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Abstract: The survey-based slum mapping (SBSM) program conducted by the Indonesian
government to reach the national target of “cities without slums” by 2019 shows mapping
inconsistencies due to several reasons, e.g., the dependency on the surveyor’s experiences and
the complexity of the slum indicators set. By relying on such inconsistent maps, it will be difficult
to monitor the national slum upgrading program’s progress. Remote sensing imagery combined
with machine learning algorithms could support the reduction of these inconsistencies. This study
evaluates the performance of two machine learning algorithmes, i.e., support vector machine (SVM)
and random forest (RF), for slum mapping in support of the slum mapping campaign in Bandung,
Indonesia. Recognizing the complexity in differentiating slum and formal areas in Indonesia,
the study used a combination of spectral, contextual, and morphological features. In addition,
sequential feature selection (SFS) combined with the Hilbert-Schmidt independence criterion (HSIC)
was used to select significant features for classifying slums. Overall, the highest accuracy (88.5%)
was achieved by the SVM with SFS using contextual, morphological, and spectral features, which is
higher than the estimated accuracy of the SBSM. To evaluate the potential of machine learning-based
slum mapping (MLBSM) in support of slum upgrading programs, interviews were conducted with
several local and national stakeholders. Results show that local acceptance for a remote sensing-based
slum mapping approach varies among stakeholder groups. Therefore, a locally adapted framework is
required to combine ground surveys with robust and consistent machine learning methods, for being
able to deal with big data, and to allow the rapid extraction of consistent information on the dynamics
of slums at a large scale.

Keywords: machine learning; slums; slum upgrading programs; Bandung; Indonesia

1. Introduction

1.1. Background

Slum upgrading has become an international concern and agenda promoted by the Millennium
Development Goals (MDGs) and Sustainable Development Goals (SDGs). The Government of
Indonesia has committed to reducing slums and released a new national policy, called the Sustainable
Housing Programs 100-0-100, aiming at achieving cities without slums by 2019 [1]. The lack of
accurate baseline data of slum areas is one of the challenges in achieving this target. Such data are
required to support the government in the selection of priority areas, monitoring the implementation,
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and calculating areas before and after upgrading programs. In 2015, a total of 38,431 ha of slum areas
were reported in 390 cities and districts of Indonesia using survey-based slum mapping (SBSM) [2].
Slum mapping is based on physical and social criteria [3]. However, SBSM is labor-intensive and time-
and cost-consuming, particularly when frequent updating is required. A major shortcoming of SBSM
is inconsistencies in the results due to different interpretations of slum indicators by surveyors in the
field and differences in their experiences. Figure 1 depicts such inconsistencies from the report on
“Strategy for achieving the target of the Medium-Term Development Plan in 2015-2019” [2] for the
cities of Sorong and Samarinda, where a river, pond, and green areas are delineated as slums.

KOTA SORONG KOTA SAMARINDA KOTA SAMARINDA

Samarinda Ulu Sungai Karang Mumus

‘ Kawasan Belakang Pasar

Figure 1. Example of inconsistencies in survey-based mapping, adapted from [2].

To tackle these issues, remote sensing-based slum identification is proposed. Several slum
mapping studies have used VHR images (e.g., [4,5]), showing the scope of remote sensing, but also the
inherent uncertainties [6]. Recently, several studies stressed the capacity of machine learning (ML) for
slum identification, including, beyond spectral, also features of texture, geometry, and structure [7].
However, those studies did not analyze how the derived information from ML could be used to
support slum upgrading programs; most studies do not consider this aspect and the political context
of their mapping results.

In general, there are two essential elements that influence a successful slum mapping method:
first, the conceptualization of real-world slum characteristics, which allows local slum characteristics
to be translated into image features; second, classifiers must be fed with predefined contextual
features of slum characteristics of the specific region. Thus, to perform slum identification by ML,
slum characteristics need to be well understood. For this purpose, a generic ontological framework for
slums has been developed by Kohli et al. [8], as slums vary across cities. Kohli et al. [8] stressed that a
local adaptation of the generic slum ontology (GSO) is required, incorporating local expert knowledge,
referred to as the local slum ontology (LSO).

Using VHR images, the LSO can guide the feature selection for slum detection with ML. It has the
capability of operating with large sets of features with efficient computation [4]. A recent study [7]
examining several ML approaches for slum classification using spectral, textural, and structural
features within VHR imagery showed that the support vector machine (SVM) outperformed other ML
methods for mapping slums at the city scale.

The aim of this study is to explore the potential of ML algorithms for slum mapping in support
of the Indonesian national target of “cities without slums”. The performance of two popular ML
algorithms [4,9], i.e., RF and SVM, is assessed for slum mapping, using the example of Bandung City.
We analyze whether a ML-based slum mapping approach could be an alternative for the presently
conducted survey-based approach. Thus, we want to understand the views of local stakeholders.
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Therefore, we first mapped slums to discuss them with local stakeholders. For the methods, we select
standard methods in machine learning that would allow the mapping of slums at the city scale.
However, we want to go one step further. The qualitative analysis from stakeholder interviews is very
useful to understand what is still missing for supporting local planning and decision-making. Thus,
we can better understand which future developments are necessary.

SVM and RF are selected, from among other recent developments in the field of ML (e.g., artificial
neural networks or deep learning), as they are available in standard, relatively user-friendly,
open-access software to support easy access also in resource-constrained environments. Thus, we assess
whether ML allows capturing of the unique and complex slum characteristics in an Indonesian city.
Mapping slums in Indonesia is rather complex, as slum and nonslum Kampungs (informally developed
areas) commonly share similar morphological characteristics (many nonslum Kampungs are, in fact,
mid-income housing areas).

For SVM, the radial basis function (RBF) kernel is used. There are several SVM kernels, such as
linear, polynomial, and sigmoid. In general, a linear kernel can also have a good performance for a
binary problem and has advantages in terms of computational costs [10,11]. However, based on recent
publications (e.g., [12,13]), the popular RBF kernel is selected as it generally produces state-of-the-art
results in a variety of applications. Furthermore, RF and SVM RBFs show good performance in terms of
computational time and classification accuracy [14], which is very relevant to upscale methods for city
or national slum mapping. In general, RF is efficient in parameter selection and is computationally fast,
while SVM commonly performs better with multidimensional features [15,16]. Many other prominent
ML algorithms are found these days, such as convolutional neural networks (CNNs) [17]. However,
those algorithms typically need large training datasets and are computationally more costly.

1.2. Conceptual Framework

To upgrade slum areas, the Indonesian government requires a consistent, detailed, correct,
and timely method that meets the requirements specified in planning documents. Inconsistencies and
temporal delays are shortcomings of the SBSM undertaken by the Indonesian government. Therefore,
this study evaluates the utility of ML-based slum mapping to support stakeholders with consistent
baseline data for planning processes and slum upgrading programs. Consistent data in this study
refers to data generated using the same principles and which are replicable.

As mentioned in Section 1.1, local slum characteristics (LSO) are the basis for slum classifications
using satellite imagery. The LSO is a local adaption of the GSO framework that covers the environs,
settlements, and object dimensions of slums. Based on expert interviews and visual image inspection,
our LSO only includes settlements and object-level image features. The environs level (the location or
neighborhood) could be included by GIS layers (e.g., land use and hazard maps); however, to avoid
introducing uncertainties (local maps can be dated and of varying scales), we omitted this level.
The settlement level can be depicted by morphological, textural, and spectral features. The shape
of slum settlements (such as irregular) can be determined by morphological features, while built-up
densities, being usually high in slums, can be captured by contextual features and spectral features,
such as low normalized difference vegetation index (NDVI) values, which indicate the absence of
vegetation due to high built-up densities. The object level, referring to building and road characteristics,
is specified by contextual, spectral, and morphological features. The roof material and unpaved streets
in slums can be explained by spectral features; object (roof) shapes can be described by morphological
features, while irregular-access networks can be described by contextual features. The relationship
between image features and LSO is not simple: It can be one to many; one image feature can describe
several LSO. The relationship can also be many to one, where many image features describe one LSO
component, or many to many, where many image features describe many components (Figure 2).
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Figure 2. Conceptual framework.

1.3. Study Area

This study was conducted in Bandung, the capital city of West Java Province in Indonesia. The city
is attracting many immigrants because of employment and educational opportunities. Its population
is 2,481,500 persons, with a density of 14,831 people per km? in 2016 [18]. The city is subdivided into
30 kecamatan (districts) with 151 kelurahan (urban villages) [19]. The backlog of housing provision [20]
and the immigration flow are the main reasons for the slum existence in Bandung [21]. According to
SBSM,, there are 454 slum neighborhoods within the city, with a total area of 1457.45 ha [20].

2. Methodology

The methodology is split into four main steps (Figure 3), i.e., preprocessing, main process,
comparing with SBSM result, and the evaluation in the context of the national target of “cities without
slums”. In the first step, radiometric correction was conducted. Next, we selected several
kelurahan (urban villages) from the city planning documents, based on slum location characteristics.
By combining the LSO and government criteria for slum mapping, we analyzed the potential of
image-based features to differentiate slum and nonslum areas. The second step included feature
extraction, feature selection and classification. The extraction of contextual, spectral, and morphological
features was followed by sequence forward selection (SFS) combined with the Hilbert-Schmidt
independence criterion (HSIC). This produced an informative feature subset to be used as input for
the classification, and then the classification was performed, next the accuracy was assessed using
ground truth data (collected by the first author, guided by the local surveyor team). In the third step,
the classification results were compared with the SBSM result. This allowed us to compare strengths
and weaknesses of both approaches. Within the fourth step, we assessed the application potential of
ML-based slum mapping in support of the national slum mapping campaign in Indonesia, focusing
on the city of Bandung.

_ 2Mstep
4" step
r 1%step — — 39step Analysi
) Feature extraction nalysis i
Pleiades Preprocessin Compare application of Interview
Images d P 9 i i P Machine Learning Scripts
¢ Slum Mapping
Feature Selection T
Training,
. Validation ¢ Survey
City & Testing Based Slum Result
Planning set Classification by Mapping
Documents SVM and RF

Figure 3. Research methodology.
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2.1. Material

This study used primary and secondary data (Table 1), including pansharpened Pleiades
imagery from 2016. To anticipate changes and to check the quality of slum boundaries from 2015,
we used historical Google Earth images and ground truth data. For the ground truth data collection,
one hundred random points were selected, and in addition, areas with doubtful cases during image
interpretation (whether those areas were slums or not) were included. The primary data collection
included also expert interviews and a local meeting with the surveyor team, in order to understand
the SBSM and to evaluate the possibility of implementing a ML-based slum mapping approach.
The respondents for the expert interviews included an urban planner from the Ministry of Public
Works and Housings and another from the municipality who was organizing the slum upgrading
program and the slum delineation process, a surveyor team experienced in survey-based mapping,
and a professor at a local university with expertise in slum mapping.

Table 1. Primary and secondary data.

Data Year Data Sources Category
Pleiades (p?{r;s;}.\%rSp?ed) mages. 2016 (July and August) European Space Agency (ESA) Primary
Slum boundaries 2015 Ministry of Public Works and Housing Secondary
Administrative boundary of Bandung city 2015 Municipality of Bandung Secondary
Historical Google Earth images 2013-2016 Online data Secondary
Validated slum boundaries October 2017 Ground truth checking Primary
Expert interview scripts October 2017 Interview Primary

2.2. Bandung Slum Characteristics and Image Features

Based on the field observations, Table 2 presents the slum characteristics in Bandung city and
relates them with contextual, spectral, and morphological image features, thus representing the local
slum ontology.

Table 2. Slum characteristics: the local slum ontology.

GSO Dimension Indicator Local Indicator Image Feature
Location Hazardous areas, in between small alleys
Environs - — - - - No image feature was used explain
Neighborhood Proximity to industrial, commercial, formal the environs level
Characteristics residential, bus stations, and smelly and dirty areas
Irregular pattern, elongated formation following Contextual (PanTex, LBP, GLCM)
Shape . - .
the river or railway and morphological features (APPR)
Settlement
. High density (more than 250 unit/ha), high roof Contextual (PanTex, LBP, GLCM)
Density -
coverage, less vegetation and spectral features (NDVI)
Access Network Unpaved or poorly constructed streets, width Contextual features (PanTex,
<2.5 m, covered conduits or without conduits LBP, GLCM)
Object Permanent and nonpermanent structures, with the
Building roofs made from corrugated iron, asbestos, plastic, ~Spectral (original band) and
Characteristics fiber, and clay tiles; building size from 10-60 m?; morphological features

poor sanitation, using well water or bought water

In slum neighborhoods, not all slum dwellers are poor. We found several houses with
solid structures, clean walls, and strong gates. The average density of slums in Bandung city is
260-285 units/ha. Several houses were occupied by many people (overcrowding); e.g., a house located
in Babakan neighborhood having only 60 m? was populated by 24 people. The dwellers made two
impermanent floors to make more space. Moreover, they arranged to take turns in sleeping. In some
cases, slum dwellers made a bridge at the second floor to connect the house to another house across
the alley to expand their house, still allowing passage along the path below. In addition, small open
spaces in slum areas were found, such as cramped football /basketball fields, cemeteries, or waste
dumps. Vegetation is rarely found in slums. A lot of houses did not have sanitary waste management,
using (covered) conduits to control the flow of grey and black water. When flooding occurs, all the
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waste comes to the surface. Sanitation is a critical issue in such neighborhoods; e.g., the children
usually get sick after the flooding. In the context of Indonesia, Pratomo et al. [6] found, in general,
high uncertainties on slum locations and boundaries (existential and extensional uncertainties),
and often the higher accuracy, the lower the certainty of the mapping result. Thus, the existence
of kampongs contributes to these uncertainties. To describe the complex morphology, a large feature
set was employed, which included original bands, NDVI (normalized difference vegetation index),
built-up presence index (PanTex), grey-level co-occurrence matrix (GLCM), local binary pattern
(LBP), and morphological features. The NDVI was used for analyzing vegetation presence and
its conditions, since Bandung slums are very dense (with absence of vegetation), make it a good
indicator to distinguish slum and nonslum neighborhoods [22]. PanTex is a built-up presence
index [23], providing the degree of confidence of the presence of man-made structures [24] (for more
explanation and equations, refer to Appendix A). It uses the GLCM contrast and rotation-invariant
anisotropic measurement in order to characterize built-up areas [23]. PanTex was extracted using
the Massive Spatial Automatic Data Analytics (MASADA) tool [25]. We employed several window
sizes, i.e., 13, 27, 53, and 105, for comparison. We extracted PanTex with enhancement by histogram
standardization, since this feature is highly dependent on the contrast images. Beyond PanTex,
we extracted GLCM [9,23] using several window sizes, namely 13, 27, 53, and 105, to examine which
size has the best performance. In general, the larger the window size, the higher the computational cost.
Thus, we limited the window size to max. 105. GLCM was calculated for all original bands, i.e., mean,
variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation. We have done
several experiments with different directions, and 1,1 is the best direction according to the accuracy.
We tested also the rotationally invariant GLCM. However, the process was very resource-consuming,
yet the results were not significantly different [17]. Therefore, we decided to use 1,1 as the direction to
save computational time, which also had the best accuracy.

LBP characterizes the spatial distribution of the local image texture as being rotation-invariant,
making it robust against greyscale variation in the images [26]. This is important for the image
classification of slum areas, since slums have irregular patterns. The parameters were selected based
on a previous study [27]. In total, five LBPs were examined, which are the LBPs with radius of 1 and
8 neighbor points (LBPg‘l‘Z), radius of 2 and 8 neighbor points (LBPgi,‘Z‘Z), radius of 3 and 8 neighbor
points (LBPgi,gz), radius of 2 and 16 neighbor points (LBP?&%), and radius of 3 and 24 neighbor points
(LBP&‘%). The histogram was extracted by a 105 x 105 window size. The window size was chosen
based on the best GLCM window size. However, as input for the classification, we picked the best LBP
feature to prevent unnecessarily high-dimensional feature vector. To capture the complexity of slum
morphologies, a morphological feature was employed using attribute profiles partial reconstruction
(APPR) [28]. The main advantage of partial reconstruction is that it only reconstructs the immediate
surrounding area of larger areas [29], resulting in a better spatial model of the image and an improved
classification performance [28]. For the input, we used the NIR band, since it has a high contrast
between vegetation and built-up areas. Next, the intensity of the image was rescaled to the 0-10 grey
level range to reduce computational cost [29]. We set three parameters, which were the area of the
region, the standard deviation of grey levels in the region, and Hu'’s first moment invariant. For each
parameter, we selected three values. The area parameter is Aa = [50, 200, 500], standard deviations is As
=[0.1, 0.3, 0.5], and moment invariant is Ai = [0, 0.1, 0.3].

2.3. Feature Selection

After we extracted the features, they were normalized in the range [0, 1]. In total, we obtained
78 features for differentiating slum and nonslum areas as input for the feature selection. Table 3
presents the features and number of bands, and the suffix number shows the window size.
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Table 3. Feature and number of bands.

Features Number of Bands
Original band 4
NDVI 1
PanTex with contrast adjustment 13 1
PanTex with contrast adjustment 27 1
PanTex with contrast adjustment 53 1
PanTex with contrast adjustment 105 1
GLCM 105 32
LBP 19
APPR 18

Hence, we conducted feature selection to select only the most informative features and to reduce
the data dimensionality [30]. From an application context, this is important, improving the accuracy,
reducing computation time, increasing the simplicity [31], and preventing overfitting [32]. The simplest
feature selection method is SFS [30,31]. This algorithm is commonly operated [33] and popular [34].
SES is a greedy strategy that decreases the number of states to be searched by applying a local
search [34]. It is the bottom-up approach, which starts with zero features and iteratively adds more
features that have not been added to the feature set, and applies a selection function to assess whether
the features are obtaining the best result [30,31]. The feature that has the maximum score is added to
the set of the best features. The score is based on the HSIC score to measure the dependence of the
input features and the label [13].

The HSIC score measures the resemblance of the kernel matrix K (the feature kernel) as the input
with kernel matrix L (label) as the output. In the beginning, the HSIC criterion was calculated for all
features. The feature that had the biggest HSIC score is added to the “set” and is excluded for the next
calculation. Then, it will continue calculating the score without the prior selected feature until the
HSIC score is stable or reduced. We randomly selected 75% (2440 pixels) as the training set for this
process to reduce computation time. We set the maximum number of features to the 35 best features to
avoid high computational costs. To compare, we examined the result without feature selection.

2.4. Classification

Classification using SVM and RF was done in R. We took 10 tiles of approximately 500 x 500 m
from the Pleiades image based on city planning documents. Then, we generated approximately
100 random points in each tile. We used 30% of the set for training and validation and 70% for
testing. We did this on purpose, as in a ‘real-word’ (urban planning) application, training data is scarce
(high cost for collecting ground data), in particular when aiming to classify a large area (e.g., an entire
city). However, most ML studies use a large amount of training data to obtain high accuracies, which is
not realistic for slum mapping programs: if we already know the location of slums, we do not need to
classify them.

Next, we randomly chose approximately 30 points that represent slum and nonslum characteristics
in each tile. Then, we combined all the selected points from all tiles into one set. The rest of the points
in the tiles were used for testing. The prior selection of 30% for training and validation were split
into training (80%) and validation (20%). These sample were selected randomly. The validation
set was used for tuning parameters of the classifiers. From the points, we made a 1-m buffer to
generate polygons to increase the number of pixels for training and testing. Table 4 shows the training,
validation, and testing set allocation.
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Table 4. Training, validation, and testing set numbers.

Kelurahan Area ‘}: lall(;l;:: E:ggt Tramll,?fe;“l?u‘ﬁéﬁahon Testing Set Testing Pixel Number
Antapani 1003 x 1004 28 polygons 349 69 polygons 866
Babakan 1002 x 1002 31 polygons 385 50 polygons 635

Campaka 1 1004 x1004 32 polygons 400 63 polygons 790

Campaka2 1002 x 1002 30 polygons 374 49 polygons 608

Cigondewah 1002 x 1004 36 polygons 455 69 polygons 866
Pasir Impun-1 1005 x 1006 36 polygons 453 41 polygons 519
Pasir Impun-2 1003 x 1003 29 polygons 350 44 polygons 557

Sekejati 1002 x 1007 35 polygons 434 61 polygons 753
Tamansari 1 1002 x 1009 32 polygons 398 54 polygons 679
Tamansari 2 1002 x 1001 36 polygons 450 59 polygons 741

Number of pixels in the training and validation sets: 4048;

Number of pixels of all training sets (80%): 3238; and of all validation sets (20%): 810 Number of all testing sets: 7014 pixels

Before the classification, we tuned the parameters by grid search to improve the classifiers.
For the grid search, we used the validation set to inspect the best combination of C and y for SVM
and Mtry (number of features selected when generating a tree) and Ntree (is the number of trees
generated) for RE. Furthermore, C is a regularization parameter to control the penalty between the
errors and generalization capability [16]. If C is too small, it allows many errors and the classifier
will ot fit the data [16]. In contrast, SVM will overfit the data and have low generalization ability
if C is too large [16]. The kernel width or vy is inversely proportional to the variance of the radial
basis function (RBF) kernel [35]. It will determine the distance to select the support vectors. In SVM,
we randomly set 900 combinations of C and y for one-time tuning. The first tuning of C ranges from
1071-10° and y ranges from 10~1-10°. This allowed analyzing the trend of accuracy, optimizing the
C and y range, and selecting the best combination with the highest accuracy. For RF, we determined
400 combinations of Mtry and Ntree, where Mtry ranged from 1-78 for the model without SFS and
1-35 for the model with SFS, with an interval of 4, and Ntree ranged from 100 until 2000 with an
interval of 100. After optimization, the classifiers were tested for each tile. Figure 4 shows the process
for classification and feature selection.

Images with Cqmbined
features after Training Set
normalization (78
bands): original L i v
bands, NDVI, Images with - SUM & RF
PanTex, GLCM, » Feature Selection selected features Parameter;lg\;:ng »| SYM&RF Classified
LBP, APPR for SVM Classification Map
X x Y
Combined

Validation Set Testing Set

The best LBP
and GLCM

2.5. Evaluation of Machine Learning Slum Mapping

Figure 4. The process of feature selection and classification.

The application potential of ML slum mapping is evaluated quantitatively and qualitatively.
For the qualitative analysis, we compared the classified map, strengths and weaknesses, and the
perception of stakeholders. Meanwhile, the quantitative analysis used several statistics, i.e., overall
accuracy (OA), time, kappa, correctness, completeness, and F1 score based on the confusion matrix
(CM). CM consists of true positive (TF), true negative (TN), false positive (FN), and false negative
(EN). Figure 5 illustrates possible classification results. Figure 6 illustrates the evaluation framework of
this study.
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Figure 5. Confusion matrix illustration [6].
Evaluation

Quantitative: Qualitative: Comparing with
1. Overall accuracy Survey Based Slum Mapping:
2. Computation time 1. The Classified Map
3. Kappa 2. Strengths and Weaknesses
4. Correctness 3. Perception of the stakeholder
5. Completeness {interview script)
6. F1 Score

Figure 6. Evaluation framework of the application potential of machine learning-based slum mapping.

Overall accuracy is defined as:
Overall Accuracy (OA) = (TF+ TN)/(TF 4+ TN + FP + FN) 1)
Kappa measures the overall agreement of a matrix [36], and it is defined as:
Kappa = (observed accuracy — expected accuracy)/ (1 — expected accuracy) 2)

Moreover, correctness (precision) and completeness (recall) are commonly used accuracy
assessment measures [6,7,32]. Correctness measures the reliability of the slums detected,
while completeness measures the ability of classifiers to retrieve the areas defined as slums [7].
Correctness and completeness are calculated as:

Correctness = TP(TP + FP) 3)

Completeness = TP/ (TP + FN) 4)

In addition, the F1 score (recurrent multiresolution convolutional networks for VHR image
classification), another common accuracy measure [37], is measured as the harmonic mean of precision
and recall, as follows:

precission * recall
*

F1=2 —
precission + recall

©)
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2.6. Experimental Setup

To assess ML slum mapping in support of the national target, an experimental setup was designed
to examine whether a methodology developed on 10 small tiles would allow to be transferred to a
larger area (Figure 7—the larger area has the number 11). This scenario used tile 1 to 10 (Figure 7).

107*35'3I0"E 107°36"30°E

Training and Testing Set for Analysis

6'5330"8

547075

4

107°35°30"E 10735°0°E 107°36'307E

Figure 7. The setup. The analysis is conducted for tiles 1-10. Tile 11 is the larger image that we want to
classify. The green and red dots illustrate the samples for nonslums and slums respectively used for
the analysis.

3. Results

3.1. GLCM and LBP Assessment

Before we combine the features for classification, GLCM and LBP features that have many
bands were analysed at the beginning to save computation time (Table 5 presents the accuracies
based on GLCM features using RF for all images). The suffix of GLCM refers to the window size
used. The accuracy increased with increasing window size. The GLCM with a window size of
105 x 105 pixels had the highest accuracy; thus, it was chosen to be combined with other features.

Table 5. Comparison of OA for GLCM features by RF in all tiles.

GLCM 13 GLCM 27 GLCM 53 GLCM 105
72.7% 77.7% 82.1% 83.8%

Table 6 provides the accuracy assessment for LBP features for several types of radii and neighbor
points. The histogram LBP was calculated for the 105 x 105 window size (the best GLCM window
size). LBPﬁ%f% obtains the highest accuracy. Thus, it was selected to be merged with other features.

Table 6. A comparison of the overall accuracy for LBP by RF.

LBPgy> LBPF4> LBPj3> LBPjy2  LBPh;
81.3%  811%  812%  816%  80.7%

3.2. Sequential Feature Selection

This process evaluates the feature relevance to the label. It leads to better performance and saves
time in classification. We set a maximum of 35 features to be selected from the total of 78 features.
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However, after selecting the 32nd feature, the maximum HSIC score was obtained (Figure 8), so the
process was stopped. Table 7 presents the best feature set, where Pantex, LBP, GLCM, APPR, and the

green band were the most significant bands.

0.025

0.0206692
% 0.02
o 0.020669766
(8]
%3]
o 0.015
%3]
=
0.01
0.005
1 3 5 7 9 111315171921 23 25 27 29 31 33 35
Number of Feature
Figure 8. HSIC score against the number of features.
Table 7. The 32 selected features.
No. Features No. Features No. Features
1 PanTex window size 105 12 GLCM Dissimilarity Band-1 23 GLCM Entropy Band-3
2 PanTex window size 53 13 LBP 24 GLCM Entropy Band-2
3 LBP 14 LBP 25 APPR area 200 opening
4 PanTex window size 27 15 GLCM Entropy Band-1 26 LBP
5 LBP 16 ~ GLCM Dissimilarity Band-2 27 GLCM Correlation Band-2
6 LBP 17 GLCM Variance Band-1 28 GLCM Mean Band-1
7 GLCM Homogeneity Band-1 18 GLCM Variance Band-2 29 Green Band
8 GLCM Homogeneity Band-2 19 ~ GLCM Dissimilarity Band-3 30  GLCM Second Moment Band-1
9 GLCM Homogeneity Band-3 20 GLCM Variance Band-4 31 LBP
10 PanTex window size 13 21 GLCM Correlation Band-1 32 GLCM Correlation Band-3
11 GLCM Correlation Band-4 22 GLCM Variance Band-3

Moreover, RF provides an out-of-bag (OOB) error including the feature importance. The OOB
error is 0.09%. Table 8 presents the Gini feature importance by the mean decrease.

Table 8. Feature importance with Gini index.

No. Feature Type Mean Decrease (Gini) No Feature Type Mean Decrease (Gini)
1 PANTEX 53 57.998 18 GLCM—Variance band 1 25.043
2 GLCM—Correlation band 4 52.099 19 GLCM—Dissimilarity band 1 24.272
3 PANTEX 105 44918 20 GLCM—Variance band 3 24.246
4 PANTEX 27 42.463 21 GLCM—Variance band 2 24.066
5 PANTEX 13 36.494 22 LBP 23.032
6 GLCM—Homogeneity band 1 32.559 23 GLCM—Homogeneity band 3 22.692
7 LBP 30.548 24 GLCM—Homogeneity band 4 22.519
8 GLCM—Correlation band 1 30.173 25 GLCM—Mean band 1 21.647
9 GLCM—Second moment band 3 29.326 26 NDVI 21.6
10 GLCM—Homogeneity band 2 29.014 27 LBP 21.351
11 LBP 27.781 28 LBP 21.181
12 GLCM—Second moment band 2 26.959 29 LBP 20.939
13 GLCM—Variance band 4 26.866 30 GLCM—Second moment band 4 20.866
14 GLCM—Correlation band 2 26.374 31 GLCM—Contrast band 3 20.676
15 GLCM—Second moment band 1 26.148 32 LBP 20.633
16 GLCM—Correlation band 3 26.137 33 GLCM—Entropy band 2 20.408
17 LBP 26.038

3.3. Support Vector Machine and Random Forest

Because the sequential feature selection (SFS) process is very time-consuming, we compared the
performance of SVM and RF with and without SFS (Table 9). The highest accuracy is obtained with
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SVM with SFS. However, the results are not significantly different and RF has a stable result with SFS
and without SFS.

Table 9. A comparison between SVM and RF overall accuracies with and without SFS.

Without SFS With SFS
SVM RF SVM RF
86.5% 85.2% 88.5% 85.2%

Tables 10 and 11 (in bold are the highest and lowest accuracies across all tiles, and accuracy for all
merge tiles) present the detailed results for SVM and RF with SFS. After we obtained the significant
features, all tiles were classified. The best feature set is employed to tune the SVM parameters,
which are ¢ = 3.16 and vy = 3.04. In RF, the highest accuracy was achieved with Mtry and Ntree being 1
and 200, respectively. With those parameters, the RF and SVM was trained and tested for each testing
set in each area/tile. For RF, the overall accuracy is 85.18%, ranging between 72.0-93.9%. For SVM,
the overall accuracy is 88.5%, ranging from 72.6-92.4% for the different tiles.

Table 10. RF accuracy assessment results. In bold the highest and lowest overall accuracy (OA), and the

OA for all merged tiles.

No.  Selected Area Time (s) OA Kappa  Completeness Correctness F1 Score
1 Antapani 0.028 0.859 0.709 0.938 0.831 0.881
2 Babakan 0.023 0.938 0.861 0.876 0.941 0.907
3 Campaka-1 0.021 0.882 0.758 0.861 0.941 0.899
4 Campaka-2 0.019 0.799 0.599 0.721 0.8601 0.784
5 Cigondewah 0.022 0.869 0.730 0.804 0.878 0.839
6 Pasir Impun-1 0.020 0.720 0.033 0.176 0.228 0.199
7 Pasir Impun-2 0.020 0.863 0.704 0.815 0.807 0.811
8 Sekejati 0.025 0.806 0.588 0.911 0.789 0.846
9 Tamansari-1 0.023 0.873 0.746 0.845 0.888 0.866
10 Tamansari-2 0.021 0.869 0.738 0.880 0.859 0.869

All 0.294 0.856 0.712 0.845 0.849 0.847
Training Time 3.673

Table 11. SVM RBF result. In bold the highest and lowest overall accuracy (OA), and the OA for all
merged tiles.

No.  Selected Area Time (s) OA Kappa  Completeness Correctness F1 Score
1 Antapani 0.075 0.895 0.784 0.956 0.868 0.91
2 Babakan 0.057 0.924 0.836 0.936 0.857 0.895
3 Campaka-1 0.067 0.918 0.826 0.950 0.918 0.934
4 Campaka-2 0.061 0.803 0.606 0.727 0.861 0.788
5 Cigondewah 0.072 0.908 0.813 0.935 0.856 0.894
6 Pasir Impun-1 0.054 0.726 0.127 0.294 0.3 0.297
7 Pasir Impun-2 0.053 0.856 0.698 0.875 0.761 0.815
8 Sekejati 0.064 0.908 0.811 0.929 0.914 0.921
9 Tamansari-1 0.066 0.908 0.816 0.891 0.921 0.906
10 Tamansari-2 0.057 0.903 0.806 0.939 0.871 0.904

All 0.510 0.885 0.769 0.894 0.865 0.879
Training Time 1.928

3.4. Classified Slum Map

Figure 9 shows the classification results for each tile. In general, the SVM result is noisier
than the RF result, and the highest accuracy (93.8%) is achieved for Babakan by RF; however,
some misclassifications still occurred (shown in blue circles).
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8.  Sekejati (TS8)

Tamansari-1
(TS9)

9.

10. Tamansari-2
(TS10)

Figure 9. Comparison of classification results and ground truth; slums are in the red and green are
nonslums. Blue circles show an example of misclassification in the tile with the highest accuracy.

3.5. Extending the Approach to a Larger Area

Although the overall accuracy of SVM is higher than RF, the classified map of SVM is noisier.
Therefore, we selected the RF-classified map with the feature selection method (Figure 10). Moreover,
we also did postprocessing to remove salt-and-pepper noise; we set the threshold as 0.135 ha, as the
minimum size of slum areas as stated by the Ministry of Public Works and Housing in the interview.
Hence, the slums smaller than 0.135 ha were removed.

It was difficult to assess the accuracy, since we do not have ground truth points for the entire area
except for the testing set (a small part of this image). Moreover, Google Street View in Bandung city
only covers the main roads, with mainly shops and offices. Slums in Bandung are mostly adjacent
to formal areas and are usually located behind main roads, and are therefore not shown on Google
Street View. In addition, the morphological similarity of slum and nonslum kampungs (in an image)
introduces uncertainties for generating reference data. As we can see in the blue circle of Figure 10
(below left), the morphological structures of the building are relatively small and very dense. Thus,
such areas are classified as slums. However, in the yellow circle in Figure 10, the public cemetery
is also classified as a slum, because its patterns and small structures are similar to those in slums.
However, success was achieved in classifying formal residential areas as nonslums (pink circle in
Figure 10). Nevertheless, to evaluate the results for the larger area, we used visual interpretation,
while being aware of the uncertainties described above. Overall accuracy reached 87.5%. To obtain
the broader view of algorithm performance, Kappa, completeness, correctness and F1 score values
were used, indicating in general lower performance and pointing to the fact that several slums were
wrongly classified. However, there is a high uncertainty as to whether the visual image interpretation
is correctly labeling these areas. Table 12 presents the confusion matrix of the result.

Table 12. Confusion matrix.

Actual

Predicted Slums Nonslums
Slums 18 16
Nonslums 9 157
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From the confusion matrix, RF predicted nonslum better than slums. From 27 slum and
173 nonslums, RF predicted 18 slums and 155 nonslums correctly; thus overall, giving an accuracy of
87.5%. Moreover, Table 13 presents the complete accuracy assessment for this area.

Table 13. Accuracy assessment of the larger area.

Overall Accuracy Kappa Completeness Correctness F1 Score
87.5% 0.518 0.667 0.529 0.59
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Figure 10. RF-classified map of the larger images with 200 random points and overlaid with the original
images (below). The different color circles on the map (upper) correspond to the different circle on top
of the satellite images (lower), showing the real condition on the ground.
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3.6. Comparing the Classified Map with the Survey-Based Slum Mapping Map

To assess the potential of ML-based slum mapping for slum upgrading programs, we compared
the result of this approach with the survey-based slum mapping (SBSM) result (Figure 10).

Figure 11 shows differences between the two mapping products. Areas of small buildings are
classified as slums by RF (see circles 1, 2, 4), while SBSM excludes them. Moreover, vegetation and
large formal buildings in circle 3 are classified as slums by the surveyor, while RF does not include
them. In addition, in circle 5, the surveyors generalized the slum area, while RF resulted in a more
detailed and accurate slum map.

Teas00

AFITOOD.

9237000

S230500.

SIS0

BB

Figure 11. Comparison of the SBSM (left) and RF-classified image (right top and below). The red and
blue squares show the same location, and the green circles show the differences [20].

3.7. Strengths and Weaknesses

Table 14 analyses the utility of ML-based slum mapping compared to survey-based slum mapping
in support of slum upgrading programs.
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Table 14. Comparison of machine learning-based slum mapping and survey-based slum mapping
(Currency: 1 Euro = 17,024.06 IDR at 26 August 2018).

Factors Machine Learning-Based Slum Mapping (MLBSM) Survey-Based Slum Mapping (SBSM)

L Hlflman resources: Planning expert = 1 person 1. Human resources: Team Leader =1 person Infrastructure
Infrastructure expert = 1 person GIS expert = 1 person expert = 1 person Planning expert = 1 person Communit
Remote sensing expert = 1 person Programming expert P p & exp P y

X development expert = 1 person Economic development expert
=1 person Surveyors = 20 persons Total estimate for =1 person Safe guard expert = 1 person Data
one year = 480,000,000 IDR = 28,195.38 EUR officer = 1 person Surveyor: 130 persons Total estimate for one
Cost (based on [38])

2. Infrastructures Computer = 127,680,427.95 IDR
Images = 28,552,821.53 IDR Software: e.g.,
QGIS and SagaGIS MASADA, R Total
budget = 156,258,055.77 IDR 9177 EUR

3. Time = 3 months

year = 5,922,000,000 IDR = 347,925.22 EUR (based on [39])

2. Infrastructures Computer = 10,000,000 x 3 = 30,000,000 IDR
GIS Software = QGIS and SagaGIS Total budget = 30,000,000
IDR =1762.21 EUR

3. Time =12 months

Human resources

Remote sensing expert
GIS expert
Programming expert
Urban planning expert
Infrastructure expert
Surveyors

G N

Team leader

Surveyors (for Bandung city, there are 1620 surveyors)
Urban planning expert

Infrastructure expert

Community development expert

Economic development expert

Safe guard expert

Data officer

P NG LN

Infrastructures

1. High specification computer

2. Very high-resolution satellite images 2.5-0.5 m (such as
Pleiades, SPOT)

3. Processing software (GIS, advanced remote sensing
software, e.g., Matlab)

1. Lower specification memory computer than MLBSM method
(such as 4 GB RAM)
2. Processing software (GIS, QGIS)

Processing Time

Approximately one month depending on the capacity of the
computer, as well as surveys on the field to get the
training set.

Approximately six months depending on the capacity of surveyors
and participatory process with the community.

With one set of the resources (human, and infrastructures) in

With one set of the resources (human, and infrastructures) in

Spatial Coverage X R ; 2 montbhs, it possibly produces only some parts of the city
2 montbhs, it possibly produces one city depending on how large the ity is.
80% (claimed by ministry);
However, it is only an assumption, because they do not have a
Accurac 88.5% of the reference (ground truth data) by the highest mechanism for the accuracy assessment. They realized results
y accuracy result from SVM depend on surveyor’s understanding. Limitations are also caused
by time and geographic barriers to collect data on the ground,
meaning sometimes the surveyor only estimates the data.
Decree of 33.33%
sree From the three steps (surveying, making the slum maps, 0%
automation e . ]
validating), one step (making the slum maps) is automated
Maintenance The parameter should be adjusted for another city according Not relevant

to the local slum characteristics

4. Discussion

4.1. Quantitative Analysis

The feature extraction and parameter settings are important in MLBSM. In the assessment of the

GLCM (Table 6), the largest window size was selected. In general, the larger the window size, the more
stable the patterns and the more contextual information is used. This was also confirmed by Wurm
et al. [9], emphasizing that a very large kernel size of GLCM has a smoothing effect on the image
content, which is very useful for mapping slums (being very heterogeneous on a large scale and rather
homogeneous on a small scale) [9]. An increasing accuracy trend along with an increasing window
size were also found in [17]. LBP results (Table 7) show that they are not sensitive to the radius and
interpolation points.

For the classification results (Table 9), RF had a stable accuracy with and without SFS.
This indicates that RF is robust to the Hughes phenomenon, where each decision tree has a random
method to select data and features to be classified using the Gini index [40]. Moreover, RF can reduce
the required computational resources, since SFS is computationally costly. From Table 8, features
that had the highest mean decrease (Gini) are similar to the selected features by SFS, except for the
green band and APPR. SVM and RF did not have a significant accuracy gap. Moreover, the tuning of
parameters in SVM is more complex than in RE. In addition, to get the best accuracy, computationally
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costly feature selection was needed by SVM. This was also confirmed the finding of Abe et al. [41],
in that those algorithms can reach similar accuracies, but RF is less computationally expensive. Further
studies should explore other computational feasible methods, e.g., Rahmati et al. [12] added boosted
regression trees (BRT) as they are capable of rapidly producing accurate results.

PanTex (window size 105) was the most important feature in the set. This confirms the findings
of [42]. However, PanTex strongly depends on the contrast level, thus contrast enhancement is
important to distinguish slums. From the 18 bands of APPR, only an area of 200 pixels with an opening
operator is useful to distinguish slums. This might be caused by the simple rescaling (0-10) of the
pixel input. Thus, the result was not significant to characterize the morphology of slums. Moreover,
only 18 attribute profiles were evaluated; further analysis could explore more morphological profiles
for slum mapping. In addition, the green band (original spectral bands) is important, which might
relate to the potential of characterizing vegetation besides other land cover types. Furthermore,
several GLCM bands (dissimilarity, homogeneity, entropy, and second moment and variance) and LBP
histograms have a significant contribution to distinguish slums and nonslums. GLCM was restricted
to a window size of maximum 105 to reduce computation time. Thus, larger window sizes could be
beneficial for improving the mapping accuracies.

The tuning parameter of SVM RBF is complex due to the absence of a clear rule to determine
the range of C and y. This problem was also stressed by Adiningrat [43]; the common approach
is trial-and-error for defining the range. Regarding RF, the process is quite simple and resulted
in small number of features and trees. Thus, in the training and testing processes, the model is
computationally efficient. In the validation process, the best parameter reached up to 100% accuracy,
while in the testing set, the maximum accuracy achieved was 88.5% and 85.6% for SVM and RF,
respectively. It is a common condition in ML that the accuracy based on the test data is lower than
that of the training data. Moreover, the uncertainty and inconsistency in slum characteristics between
the training and testing set added to the problem, since the experiment only used 30% of the data
for the training. Moreover, there were uncertainties in exacting slum boundaries in several tiles,
as boundaries tend to be fuzzy. Uncertainties are inevitably happening in assessing the accuracy [6]
and further increasing when aiming for change detection (e.g., in the context of long-term slum
monitoring programs [44]. For tuning parameters, a grid search was used, causing difficulties to obtain
the best parameter. Therefore, there is a need to use better techniques such as k-fold cross validation to
optimize parameters.

4.2. Qualitative Analysis

4.2.1. Classified Map

Due to working with a rather standard computer (16 GB RAM, Intel core i7 2.6 GHz, and 230 GB
hard disk), we limited the larger subset to only 5500 x 5000 pixels or 2.25 x 2.25 km, which reduced
the possible variation in slum characteristics. Extending this work to city scale would require big data
techniques and additional computing power.

Both SVM and RF classification results show misclassifications, particularly for small formal
structures. This is due to similar morphological characteristics and roof material of both categories,
thus with an image, we can only capture morphological slums [45,46]. Furthermore, the uncertainty
of slum boundaries plays a role. In Pasir Impun-1 (Figure 12, right), slums and nonslums have
fuzzy boundaries. Figure 12 (left) shows the ground truth (identified by surveyors in the fields).
This uncertainty was also reported in the literature as influencing the accuracy [47]. The surveyors
affirmed that in some areas, they were in doubt to determine the slum boundary due to mixed condition
within the area (mix of slums and nonslums), yet all delineated polygons have crisp boundaries.
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Figure 12. Uncertainty of slum boundaries in Pasir Impun. Image (right), ground truth survey map
(left). Slums are in the red, green represents nonslums.

For the ground survey, no clear rule exists to determine the size and arrangement of nonslum
areas within slums. This is an important issue in generating ground truth data, since slums are defined
at the settlement level that includes also infrastructure and facilities. Thus, only if an area of nonslum
within a slum area is more than 500 m?, it is labelled as nonslum. Also, we determined 6.5 m as the
maximum threshold for the road width to be considered as a slum, as stated by the Ministry of Public
Works and Housing [48] (also see Section 2.2). Overestimation also happened due to the large window
size used for feature extraction (i.e., GLCM, LBP, PanTex), as was also stressed by Sliuzas et al. [49].

Our work only included the settlement and object levels of the GSO [50], because these can be
described by image features. To implement the environs level, we would need to include additional
data such as hazard and land use maps as features to explain location and neighborhood characteristics.
In a recent study, Jochem et al. [51] used vector features such as points and polygons as features that
could add information which is not available in the images. However, doing this might also increase
uncertainties due to quality issues with such data.

SBSM shows inconsistencies (Figure 9), e.g., vegetation and large formal buildings are included in
slum areas. The generalization of SBSM maps omits details and results in inaccurate delineations for
some areas (also depending on the surveyor’s experience). However, based on surveyor experience,
SBSM could distinguish slum and nonslum small buildings in the field, while ML identified small
structures as slums. Therefore, we conclude that both methods have shortcomings. Thus, a combination
of both ML-based slum mapping and SBSM may be the best solution for supporting slum upgrading
programs. ML, combined with other advanced remote sensing technology (e.g., working with large
image-based feature sets), is a promising development. Moreover, in slum mapping, the employment
of ML is becoming popular [9,17,32,52,53].

Apart from the spatial resolution, the temporal resolution of the sensor is very important [54]
to regularly evaluate the planning strategies and to avoid time- and cost-consuming ground data
collection. Recent advances in remote sensing have increased the opportunity to monitor urban change
and its consequences on complex urban sociotechnical systems [55]. Therefore, such information
would enable stakeholders to make more informed decisions and to reduce negative impacts on
the environment (ibid). Particularly in a developing country, a lack of finances is a main limitation
to gaining complete and up-to-date base data, even for major cities. Moreover, monitoring and
comparisons across a city or country are easier to realize using remote sensing methods [54]. Although
the accuracy of information extraction by remote sensing images has generally improved, there are
limitations for using remote sensing in analyzing urban sustainability due to the complexity of
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the urban landscape, limited computer capacity, shortcomings in the methods, and complexities in
integrating multisource data [55]. Hence, to take the full benefit of the diversity and the potential
of remote sensing data, there is a need to establish better strategies and approaches and improve
the hardware and algorithms. Moreover, object-based image analysis (OBIA) could provide suitable
aggregation levels for slum mapping [56]. OBIA has been criticized for its complexity in selecting the
rules and parameters [57]; however, besides producing data at a suitable aggregation level (segments,
not pixels), OBIA postclassification processing could be beneficial. We applied postprocessing, using a
specific threshold to delete the ‘salt-and-pepper” noise in the end product. This calls for a possible
combination of OBIA and ML approaches, which could produce outputs which are more similar to
human interpretations (better fulfilling the demands of stakeholders). Furthermore, the information
from OBIA’s segmentation is more contextual and time-saving in processing.

The MLBSM can only examine slum appearance from an aerial perspective. Therefore, it produces
maps that indicate the possible presence of a slum. Ground truth surveys are needed to validate the
slum areas. The slum upgrading programs require iterative data collection process such as multiple
building level surveys throughout the implementation phases of a project. Thus, such surveys will
subsequently improve the initial slum boundaries from MLBSM.

4.2.2. Strengths and Weaknesses

Strengths and weaknesses (Table 12) were analyzed in several dimensions. The analysis shows
clear tradeoffs between human and technical resources. MLBSM requires much fewer and a different
type of experts from SBSM. In terms of maintenance and transferability to other regions in the country,
MLBSM needs to be optimized for each new context. Feature selection or parameter tuning needs to
be conducted again to get optimal results, particularly if regions have different slum characteristics,
such as in the Eastern region of Indonesia, with its lower population density. For SBSM, optimization
is not relevant, since surveyors from local people in the region should be familiar with the condition of
the slums. However, surveyors need to be trained to improve the consistency of their mapping.

Although SBSM resulted in very detailed data, this method is extremely time- and
effort-intensive [58] and may also be inaccurate. Meanwhile, MLBSM can produce fast slum ‘indication
maps’ for the city and would allow monitoring of the slum developments in the following years.
As stated by Patino and Duque [59], remote sensing images are essential and capable sources of
information on the urban morphology and changes over time.

An MLBSM map is useful to obtain initial data of slums. Ground surveys can further refine the
initial map to improve its accuracy and consistency in support of upgrading programs. However,
for the implementation in a large region such as Indonesia, MLBSM needs to be adjusted for different
contexts in correspondence with local urban and slum characteristics.

4.2.3. Perception of the Stakeholders

The final goal of Indonesia’s slum upgrading program is to develop livable cities; specifically,
to fulfill the target that has been set to have cities without slums in 2019. The participatory slum
mapping process involves the community in the neighborhoods, facilitators, and the local government
in a forum, where the information of local conditions is gathered, discussed, and measured based
on slum indicators. Finally, all information is arranged as base data for a neighborhood plan and a
detailed engineering design document.

However, all stakeholders criticized the indicators. For example, the Ministry staff are not satisfied
with the inundation indicator due to its complexity. The municipal staff thought that the absence of
green space might be good to be included as slum indicator. The academics criticized that several
indicators are meaningless, e.g., safe drinking water, drainage system connection, fire protection,
and building permits (they do not distinguish slums from nonslums). Such critiques point to a need to
review the SBSM indicators. In this review, the MLBSM-classified map could be used as input, since it
is based on a conceptual definition of slums in the field (LSO).
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Time is also a main issue. The SBSM depends on the amount of slum areas. Commonly, the survey
area is much larger than the capacity of the surveyors. This affects the quality of the planning
document for upgrading programs. For example, some boundaries in the SBSM do not follow physical
boundaries such as roads, buildings, or rivers. All respondents agreed that such a map might cause
problems for slum upgrading. Meanwhile, the Ministry does not have a process to validate the slum
maps. However, they commonly check the slum areas before upgrading. In the validation process,
the municipality was asked to make both aerial (drone) and terrestrial videos. The validation is done
to prevent the overreporting of slums to get more funds. It allows for more accurate calculations of
the required infrastructure to be upgraded as related to the allocated funds. Until 2017, after three
years of implementation, the achievement of slum upgrading programs was 11,565 ha out of the
target 38,431 ha, or 30.1% [60]. Several problems were identified, such as incorrect delineation,
misunderstanding between stakeholders in the implementation, social problems, technical mistakes,
and misallocation of the budget. However, the Ministry remains optimistic about reaching the ultimate
target by 2019.

By the end of 2017, the slum mapping in all urban areas in Indonesia was completed through
SBSM. The Indonesian government is now focusing on upgrading these areas. However, empowerment
of the local governments in Indonesia through training, with a focus on prevention and improvement
of slum areas, is still required. Considering the required accuracies, the municipality stated that an
accuracy of 88.5% of MLBSM is adequate to identify slums, since field validation will be conducted.
By contrast, the Ministry expects that the results can be directly used without field checking (to avoid
additional budget). However, the level of noise in the MLSBM maps results in some potential users
being reluctant to adopt them. In addition, as the SBSM data is complete, the government is currently
not considering alternative approaches such as MLSBM. Besides, the development of MLBSM would
require an extensive effort and budget, since such a system would be developed from scratch, requiring
substantial investments in geospatial infrastructure and capacity. Yet, the Ministry is not certain about
the long-term utilization and capacity of this system, being unfamiliar with machine learning and
remote sensing.

Slum data is sensitive data, and the use of nonvalidated data would reduce the acceptance by
different stakeholders. There is a need include good metadata to explain the data, concerning their
limitations and an explanation how to interpret the data. An initial higher investment for MLBSM could
produce more consistent and timely data and would allow future monitoring. However, the MLBSM
could not use all SBSM indicators. Thus, as mentioned by Kuffer et al. [61], the combination of
community-driven data and spatial information from remote sensing imagery is most optimal in
support of pro-poor policy.

To promote MLBSM, more user-friendly software interfaces are required that allow local geospatial
experts to run such systems and combine them with community-based information. This would allow
monitoring changes after implementing upgrading programs. However, for a national implementation,
the MLBSM needs to be adjusted for different contexts [54]. Figure 13 illustrates the workflow of the
MLBSM approach prior to implementation for slum upgrading programs.
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Collecting of training, validation, and testing data

.

Feature Extraction

!

Feature Selection

y

Image classification (SVM/RF) |«

Post-processing to remove salt and pepper noise

Validation

)

Review by local slum experts -> Recommendations for improvements

Manual post-processing following recommendations

y

Final quality check and developing user guidelines and meta data

y

Developing planning document for upgrading programs based in slum
map

Detailed surveys for upgrading implementation

Figure 13. Machine learning-based slum mapping (MLBSM) workflow.
5. Conclusions

Developing a contextual, machine learning-based slum mapping (MLBSM) approach requires a
good understanding of the specific context. Based on such a conceptualization, image-based features
are proxies to slum maps made by remote sensing imagery and machine learning. Feature selection
is an important step to ensure working with the best set and achieving high accuracies; however,
it is computationally costly. From the selected features, contextual features are the most significant
for slum mapping. For the case of Bandung, the highest accuracy (88.5%) was obtained with SVM.
However, the classified map is noisier than the RF map. To implement MLBSM, we need to consider
the cost for providing all the requirement of infrastructure and human resources. MLBSM has a high
cost in infrastructure, while survey-based slum mapping (SBSM) has high costs in human resources
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and is very time-consuming. Both MLBSM and SBSM require validation before implementation
in slum upgrading programs. In combining MLBSM and SBSM in support of slum upgrading
programs, MLBSM could help the government to produce consistent maps, using SBSM for training and
validation. A fundamental prerequisite for MLBSM is the involvement of stakeholders, in particular
the local communities, to build local knowledge and local acceptance.
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Appendix A

The Pantex is able to extract structural characteristics of buildings, by the fact that buildings
possess shadows that lead to high local contrast [23].
The brightness band is used for the input due to the absence of a panchromatic band, according
to the assumption that the built-up structures are the most shining features in the optical bands [25],
with the formula:
Brightness = Max(Visible Bands) (A1)

Anisotropic rotation-invariant texture measure is employed by PanTex to resolve the suboptimal
displacement problem in GLCM [62]. PanTex uses the min or fuzzy N to replace averaging, as defined
in the formula:

tx(built up) = Nitx;;i € [1...n] (A2)

where n is the number of displacement vectors (distance and angle combinations) [62]. In additions,
the intersection operator (min) between the textural measure from different displacement vectors is
used [23] as formulated below:

f (built up) = A {tx;, txp, ilttxn}; i ufl] (A3)
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