used in the current paper.

Column ID 1 2 3 4 5 6

Height of
trunk (m) 0.5 5 0.5 0.5 0, 0.25,

. . . , 1.75 0.5

Crown
depth (m) 6.5 1.5 2.28 2.28 2.28

2.07, 2.76, 3.62,
4.38, 5.09, 5.75,

6.37, 6.96

Crown
radius (m) 0.45 0.75 0.76 0.76 0.76

0.80, 0.69, 0.60,
0.55, 0.51, 0.48,

0.45, 0.43

H/2R ([-]) 7.22 1 1.5 1.5 1.5 1.3, 2, 3, 4, 5, 6, 7,
8

Radius at
breast height

(m)
0.16 0.15 0.16 0.16 0.16 0.16

Gθ ([-]) 0.5 0.5 0.5 0.5 0.5 0.5

Average LAI
([-]) 4.5 2

0.28, 0.84,
1.40, 1.97,
2.53, 3.09,
3.65, 4.22

2.25 2.25 2.25

Area of
research
field (ha)

1 5 4 4 4 4

Distribution Neyman
m2 = 4 Poisson Neyman

m2 = 4

Poisson,
Neyman m2 = 1,
3, 5, 7, 10, 15, 20

Neyman
m2 = 4 Neyman m2 = 4

Tree Number
(per ha) 4000 1011 250, 750,

. . . , 3750 2000 2000 2000

3. Results and Evaluation

3.1. Crop Directional Clumping Index Validation

The variation of Ω(θ, ϕ) with View Azimuth Angle (ϕ) under different θ is illustrated in Figure 5.
The differences between the modeled and simulated results (Figure 6) were randomly distributed with

http://www.delta-t.co.uk/product/hemiview/
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an average of 0, and maximum relative discrepancy <1.5%. The MC simulated and algebraic Ω(θ, ϕ)

are strongly consistent, which provides confidence to analyze crop Ω(θ, ϕ) variation while using the
algebraic model.

Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 22 

 

3. Results and Evaluation 

3.1. Crop Directional Clumping Index Validation 

The variation of Ω(ߠ, ߮) with View Azimuth Angle (߮) under different ߠ is illustrated in 
Figure 5. The differences between the modeled and simulated results (Figure 6) were randomly 
distributed with an average of 0, and maximum relative discrepancy <1.5%. The MC simulated and 
algebraic Ω(ߠ, ߮)  are strongly consistent, which provides confidence to analyze crop Ω(ߠ, ߮) 
variation while using the algebraic model. 

The different shapes of Ω(ߠ, ߮) − ߮ curves reflect the effect of the range angle cθ  of Ω(ߠ, ߮) 
pattern. When ߮ increases from 30° to 90° (perpendicular to the row direction), row period width A 
decreases, thus cθ  grows; when ߮ increases from 90° to 150°, A increases, then cθ  drops. When 
the ߮ is 0° or 180°, i.e., along with the row direction, the gap fraction of row plant is obviously larger 
than other directions as the row gap always occupies a fraction of the field of view. The Ω(ߠ, ߮) 
decreases with the growing view zenith angle, which means the crop departures more away from 
the random status. On the contrary, when the azimuth angle is larger, the Ω(ߠ, ߮) starts growing 
with view zenith angle and reaches a stable value around one after the view zenith angle higher than 
the range angle. When the azimuth angle reaches 90°, the ratio of equivalent row width to row 
height gets its minimum value so that the range angle is smaller than other azimuth directions. 
These variation trends verify the patterns of crop Ω(ߠ, ߮) in Section 2.1.1 and they show the 
crop	Ω(ߠ, ߮) dispersion at different view angles from constant status. 

 
Figure 5. Crop clumping index at specific azimuth angles for different zenith angles (different 
curves). Other simulation parameters: 1 2 1 10.6, 0.4, 1 0.18, 0.05., h

ga a r Tρ == =   LAI = 2,     = = H = . 

 

Figure 5. Crop clumping index at specific azimuth angles for different zenith angles (different curves).
Other simulation parameters: a1 = 0.6, a2 = 0.4, H = 1, LAI = 2, rh

g = 0.18, ρ1 = T1 = 0.05.

Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 22 

 

3. Results and Evaluation 

3.1. Crop Directional Clumping Index Validation 

The variation of Ω(ߠ, ߮) with View Azimuth Angle (߮) under different ߠ is illustrated in 
Figure 5. The differences between the modeled and simulated results (Figure 6) were randomly 
distributed with an average of 0, and maximum relative discrepancy <1.5%. The MC simulated and 
algebraic Ω(ߠ, ߮)  are strongly consistent, which provides confidence to analyze crop Ω(ߠ, ߮) 
variation while using the algebraic model. 

The different shapes of Ω(ߠ, ߮) − ߮ curves reflect the effect of the range angle cθ  of Ω(ߠ, ߮) 
pattern. When ߮ increases from 30° to 90° (perpendicular to the row direction), row period width A 
decreases, thus cθ  grows; when ߮ increases from 90° to 150°, A increases, then cθ  drops. When 
the ߮ is 0° or 180°, i.e., along with the row direction, the gap fraction of row plant is obviously larger 
than other directions as the row gap always occupies a fraction of the field of view. The Ω(ߠ, ߮) 
decreases with the growing view zenith angle, which means the crop departures more away from 
the random status. On the contrary, when the azimuth angle is larger, the Ω(ߠ, ߮) starts growing 
with view zenith angle and reaches a stable value around one after the view zenith angle higher than 
the range angle. When the azimuth angle reaches 90°, the ratio of equivalent row width to row 
height gets its minimum value so that the range angle is smaller than other azimuth directions. 
These variation trends verify the patterns of crop Ω(ߠ, ߮) in Section 2.1.1 and they show the 
crop	Ω(ߠ, ߮) dispersion at different view angles from constant status. 

 
Figure 5. Crop clumping index at specific azimuth angles for different zenith angles (different 
curves). Other simulation parameters: 1 2 1 10.6, 0.4, 1 0.18, 0.05., h

ga a r Tρ == =   LAI = 2,     = = H = . 

 
Figure 6. Relative discrepancy between simulated and modeled crop clumping index for different
zenith angles at specific azimuth angles.

The different shapes of Ω(θ, ϕ)− ϕ curves reflect the effect of the range angle θc of Ω(θ, ϕ) pattern.
When ϕ increases from 30◦ to 90◦ (perpendicular to the row direction), row period width A decreases,
thus θc grows; when ϕ increases from 90◦ to 150◦, A increases, then θc drops. When the ϕ is 0◦ or
180◦, i.e., along with the row direction, the gap fraction of row plant is obviously larger than other
directions as the row gap always occupies a fraction of the field of view. The Ω(θ, ϕ) decreases with
the growing view zenith angle, which means the crop departures more away from the random status.
On the contrary, when the azimuth angle is larger, the Ω(θ, ϕ) starts growing with view zenith angle
and reaches a stable value around one after the view zenith angle higher than the range angle. When
the azimuth angle reaches 90◦, the ratio of equivalent row width to row height gets its minimum value
so that the range angle is smaller than other azimuth directions. These variation trends verify the
patterns of crop Ω(θ, ϕ) in Section 2.1.1 and they show the crop Ω(θ, ϕ) dispersion at different view
angles from constant status.
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3.2. Forest Directional Clumping Index Validation

Figure 7 shows the comparison result in the old Black Spruce forest. Since the simulated and
measured Ω(θ) were both calculated from the gap fraction, we directly compared the gap fraction for
validation. There is high consistency between the measured and simulated gap fraction, validating
the proposed simulation method. At zenith angles of >50◦, the simulated gap fraction tends to
be slightly lower than the measured value due to multiple photon scattering impacting on optical
measurements [8,18].
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Figure 7. Measured and simulated gap fraction from an old black spruce forest, near Candle Lake,
Saskatchewan. Parameters are referred to Column 1 in Table 2.

We calculated the gap fraction using Equation (12), with the intra-crown gap pre-processed
through simulation as a Look Up Table. The other parameters, including tree density, crown depth,
and radius, were set as for previous simulation scenarios. The algebraic method includes the ideal
assumption that the trees were Neyman distributed. However, the simulated Poisson distribution
may demonstrate higher clustering than ideal situations [49], due to restrictions of the pseudo
random number generator in the simulation. One subset of our simulated tree distribution image is
demonstrated in Figure 8. Therefore, the calculated gap fraction from the simulation is a little lower
than the expected value.
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Figure 9 shows the comparison result using the measurements of Larch stand. It shows high
consistency between the simulated and measured gap fractions, with small fluctuations at small angles
due to random errors and sampling restrictions. When zenith angle of >70◦, discrepancies mainly arise
due to the hemispherical image being influenced by topography at large angles. Overlapping between
trees in the simulation and approximation of the projection area to accumulated discrete square units
determine that the average gap fraction in the simulation method is slightly larger than the model in
nadir direction, although the number of trees is equal. This difference weakens with increased zenith
angle and disappears between 40◦–60◦, then increases to 0.02 at 80◦.
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Ω(θ) was indirectly validated through the measured, simulated, and modeled gap fraction, and
demonstrated that the model is able to predict the main variation characteristics of Ω(θ).

3.3. Assessing the Variation Magnitude of Ω(θ)

Using the proposed models, we assessed the relative variation magnitude of Ω(θ) to indirectly
reflect its potential influence on LAI/GPP estimation.

We selected three scenarios, one representing a typical crop example, and the other two matching
forest measurements. We first calculated the hemispherical average clumping index (Ω̃) for each
group by angular integration, where Ω̃ represents the commonly used single value of clumping index.
The uncertainty due to using Ω̃ rather than angle specific Ω(θ) can be assessed from the position of
Ω̃ in the range of Ω(θ) (Figure 10). For crop canopies, the discrepancy between Ω(θ) and Ω̃ is more
obvious before the zenith angle reaches the range angle. Since the range angle of Ω(θ) ∼ θ curve
is smaller than 20◦, the marker of Ω̃ is out of the box. For forest canopies, the angular variation of
the black spruce forest is more intense than the larch forest, due to the different Ω(θ) variation range
determined by their tree species and growth status. However, all of the variation amplitude relative to
Ω̃ are large and they should not be neglected.

To further quantify the potential uncertainty caused by ignoring variation of Ω(θ) with zenith
angle, we estimated the relative angular variation magnitude of Ω(θ) using the index

AV =
Ωmax − Ωmin

Ω̃
(16)

where AV values for the example clumping index datasets are listed in Table 3. Ω(θ) variation
amplitude for crops can reach 32.4% of its average value. Black spruce has tall and slender crowns,
i.e., larger crown shape factor (Section 4.2.4), which leads to larger Ω(θ) variation range, with Av
reaching 102.3%. Larch forest canopy AV is somewhat lower, mainly due to its relatively smaller Ω(θ)

variation range related to its crown shape factor. This demonstrates that potential uncertainty can
arise by ignoring Ω(θ) variation in practice. Comparing the relative variation magnitude with the
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allowable error range will help to determine whether or not Ω(θ) should be treated as constant in
practical situations.
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Figure 10. Comparison between Hemispherical average Clumping index (Ω̃) and distribution of Ω(θ)

when 5◦ ≤ θ ≤ 80◦ using box plot. The three boxplots represent black spruce forest (refer to Table 2,
Column 1), Larch forest (refer to Table 2, Column 2), and crop (refer to Figure 2 with leaf area index
(LAI) = 3), respectively. In each box, the upper/lower black dots represent the max/min value of Ω(θ),
respectively. The top/middle/bottom lines of the box correspond to 20◦, 40◦, 60◦ of θ.

Table 3. Angular clumping index variation statistics.

Canopy Type Parameters
~
Ω Relative Variation Magnitude Av (%)

Crop Refer to Figure 2, LAI = 3 0.926 32.4
Black spruce forest Refer to Table 2, Column 1 0.453 102.3

Larch forest Refer to Table 2, Column 2 0.308 48.7

Another main application for Ω(θ) is to estimate the quantity of the terrestrial carbon sink and its
dynamic variability. One representative parameter is GPP [33,50]. The proposed method can be used
in GPP estimation to explore whether it would improve the accuracy, which would be a fruitful future
research direction.

4. Sensitivity Analysis

According to the analytical models, the factors influencing crop Ω(θ) include LAI, leaf foliage
distribution, and hedgerow structure, whereas tree density, tree distribution, crown shape, and trunk
size influence the forest clumping index. The contribution of these factors are analyzed in this section
to assess their relative importance.

4.1. Factors Influencing Crop Clumping Index Variation

4.1.1. Leaf Area Index

Figure 11 shows that Ω(θ) decreases with increasing LAI in all directions, since heterogeneity is
more apparent for larger intra-ridge LAI. Before the zenith angle reaches the range angle, Ω(θ) varies
greatly with crop canopy LAI. The view zenith angle of satellite observations is mainly smaller than
the range angle, e.g., MODIS view zenith angle is between 0◦ and 65◦. Therefore, Ω(θ) is essential to
LAI estimation while using satellite data.
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Leaf angle distribution ( Gθ ) is a key parameter influencing Ω(θ) estimation. We estimated crop 
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Figure 11. Effect of leaf area index (LAI) on crop clumping index. Different curves refer to different
zenith angles (◦). Simulation parameters: a1 = 0.2, a2 = 0.3, H = 1, rh

g = 0.22, ρ1 = 0.0999, T1 =

0.1303.

4.1.2. Leaf Angle Distribution

Leaf angle distribution (Gθ) is a key parameter influencing Ω(θ) estimation. We estimated crop
Ω(θ) for different Gθ functions (Erectophile, Plagiophile, Spherical, Extremophile, and Planophile)
(Figure 12) [51]. Figure 13 shows that the effect of different leaf angle distribution is more evident
closer to nadir direction. For zenith angle beyond the θc, this effect lessens as the crop canopy
approaches continuous. Leaf angle distribution and Ω(θ) influence accurate LAI estimation from
satellite observations with smaller zenith angles than the range angle.
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Figure 13. Leaf angle distribution effect for crop clumping index. Different curves refer to leaf angle
distribution types (Erectophile, Plagiophile, Spherical, Extremophile, and Planophile). Simulation
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g = 0.22, ρ1 = 0.0999, T1 = 0.1303.

4.1.3. Row Structure

Row structure is characterized by canopy height, H, and row period width, A. As discussed
above, Ω(θ) increases with zenith angle until the range angle, which is controlled by the row structure.
Figure 14 shows calculated Ω(θ) for various row structures that are discriminated by A/H, where
H = 1, and a1/a2 = 2:3. Thus, when A/H increases with growing A, the range angle grows, which is
consistent with (5).
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Figure 14. Clumping index variation with zenith angle for different crop period/height (A/H) ratios
(different curves). Simulation parameters: a1/a2 = 2 : 3, H = 1, intra-row LAI = 3.

Generally, the LAI and A/H both have apparent influence on Ω(θ), while Gθ has less influence
than the other two factors. However, LAI and A/H are inter-correlative, as we assume that the
leaf volume density keeps constant [41], and their influence will partly compensate each other. The
influence of all three factors are less obvious at large zenith angles, because Ω(θ) reaches a relatively
stable value close to 1 after the zenith angle exceeds the range angle, when the discontinuous crop
canopy can be approximately regarded as continuous vegetation canopy.
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4.2. Factors Influencing Forest Clumping Index Variation

Crown coverage and crown depth dominates the directional gap fraction and Ω(θ) [21]. In natural
cases, crown coverage not only relies on tree density, but also the distribution patterns. Morphological
characteristics of tree species also influence the gap fraction. Therefore, we investigated the influence
of tree density, tree distribution, crown shape, and trunk size on the clumping index. When we design
the simulation experiment and select the parameter values, the following factors were considered.
(1) Comparability. The results among different parameters’ results are generally comparable. Some
basic setting of the scenarios keeps the same as the ground measured parameters in the black spruce
forest; and, (2) Representativeness. For example, we choose an average crown shape of deciduous
forest that the crown depth is three times of the crown radius [52]. To avoid the violation to the
comparability, the total tree volume was kept constant, so the crown depth was set to 2.28 m and the
crown radius was 0.76 m.

4.2.1. Tree Density

Tree density was varied with individual tree parameters held constant (Table 2, Column 3), and
Ω(θ) estimated for each case, as shown in Figure 15. Forest canopy Ω(θ) increases with growing view
zenith angle, but since the distribution of vegetation elements is more heterogeneous in forest than
crop canopies, Ω(θ) at large zenith angle cannot reach 1, although it also achieves relative stability.
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total tree count within 4 ha. Values in brackets represent once-counted crown coverage, which varies
according to the actual scenario. Other simulation parameters were as listed in Table 2, column 3.

For forests with a given crown coverage (in this simulation, approximately > 0.1), inter-crown
gaps disappear rapidly with growing zenith angle, as soil in the field of view is gradually replaced by
neighboring trees at the oblique angle. Therefore, Ω(θ) increases for 0–50◦. In contrast, for sparse forest,
e.g., crown coverage = 0.031 in Figure 15, inter-crown gap dominants the field of view and it cannot be
totally counteracted through increasing zenith angle. Thus, Ω(θ) increase for sparse forest is not as
apparent as for denser forest and the clumping index generally increases with tree density. An obvious
difference can be observed between the N = 1000 line and other lines due to the mutual shadowing
and overlapping among crowns. Furthermore, Ω(θ) values for a given zenith angle do not change
monotonically with tree density, but they show fluctuations due to changes in the tree arrangement for
simulation scenarios, since tree positions were randomly determined. This phenomenon also can be
seen in Figures 16–18. However, the main trend of Ω(θ) variation remains similar across these factors.
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4.2.2. Tree Distribution Pattern

Non-random tree distribution causes clumping and more apparent shadowing among crowns,
which also affects canopy Ω(θ) at large zenith angles. Two tree distribution functions were compared:
Poisson and Neyman distributions, since these represent random and non-random distributions,
respectively [46].

Neyman distribution included m2 = 1, 2, 5, 10, 20, as shown in Figure 16. When m2 = 1, the gap
fraction distribution is similar to, but not the same as, the Poisson distribution. As m2 increases,
the clumping effect between trees and intra-crown gap fraction increase. However, this combined
effect on Ω(θ) is not large. When m2 ≤ 5, Ω(θ) difference between sample lines <0.02. This demonstrates
that the slight non-random distributions in natural forests has little influence on canopy level Ω(θ).
But, if the non-random distribution is dominant, its influence on Ω(θ) cannot be ignored. For example,
the Ω(θ) difference between the sample line with m2 = 5 and that with m2 = 20 can reach 0.08 at large
zenith angles.

4.2.3. Trunk Height

The proposed algebraic models for forest clumping index estimation parameterized tree trunk
influence. The influence of tree trunk on gap fraction would be great for high trunk tree species, such as
the black spruce forest that is considered above.

Figure 17 shows that the influence of trunk is more important at higher zenith angles, because the
fraction of visible trunk grows with zenith angle from only the cross section at nadir direction. Higher
trunk fraction in the field of view leads to lower gap fraction, causing increased Ω(θ) for constant
average LAI. The variation magnitude depends on the forest scenario, which is larger than 0.1 in this
example and it should not be neglected.

Note that increased trunk size would increase the equivalent average LAI, since the trunk is one
of the vegetation elements, but the average LAI was set as constant in the simulation (Figure 17) to
realize monofactor sensitivity analysis and highlight trunk height influence on directional Ω(θ).

4.2.4. Crown Shape

The tree crown was simplified as an ellipsoid in the proposed model. One convenience of this
approach is that different species can be discriminated through the crown shape factor h/2R combined
with horizontal radius, R.

To highlight crown shape influence on canopy Ω(θ), we kept the crown column constant while
changing the crown shape factor (Figure 18). Table 2 shows that crown depth, radius, and their ratio
change synchronously.

As the ratio between crown depth and radius increases, there is more obvious increasing Ω(θ)
trend with zenith angle. When h/2R = 2, i.e., the crown is spherical, there is only slight Ω(θ) increase
with increasing zenith angle (~0.2 in this example). However, when h/2R = 8, implying that a deep
canopy, Ω(θ) increased with growing zenith angle, and approaches 1.

At near nadir direction, lower crown depth and radius ratios correspond to larger horizontal
projection for each crown when the column is fixed. This larger projection corresponds to lower
gap fraction and results in larger Ω(θ). However, curves with higher crown depth and radius ratios
demonstrate Ω(θ) increase with growing zenith angle, because neighboring crowns connect together
earlier as the zenith angle increases.

Thus, the forest is more similar to a continuous canopy at larger zenith angles. This continuous
effect is more apparent for larger crown depth and radius ratios, and it occurs earlier in the solar
zenith dimension.
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5. Conclusions

This study investigated the directional clumping effects from typical discontinuous vegetation
canopies, including crop and forest. The results verified that the angular variation of the clumping
index not only exists, but also reaches notable magnitude for practical cases.

We proposed analytical models to predict the Ω(θ) of crop and forest using structural parameters.
The models were validated using simulations for near real cases, and also compared with several sets
of ground measurements collected from field experiments and literature. The comparisons provide
confidence that the calculated and simulated gap fractions fit ground measurements well.

The analytical model derived from the definition shows that crop Ω(θ) is mainly determined by
the row structures, LAI and leaf angle distribution. The effect of these parameters on Ω(θ) will decrease
at large view zenith angles. In contrast, forest Ω(θ) is dominated by tree density, tree distribution
pattern, crown shape, and trunk size. Their influence on the variation magnitude of Ω(θ) are all
not negligible.

Is it necessary to introduce Ω(θ)? In most practical applications of vegetation remote sensing,
average clumping index Ω̃ has played the leading role and provided the bridge from effective LAI
to actual LAI. Since Ω has integrated the overall hemispherical influence, it could be conveniently
rendered as a unified global map. However, the large Ω(θ) variation in the angular dimension and the
influence of clumping index on LAI and GPP prompt us to study Ω(θ) systematically. We intend to
investigate the proposed approach to further assess the difference between LAI and GPP products
that are derived using Ω̃ or Ω(θ), and validate the results using abundant ground measurements.
This expansion will be useful to judge whether Ω(θ) should be introduced for standard LAI and GPP
production. Another potential option is to apply Ω(θ), as the reference to select an optimal average Ω̃.

The current research still suffers from many problems and limitations.

(1) The crop model was developed for row structure with homogenous plant elements within the
hedgerow. It is not suited for other structures or intercropping of multiple crops. The forest
model has not considered the complementary tree species. The tree distribution pattern, LAI, and
gap fraction will be quite different in a scenario with the mixture of complementary trees [53].

(2) The influence of the crown shape model needs further investigation. Currently, we have assumed
the tree crown as vertical ellipsoid. For most species, the crowns can quite well be represented by
ellipsoids; however, some exceptions, such as the boreal needle forest, can be fit better by cones
McPherson [54] stated that the mean difference between the crown volume measures from the
assumptions of crown shape as paraboloids, vertical ellipsoids, and horizontal ellipsoids are 10%.
In tropical forest, the multi-stem trees are very common. The current crown shape model might
be not valid for them. The further effect of crown shape model on the clumping index needs to
be discussed for different species.

(3) Further comprehensive sensitivity analysis is expected. The analysis in this paper is restricted to
be a mono parameter analysis and the variation range of all the parameters is independent. This is
only the first step to observe the influence of each single parameter under specific conditions.
In the natural environment, there is a size-density allometry of plants under self-thinning as
the resources for growing are limited. The crown projection area scales to stem diameter [53].
Besides, LAI and LAD many vary simultaneously. Therefore, a multiple simultaneous analysis is
needed to avoid the risk to misconstrue simple size effects as changes in the crown morphology.

Further research is required to refine this analysis. The analytical directional clumping index
models would be applied in the unified model of bidirectional reflectance distribution function for the
vegetation canopy [40]. With the Unified BRDF model, the leaf area index can be analytically estimated.
Then, further validation using ground measurements and inter-comparison with other products will
demonstrate whether or how much the introduction of directional clumping index would improve the
LAI accuracy.
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