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Abstract: Digital aerial photogrammetry (DAP) and unmanned aerial systems (UAS) have emerged
as synergistic technologies capable of enhancing forest inventory information. A known limitation
of DAP technology is its ability to derive terrain surfaces in areas with moderate to high vegetation
coverage. In this study, we sought to investigate the influence of flight acquisition timing on the
accuracy and coverage of digital terrain models (DTM) in a low cover forest area in New Brunswick,
Canada. To do so, a multi-temporal UAS-acquired DAP data set was used. Acquired imagery was
photogrammetrically processed to produce high quality DAP point clouds, from which DTMs were
derived. Individual DTMs were evaluated for error using an airborne laser scanning (ALS)-derived
DTM as a reference. Unobstructed road areas were used to validate DAP DTM error. Generalized
additive mixed models (GAMM) were generated to assess the significance of acquisition timing
on mean vegetation cover, DTM error, and proportional DAP coverage. GAMM models for mean
vegetation cover and DTM error were found to be significantly influenced by acquisition date. A best
available terrain pixel (BATP) compositing exercise was conducted to generate a best possible UAS
DAP-derived DTM and outline the importance of flight acquisition timing. The BATP DTM yielded
a mean error of −0.01 m. This study helps to show that the timing of DAP acquisitions can influence
the accuracy and coverage of DTMs in low cover vegetation areas. These findings provide insight to
improve future data set quality and provide a means for managers to cost-effectively derive high
accuracy terrain models post-management activity.

Keywords: digital aerial photogrammetry; unmanned aerial systems; digital terrain models;
time series; accuracy assessment; forest management; seasonality; forest cover

1. Introduction

Enhancing forest inventories through the inclusion of structural data derived from three
dimensional remote sensing technologies has shifted the paradigm of how forest mensuration and
inventory management can be undertaken. Standardized methods of deriving directly comparable
forest metrics, such as height and density, as well as extracting data with the ability to detail forest
structure, have provided a means of establishing enhanced forest inventory (EFI) baselines [1,2],
updating previously generated inventories through time [3], and extrapolating structural attributes
using multi-data approaches [4–7]. The integration of these technologies into inventory systems has
facilitated a technological and data-driven revolution in forest inventory management and ecology,
providing data with the ability to support multi-scale planning and decision making. The adoption
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and implementation of these data into future inventories facilitates the need for research efforts to
derive meaningful structural descriptors, as well as improve the ecological, economic, and social
factors driving forest resources stewardship.

One actively researched technology capable of deriving structural attributes is digital aerial
photogrammetry (DAP) [8,9]. With the ability to construct image-derived point clouds and
ortho-imagery products for forestry and agricultural related inventory analyses, DAP technology
has seen dramatic expansion in recent years [3,10,11]. The integration of photogrammetry in
forest management is long standing, having been used for photo-interpretation of forest stands,
land-cover delineation, and forest attribute estimations [12,13]. Relatively recent advancements in
computer hardware and software have resulted in the wide-scale interdisciplinary adoption of digital
photogrammetry for three-dimensional solutions. The use of digital stereo-imagery in combination
with commercially available software packages has allowed researchers and managers to address
forestry-related challenges, including how the technology can be used to characterize forest structure,
and consequently provide reliable forest inventory data sets.

The use of DAP as an alternative to airborne laser scanning (ALS) data has facilitated cost-effective
and accurate methods of enhancing forest inventory information at a variety of spatial scales [14–16].
DAP point cloud generation has proven effective for creating commonly used mapping products,
such as digital surface models (DSMs) and digital terrain models (DTMs) under open stand conditions,
and are capable of accurately estimating forest inventory attributes [17].

Technologies that are facilitating cost-effective and efficient DAP data acquisitions include
unmanned aerial systems (UAS), otherwise known as unmanned aerial vehicles (UAV),
or drones [11,18–20]. With rapid technological innovation and an equally rapid adoption into
commercial markets, UAS and the wide range of compatible sensors have become a viable tool
for the acquisition of high quality imagery and forest inventory data [21]. Major factors promoting
their adoption, as well as DAP point cloud use in operational forest management, have been ease of use,
propensity for high spatial and temporal resolution data sets, and low long-term capital costs [22–24].
Global challenges currently surrounding the further adoption and implementation of UAS in resource
management settings include propulsion longevity, limiting their ability to efficiently cover extensive
areas, as well as line-of-sight legislation [25]. The implementation of UAS is, however, well suited to
improving managerial knowledge at a local operational scale, where they can be successful at updating
previously acquired inventory data and establishing new inventory baselines [11,19,26,27].

The use of multi-temporal DAP data acquired from UAS capitalizes on their potential for high
spatial and temporal resolution data. The use and incorporation of UAS to provide these benefits holds
great promise for inventory updates and data fusion. The inherent potential of multi-temporal remote
sensing data sets is well known [28–31] and innovations associated with free open access big-data
libraries have facilitated more frequent time series analyses [32–34]. Trend analyses resulting from
these data sets have been successful in outlining opportunities on how to improve upon traditional
management strategies using results-based scientific foundations. Satellite-based remote sensing
programs such as Landsat, Sentinel, or Moderate Resolution Imaging Spectroradiometer (MODIS)
have shown that repeated acquisitions and increasing temporal resolution of acquisition programs are
invaluable for detailing economic and social development, and are critical for effective, evidence-based
environmental management and monitoring initiatives [35,36].

While UAS-derived imagery and DAP datasets have proven cost-effective and accurate for
a variety of forest inventory information from single date acquisitions, limited research has been
conducted relating DAP-derived forest structure descriptors and the timing or seasonality of their
acquisitions. A fundamental requirement for using DAP in an inventory setting is an accurate
DTM. The ability to derive high resolution DTMs from ALS data sets is well known [37,38], and has
been integrated to normalize co-occurring DAP data [17,27]. This, however, requires previous ALS
coverages, which are often not available, increasing overall inventory production costs. Studies
analyzing the ability of conventionally and UAS-acquired DAP to provide accurate DTMs have
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found that their derivation are highly dependent on canopy cover [39,40], limiting the ability for
DAP to characterize sub-canopy features. Recent inquiries into the potential to utilize multiple DAP
acquisitions [41–46], as well as variations in sensor orientations [47,48], have also been conducted,
indicating that flight repetition and sensor orientation variability can provide improved results
compared with single acquisitions. Mirijovskỳ et al. [46] utilized UAS-acquired DAP-derived DTMs
to analyze variations in the fluvial dynamics of a mid-mountain stream, and found that they were
accurate and consistent at detailing stream bank shifts, as well as calculating changes and volumetric
extent of bank erosion. These studies demonstrate the potential of incorporating multi-temporal DAP
data sets for DTM generation and multi-temporal forest inventory analyses at an ultra-fine scale.

In this study, we conduct a multi-temporal UAS imagery analysis where DAP-derived DTMs
in a low canopy cover forest area are compared to a reference ALS-derived DTM to examine how the
timing of imagery acquisitions and seasonal changes in vegetation cover impact DAP-derived DTM error.

2. Materials and Methods

This study comprised three steps: photogrammetry processing, point cloud processing,
and time series analysis. Figure 1 displays a conceptual workflow of the followed methodology.
First, UAS imagery from 20 acquisitions were processed to generate photogrammetric point clouds.
DAP point cloud outputs were then processed to generate DTM layers for each flight acquisition.
Finally, a time series DTM analysis was conducted to determine error variability and its relationship
with timing of imagery acquisitions. Summary error statistics were derived to outline error variability
and illustrate the power of multi-temporal DAP data acquisitions, while a best available terrain pixel
(BATP) compositing analysis, which helped to outline the importance of flight acquisition dates was
conducted to produce a best possible multi-temporal DTM.

2.1. Study Area

The study area is located on a 25 ha forest stand north of Edmundston, New Brunswick,
Canada (Figure 2). The site is located in the central uplands ecoregion, specifically the Madawaska
eco-district (47◦27′04.29′ ′ N 68◦06′09.65′ ′ W). This region is over 90% forested and is characterized
by gently rolling terrain with a largely southern aspect. Mean elevation is 323 m above sea level,
receiving on average 475–525 mm of rain from May to September [49]. Forest cover in the region
is predominantly hardwood dominated, comprised of sugar maple (Acer saccharum), yellow birch
(Betula alleghaniensis), and beech (Fagus spp.). Scattered and pure softwood stands also exist, comprised
of balsam-fir (Abies balsamea), as well as red (Picea rubens) and white spruce (Picea glauca) [49]. This area
has a longstanding history of forest management from a variety of private, public, and research-based
institutions [50]. The site itself is comprised of multi-age cohorts of balsam fir, red and white spruce,
yellow birch, and sugar maple. Stem density was spatially variable with a mean of approximately
50 stems per hectare.
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Figure 2. Study area on (a) 25 May 2017 (day of year: 145), (b) 27 June 2017 (day of year: 178),
and (c) 15 September 2017 (day of year: 258), displaying the low cover forest area used for DTM
analysis and road validation area. The smaller, upper-most portion of the low cover forest area
is comprised of short understory regeneration, while the larger section is sparsely forested with
approximately 50 stems per hectare. Imagery used was acquired using a Sequoia multi-spectral camera
and is displayed in a false colour composite of near infra-red, red, and green.
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2.2. Data

Twenty imagery acquisitions using a senseFly eBee UAS with a Sequoia multi-spectral camera [51]
with average along- and across-track overlaps of 85% and 80%, respectively. Imagery was acquired
between September 2016 and December 2017 (Table 1). The Sequoia is comprised of four monochrome
sensors (green: 530–570 nm, red: 640–680 nm, red edge: 730–740 nm, and near-infrared: 770–810 nm),
a true colour composite sensor, and an external sunlight sensor placed on top of the UAS to capture
sun angle and irradiance for each image during flights [52]. Acquisitions followed a standardized
procedure, where images of radiometric targets were taken prior to aerial imaging missions,
and a systematic gridded flight pattern was used for efficient imagery capture. Table 1 provides
details related to individual flights, as well as DAP point density following image post-processing.
Kruskall–Wallis rank sum tests were performed on mean flight elevation and mean ground sample
distance to determine whether there were significant differences amongst imagery acquisition
parameters. Flight acquisitions took place when no snow coverage was present, except for 4 December
2017 (day of year: 338), where snow coverage was negligible.

Table 1. Imagery acquisition dates and corresponding mean flight altitude (above ground), mean
ground sample distance (GSD), mean sun angle, and mean digital aerial photogrammetry (DAP)
point density.

Acquisition
Date

Day of
Year

Mean Flight
Altitude (m)

Mean GSD
(cm)

Mean Sun
Angle (◦)

Mean DAP
Density (pts/m2)

2017-05-25 145 116.2 13.5 71.2 25.4
2017-05-28 148 102.2 12.1 68.3 31.0
2017-06-07 158 116.1 13.2 45.7 23.0
2017-06-27 178 114.7 13.4 54.0 26.6
2017-07-05 186 113.4 13.3 58.4 39.8
2016-08-03 216 102.5 12.2 68.7 23.8
2016-08-24 237 101.6 12.4 72.4 24.6
2017-08-29 241 99.9 12.1 67.0 33.4
2016-09-07 251 104.0 12.6 71.8 22.9
2017-09-08 251 102.1 12.2 64.9 33.3
2017-09-15 258 101.1 12.0 73.8 35.0
2016-09-21 265 110.0 12.9 68.9 25.8
2017-09-22 265 102.7 12.2 67.4 32.5
2016-09-29 273 116.5 13.9 75.8 20.8
2017-10-02 275 101.0 11.9 74.4 29.0
2016-10-20 294 102.6 12.6 82.7 22.7
2017-10-23 296 102.6 12.3 58.3 30.6
2016-10-27 301 105.8 13.1 72.9 26.0
2016-11-10 315 102.6 12.6 73.3 27.4
2017-12-04 338 100.3 12.4 74.5 27.4

A reference ALS data set with an average density of 18.5 points m-2 was used. The ALS data were
acquired by the Government of New Brunswick as a part of their province-wide 2017 ALS acquisition
campaign. Acquisition of ALS data over the study area was conducted between 12 June 2017 and
13 June 2017.

2.3. Photogrammetric Processing

UAS-acquired multi-spectral imagery was photogrammetrically processed to produce dense point
cloud products using Agisoft Photoscan [53]. Images were aligned, radiometrically calibrated using
pre-flight target images, and optimized using inertial measurement unit and GNSS/GPS measurements.
Following imagery alignment, conjugate tie-points between image pixels were then generated for
locations with two or more overlapping images. Dense point cloud processing was then conducted
at the original image scale to produce high quality and density point cloud outputs. Point cloud
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products were exported following densification for point cloud processing. Ortho-imagery for each
flight acquisition were generated and exported as auxiliary datasets.

2.4. Point Cloud Processing

In order to derive accurate DTM information from each point cloud, multi-temporal DAP and
the reference point clouds were processed using LAStools [11,54]. Raw point clouds were first tiled
using “lastile” (parameters: tile_size = 50, buffer = 25) and filtered to remove noise using “lasnoise”
(parameters: step_z = 1, isolated = 10). Points were then classified into ground or non-ground classes
using the progressive triangulated irregular network (TIN) densification algorithm implemented in
“lasground” (parameters: step = 10 m, bulge = 0.05), which gradually removes non-ground points
based on elevation differences and angles to the nearest TIN section to iteratively estimate ground
surface [40,54,55]. The ALS point cloud was used to co-register DAP point clouds using the iterative
closest point (ICP) algorithm [56]. ICP alignment was used rather than ground control targets because
of a lack of target data for each flight acquisition. Classified and co-registered point clouds were then
used to generate 0.5 m DTM layers using the “las2dem” (parameters: step = 0.5, kill = 2) [54] algorithm.
A 2 m interpolation distance was used for DAP-derived DTMs to limit potential interpolation error.
Errors between the reference DTM and DAP-derived DTMs for each flight acquisition were computed
at the pixel level and then aggregated for the area of analysis.

A 15 cm height threshold was used to compute vegetation cover (proportion of points above
threshold) at 2 m resolution for each DAP point cloud to capture seasonal variability and enable
potential linkages between DTM error and above ground vegetation cover. The road within the study
area (Figure 2) was used to validate the accuracy of the DAP-derived DTMs without the influence of
vegetation or obstruction. Statistical error summaries for the mean, standard deviation, and range
of error were computed for each acquisition. Proportional coverages of the DAP-derived DTMs
compared with the ALS ground truth were calculated to outline whether image acquisition timing had
an influence on overall DAP-derived DTM coverage and error.

2.5. Time Series Analysis

2.5.1. Generalized Additive Mixed Models

Mean vegetation cover, mean error, and proportional DAP-derived DTM coverage were
summarized and related to the acquisition day of year using generalized additive mixed models
(GAMM) built in the ‘MGCV’ package [57,58]. The GAMM was chosen because of its proven ability to
detect and describe whether a trend exists between two variables, and if so, its linear or non-linear
shape [58,59]. These models are well suited for analyzing the functional relationship between variables
within a single-case design such as the DTM error in a single location over time [58]. Single case designs,
such as the study area used in this analysis, serve as their own control, allowing for the effective
evaluation of changes over time. The key advantage of these models over other conventionally applied
parametric regression methods is that the researcher does not need to know the models functional
form a priori, which is performed by the model internally. Given that the form is rarely known
a priori with confidence, GAMMs provide a means to solve this problem in a statistically sound
manner by utilizing cubic regression splines to estimate nonlinear associations between dependent and
independent variables [59,60]. For further inquiry, Shadish et al. [58] provide an in-depth overview of
the application of GAMMs. To account for potential variation, the year of imagery acquisition was
incorporated as a random factor. Individual models (Equation 1) were constructed with a smoothing
term between the day of year of imagery acquisition and the mean error, mean vegetation cover,
and proportional DAP-derived DTM coverage. Models were assessed by the significance of the
smoothing term (p > 0.05), which were internally chosen using restricted maximum likelihood [57,58].

xi = α + f1(Day o f year)i × f2(x)i + εi (1)
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where x is either mean vegetation cover, mean error, or proportional DAP-derived DTM coverage; α is
the intercept; f1 and f2 are spline functions; and ε represents the model error term.

2.5.2. Best Available Terrain Pixel Compositing

A best available terrain pixel (BATP) composite was generated using DTM error rasters. To do so,
an iterative algorithm was created, which incorporated all available DTM error rasters to select
minimum error pixels. These pixels, with reference to the day of year of imagery acquisition,
were labelled as the BATPs. This process produced the best possible DAP-derived DTM, error map,
and acquisition donor composites.

3. Results

3.1. DTM Summary and Validation

Kruskal–Wallis rank sum tests on mean flight altitude and ground sample distance (Table 1)
indicated that means were not significantly different from one another (p > 0.05). Road DTM validation
analysis indicated that DAP-derived imagery acquisitions were capable of producing highly accurate
DTMs in open areas regardless of acquisition timing (Table 2). Mean, standard deviation, and range of
DTM error were found to fluctuate with acquisition timing (Figure 3, Figure 4, Table 2). Day of year
338, the only acquisition with snow cover, was found to have a high range of DTM error compared
with other acquisitions.Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 16 
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Table 2. Summary statistics of the differential error per flight for the entire study site, as well as only the road validation section of the analysis. DTM—digital
terrain model.

Date Day of Year

Study Area Only Road Validation Only

Mean Error (m) Standard Deviation
of Error (m)

Range of Error
(m)

Mean Vegetation
Cover (%)

DAP DTM
Coverage (%)

Mean Validation
Error (m)

Standard Deviation of
Validation Error (m)

2017-05-25 145 0.04 0.15 1.41 33.50 60.20 −0.02 0.06
2017-05-28 148 0.00 0.16 1.58 43.22 50.94 0.00 0.06
2017-06-07 158 0.01 0.15 2.28 48.26 41.75 0.01 0.06
2017-06-27 178 −0.17 0.23 1.28 47.85 45.29 0.03 0.07
2017-07-05 186 −0.12 0.22 2.55 66.67 23.47 0.02 0.11
2016-08-03 216 −0.41 0.38 1.96 45.29 52.54 −0.01 0.08
2016-08-24 237 −0.35 0.36 1.55 54.73 38.07 0.00 0.08
2017-08-29 241 −0.27 0.28 1.37 55.06 35.84 0.00 0.07
2016-09-07 251 −0.37 0.36 1.55 53.61 44.16 −0.01 0.08
2017-09-08 251 −0.33 0.32 1.59 52.06 44.19 0.00 0.08
2017-09-15 258 −0.27 0.29 1.39 49.29 44.43 0.01 0.07
2016-09-21 265 −0.28 0.31 1.54 52.03 40.91 0.01 0.08
2017-09-22 265 −0.18 0.23 1.37 48.59 42.03 0.04 0.07
2016-09-29 273 −0.25 0.29 1.87 48.33 44.20 0.03 0.09
2017-10-02 275 −0.24 0.28 1.63 55.85 37.07 0.00 0.09
2016-10-20 294 −0.08 0.21 1.65 55.48 24.92 0.01 0.08
2017-10-23 296 0.02 0.16 1.47 37.62 56.35 −0.01 0.05
2016-10-27 301 0.02 0.18 1.50 37.08 55.91 −0.02 0.07
2016-11-10 315 0.01 0.13 1.28 28.56 70.19 −0.06 0.05
2017-12-04 338 0.04 0.19 2.01 32.86 60.68 −0.11 0.10
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3.2. Generalized Additive Mixed Models

GAMMs with statistically significant smoothing terms were generated for mean vegetation cover
(Figure 5a; edf = 3.074, F = 6.604, p = 0.003) and mean error (Figure 5b; edf = 5.483, F = 38.3, p = 0.001).
The maximum mean vegetation cover was predicted as 54% on day 216, while a minimum of 30%
was predicted on day 340. The maximum mean error was predicted as −0.35 m on day 227, while the
minimum was predicted as 0.00 m on day 148. Acquisitions between days 178 to 281 were predicted
to have mean DTM errors greater than 15 cm, which corresponded to mean vegetation cover greater
than 47%. Mean vegetation cover (Figure 5a) was found to mimic the temporal trend of mean DTM
error (Figure 5b). A significant (p > 0.05) positive relationship between vegetation cover and DTM
error found that DTM error increased by approximately 0.03 m for every 10% increase in vegetation
cover. The GAMM for proportional DAP coverage (Figure 5c; edf = 2.463, F = 3.105, p = 0.059) was not
significant, however, it did indicate a potential relationship with mean vegetation cover. Two outliers
(Figure 5c), days 186 and 294, were found to strongly influence the significance of this model.
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DAP coverage. Solid curved line indicates the fitted generalized additive mixed model (GAMM) and
dashed lines indicated standard error bounds. Green backdrop from day 178 to 281 indicate locations
where mean DTM error exceeded 15 cm.
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3.3. Best Available Terrain Pixel Compositing

A DAP-derived BATP DTM (Figure 6a) had a mean error of 0.01 m, a standard deviation of
0.14 m (Figure 6b), and a relative coverage of 86.3% compared with the reference DTM. Locations
with no data were found to have 100% vegetation cover for all acquisitions. Figure 6c, d indicate
that all flight acquisitions provided pixels to the BATP DTM. Data acquired in early spring, late-fall,
and early-winter (days of year: 145, 148, 158, 178, 296, 301, 315, and 338) were the most represented
donors for compositing. The day 315 acquisition provided the highest proportion (19.3%) of donor
pixels to the BATP analysis, while that of day 241 provided the least (0.80%).Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 16 
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4. Discussion

This study utilized a multi-temporal UAS imagery dataset to create DAP point clouds and
assess their accuracy for generating DTMs in a low cover forested site. Timing of acquisition was
found to significantly influence mean DTM error. Error was shown to increase in summer months
following a concurrent increase in mean vegetation cover. Although the GAMM model for proportional
DAP-derived DTM coverage was not significant, linkages between increases in mean vegetation
cover and consequent decreases in DTM coverage are logical, and should be investigated further.
Acquisitions in early-spring, prior to leaf-on and seasonal shrub layer growth, or in late-fall and
early-winter following senescence, were found to have lower DTM error, and increased coverages
of DTMs. This finding provides insight into the influence of phenological cycles on the ability for
DAP to characterize the ground surface in open forested settings. This could provide managers with
information about optimal times to acquire imagery for the purposes of minimizing DAP-derived
DTM error.

Within our study site, an average increase of 10% in mean vegetation cover was found to increase
DTM error by approximately 0.03 m. Increasing levels of vegetation coverage therefore correspond
to increases in DAP-derived DTM error. These results detail that the acquisition of DAP-derived
DTMs should be planned for early-spring, late-fall, and early-winter periods. The results indicate
that the use of UAS-acquired DAP-derived DTMs in low cover areas is entirely possible, but that as
vegetation coverage increases, it is expected that DTM error will also increase. This could help to guide
future managerial decisions regarding the use of DAP technology for DTM generation. Portions of
the BATP composite with missing data outline that DAP can be limited in characterizing terrain even
in leaf-off conditions. This finding challenges the managerial assumption that the characterization
of terrain occluded by deciduous vegetation using DAP can be improved when acquired in leaf-off
conditions. Coniferous coverage continues to pose challenges to deriving DTMs using DAP. For this
reason, it may be advisable for managers to target stands during early stages of succession to reduce
ground occlusion from coniferous vegetation [11].

The results from this study confirm that UAS-based DAP has potential to produce accurate DTMs
in low vegetation cover forests that are comparable to conventional ALS acquisitions. As opposed
to traditional methods of acquiring imagery from manned aircraft, a forest manager using UAS has
precision control of where and when imagery is acquired on their land base, as well as the ability to tune
acquisition parameters, such as spatial resolution, to best meet management needs [18,61,62]. Until the
relatively recent emergence of commercially available high-performance UAS, the ability to acquire user
defined datasets at ultra-fine scales was economically and logistically challenging, limiting multi-date
acquisitions. The results from this study provide evidence that multi-date acquisitions offer managerial
information, including how DAP point clouds are able to characterize terrain at different times of year,
and how that multi-temporal data can be utilized to produce a more comprehensive terrain data set.

The use of DAP points clouds for operational scale forest inventories has several advantages over
conventional ALS approaches. Firstly, DAP is able to provide both spectral and structural information
from a single imagery acquisition that enhance forest inventory data sets [14]. Secondly, despite
a rapid growth in the adoption of ALS technology, ALS data is not broadly available for all forested
lands globally, often because of cost restrictions. While jurisdictions such as the Province of New
Brunswick aim for full coverage by the year 2019, re-acquisition cycles are not yet determined and will
likely not occur for at least 10 years following completion. While these landscape-level data sets are
an invaluable interdisciplinary resource, single acquisitions do not provide temporal depth needed
for short-term change detection and inventory updating. In contrast, DAP acquisition campaigns,
especially when acquired using UAS, can be quickly planned and deployed for small areas, providing
means to spatially, spectrally, and structurally update inventories following natural forest dynamics
such as growth over time [11,21,63], wind-throw [64], fire events [65], or anthropogenic treatments
such as harvesting [27]. A synergistic framework where landscape-level ALS data (where available)
is used as a baseline, followed by incremental updates using UAS-DAP acquisitions, could provide
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the best-possible, near real-time enhanced forest inventory data available for operational forest
management. The continual acquisition of these data at user defined scales will facilitate opportunities
for ecosystem-based management approaches where policy and decision making can be systematically
evaluated and improved alongside data acquisition.

Research into the potential to utilize methodologies from this study for the purposes of creating
DTMs in recently harvested areas could provide a means to establish frameworks for baseline structural
inventories in areas without ALS coverages. The creation of DAP inventory baselines would help to
promote the utility of acquiring multi-temporal UAS imagery of forests through succession, providing
useful information related to: regeneration success [11]; improved knowledge of tree growth rates in
under-represented age and structural classes; and improved structural, spectral, and spatial knowledge
of forest development through time at a wall-to-wall level. This would be especially useful in fast
growing highly productive regions or in plantations, where accurate quantitative inventory data
related to growth and structural changes are desired.

An assumption in this analysis was that the reference ALS-derived DTM was static in time.
This assumption meant that incremental changes to the road surface and vegetation, which are
expected to occur over the duration of the analysis, were not factored into the analytical process.
This was largely because of the cost of acquiring repeat reference ALS datasets, and to provide
analytical consistency. A single reference DTM also facilitated the use of the ICP algorithm for point
cloud alignment, rather than relying on ground control targets, which were not consistently available
during data acquisition. Future analyses should attempt to include consistent ground control targets,
and potentially introduce multiple reference DTMs to account for incremental changes to features such
as road surfaces.

5. Conclusions

The results from this study indicated that DAP point clouds were capable and accurate at creating
DTMs that were comparable with a reference ALS-derived DTM. These results were validated by
comparing DTMs over an unobstructed road within the study area. GAMM modeling indicated
that imagery acquisition timing significantly influenced mean DAP-derived DTM error, and that
acquisitions in spring, late-fall, and early-winter were most accurate. A BATP analysis, which utilized
all available DTMs to generate a best-possible DAP-derived DTM, reinforced this finding, indicating
that BATP donations were proportionally highest within these seasonal periods. The BATP analysis
confirmed that seasonal vegetation differences affected the performance of DAP for producing DTMs,
providing managerial insight into the applicability of acquiring structural data for the purposes of
producing DTMs in open areas.
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