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Abstract: The advent of very high resolution (VHR) satellite imagery and the development of
Geographic Object-Based Image Analysis (GEOBIA) have led to many new opportunities for fine-scale
land cover mapping, especially in urban areas. Image segmentation is an important step in the
GEOBIA framework, so great time/effort is often spent to ensure that computer-generated image
segments closely match real-world objects of interest. In the remote sensing community, segmentation
is frequently performed using the multiresolution segmentation (MRS) algorithm, which is tuned
through three user-defined parameters (the scale, shape/color, and compactness/smoothness
parameters). The scale parameter (SP) is the most important parameter and governs the average
size of generated image segments. Existing automatic methods to determine suitable SPs for
segmentation are scene-specific and often computationally intensive, so an approach to estimating
appropriate SPs that is generalizable (i.e., not scene-specific) could speed up the GEOBIA workflow
considerably. In this study, we attempted to identify generalizable SPs for five common urban
land cover types (buildings, vegetation, roads, bare soil, and water) through meta-analysis and
nonlinear regression tree (RT) modeling. First, we performed a literature search of recent studies
that employed GEOBIA for urban land cover mapping and extracted the MRS parameters used,
the image properties (i.e., spatial and radiometric resolutions), and the land cover classes mapped.
Using this data extracted from the literature, we constructed RT models for each land cover class
to predict suitable SP values based on the: image spatial resolution, image radiometric resolution,
shape/color parameter, and compactness/smoothness parameter. Based on a visual and quantitative
analysis of results, we found that for all land cover classes except water, relatively accurate SPs could
be identified using our RT modeling results. The main advantage of our approach over existing SP
selection approaches is that our RT model results are not scene-specific, so they can be used to quickly
identify suitable SPs in other VHR images.

Keywords: high spatial resolution imagery; multiresolution segmentation; object-based image
analysis; GEOBIA

1. Introduction

1.1. High-Resolution Remote Sensing and GEOBIA

Fine scale urban land cover information is valuable for a wide range of applications, including
the analysis of urban green space accessibility [1], urban hydrology [2], and urban heat island effect [3].
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The advent of remote sensing and very high resolution (VHR) imagery has significantly facilitated the
procedure for producing and updating urban land cover maps. However, the classification of urban
land cover objects of interest (e.g., roads, buildings, trees, grass, bare soil) in VHR images based on
their spectral properties is still very challenging due to the high within-class spectral heterogeneity and
high between-class spectral similarity of many of these objects (Figure 1). For example, the materials
and colors of building rooftops may vary widely, and some rooftops may have very similar spectral
properties to roads. Due to these problems, traditional pixel-based approaches, which assume that
each land cover class has a distinct spectral signature (and do not take into account other pertinent
spatial/contextual information that helps correctly identify land cover features) [4,5], often fail to
achieve a desirable level of classification accuracy. For these reasons, the geographic object-based image
analysis (GEOBIA) approach, which is able to incorporate various types of spatial (e.g., objects’ texture
and/or shape) and context (e.g., multi-scale spectral/spatial features) information for classification,
is often used for high-resolution urban land cover mapping [6–8]. In addition, in several studies it
was shown that applying the GEOBIA framework to medium spatial resolution imagery can lead to
promising results [5,9,10].
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Figure 1. Varying spectra of different land covers over a given urban area. Note: The colors in the
spectra diagrams show the distributions (histograms) of red, green, and blue bands.

The GEOBIA process typically involves: (i) segmenting a remote sensing image into spectrally
homogeneous regions (i.e., segments or image objects), and (ii) utilizing the spectral, spatial, and/or
context features of these segments for image classification (Figure 2). Many image segmentation
algorithms exist [11–13], but perhaps one of the most commonly used for remote sensing applications
is the multiresolution segmentation (MRS) algorithm [14,15], which was first implemented in the
eCognition software package (Trimble Geospatial).
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Figure 2. Workflow of GEOBIA framework in remote sensing.

1.2. Multiresolution Segmentation (MRS) Algorithm

The MRS algorithm has three free parameters that must be set for segmentation:
a “scale parameter” (SP) that controls the maximum heterogeneity of each segment, a
“smoothness/compactness” parameter that determines the preferred shape of segments, and a
“color/shape” parameter that controls the weights of spectral and shape information in the calculation
of segments’ heterogeneity [15]. One of the most significant properties of MRS is its ability to generate
the same results for different subsets selected from the same area [15]. This capability in reproducing
segmentation results distinguishes MRS from some other common segmentation algorithms [13].
Through an optimization process, MRS divides a given image into relatively homogeneous regions,
i.e., image segments or image objects. The relationship between the user-defined SP (S) and the
inter-segment heterogeneity cost function (f ) can be expressed as follows:

• If f < S2, then merge the two image segments
• If f ≥ S2, then do not merge the two image segments

The parameters of MRS are typically estimated through a trial-and-error process; that is, the
analyst applies different parameter settings to the image under consideration until meaningful and
desired objects are extracted. The trial-and-error process for determining the parameters can be both
time-consuming and labor-intensive due to the lack of an explicit relationship between a segmentation
result and the three parameters. In general, SP is considered as the most important driver of yielding
a desired segmentation because it indirectly governs the average size of resulting image objects [16].
However, the meaning of the SP in MRS is to some degree ambiguous because it only provides an
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implicit and irreproducible association (i.e., the larger the SP is, the bigger the average size of segments
is), which is not a practical tool for generating optimal segmentation results. To address these problems,
over the past decade a number of supervised and unsupervised automatic approaches to parametrizing
the MRS SP (as well as the parameters of other segmentation algorithms) have been proposed.

Since each object that is present in a given image could have different characteristics (e.g., its size,
shape, color, etc.) from other objects, a single SP is not often useful to extract all types of land covers
in the image. If a universal SP is applied, it is likely that many objects will be either oversegmented
or undersegmented. As already discussed, in either case the accuracy of classification results can be
deteriorated, because some important information is not available during the classification phase.
In fact, objects’ inherent characteristics have an important role in finding suitable SPs. The selection
of an SP to segment the image should be based on the geometric/spectral properties of the object(s)
of interest. As a result, to extract different land cover classes, it is more reasonable to use multiple
SPs, each of which is appropriate for a separate land cover class. Such a multi-scale/level approach
can positively affect the quality of extraction of different land cover classes, and thus can improve the
accuracy of final classification results, as reported in several studies [17–20].

1.3. Segmentation Parameter Selection

Past research has shown that land cover classification accuracy can be affected by the settings
of the segmentation parameters [19,21–24], so care must be taken to ensure that the parameters set
do not result in excessive undersegmentation (i.e., segments much larger than the objects of interest)
or oversegmentation (i.e., segments much smaller than the objects of interest). In practice, multiple
segmentation parameters are usually tested and compared, and “suitable” segmentation parameters
(i.e., those that do not cause excessive over- or undersegmentation) are determined either manually
(by trial and error [25–27]) or automatically (e.g., using supervised or unsupervised parameter selection
algorithms [17,20,22,28–31]). Although manual parameter selection through visual assessment could
lead to the most optimal segmentation results if done by a skilled image analyst, the process is typically
time consuming and/or computationally intensive. Moreover, since this process could be tedious,
the analyst may rely on his/her prior knowledge to choose the parameters, which could increase the
subjectivity of the process [32].

It is often claimed that the segmentation parameter selection process is needed because good
segmentation parameters vary by image source (e.g., QuickBird, WorldView-2/-3, Pléiades) and by
study area location [17,33,34]. However, to our knowledge, there has been no comprehensive study of
how much these good segmentation parameters vary. If a relatively narrow range of good segmentation
parameters could be identified for similar types of images (e.g., images from the same satellite sensor
or images with similar spatial resolutions), this could potentially reduce the time needed for parameter
selection (a narrower range of parameters would need to be compared) or even eliminate the need for
it (if the range of parameters has very little variation).

Recently, Ma et al. [35] conducted a comprehensive meta-analysis on common considerations
taken into account in GEOBIA studies. They examined 173 scientific papers and extracted several
parameters from each study including image spatial resolutions, selected SPs, classifiers, land cover
types, sampling methods, etc. One of the other factors they analyzed from this meta-analysis was
the relationship between the selected SP in each study and the spatial resolution of the imagery used
in the study. The main limitation of this analysis in the previous work was that it did not assess the
relationship between SP and image spatial and radiometric resolutions for different types of land cover.
However, this is important because not all land cover classes can be accurately segmented using a
single SP [19,36].

1.4. Objective of This Study

Similarly to the study by Ma et al. [35], our current study also aimed to take advantage of the
results of past research to improve the efficiency of future GEOBIA research. Specifically, we aimed to
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reduce the time/effort needed for setting appropriate MRS parameters for different urban land cover
types, with a focus on VHR (<5 m) imagery, which was previously shown to be effective for urban
mapping [37,38]. As reported by Cowen et al. [39], to recognize an urban object in a given remotely
sensed image, the spatial resolution should be at least one-half of the smallest object to be extracted.
For example, to identify an urban building with a size of 10 m × 10 m, the minimum spatial resolution
must be 5 m. However, Myint et al. [37] argued that for urban applications, it is recommended to
choose a spatial resolution even finer than one-half the size of the smallest object. As the authors
elaborated in the abovementioned study, if the pixel size is not finer than one-half the size of the
object of interest, some pixels (those containing the boundaries of the object) will not be completely
composed of the objects (i.e., mixed pixels), so that the accuracy of extracting them will be degraded.
In this regard, we performed a meta-analysis of recent GEOBIA literature to assess the variation in
segmentation parameters used for urban land cover mapping in various types of images and locations,
with the goal of determining if a relatively narrow range of good segmentation parameters could be
identified for different types of images and land covers. The main research question we wanted to
answer with this meta-analysis was whether appropriate MRS parameters (especially SP) were indeed
site-specific. For this analysis, we: (1) performed a literature survey of recent studies from 2010 to 2017
(21 June) involving the use of GEOBIA for urban land cover mapping; (2) extracted the segmentation
parameters used, image source/spatial and radiometric resolutions, etc., in each study; and (3) built
a regression tree (RT) model for each individual land cover type using the extracted information to
investigate how well the segmentation parameters (specifically SP) selected in the past studies could
be predicted based on the image data used (e.g., spatial and radiometric resolutions).

2. Related Work

Studies on parametrizing SP can be categorized into two general groups: supervised
approaches [21,30,31,40], and unsupervised approaches [17,20,22,29]. With supervised methods,
the goal is to identify an optimal segmentation (or set of segmentations) by evaluating the overlap
of ground-truth reference polygons and computer-generated image segments. This evaluation is
performed using arithmetic or geometric dissimilarity metrics to calculate the discrepancy between
reference polygons and the respective (overlapping) generated segments. When these metrics
indicate the least dissimilarity between a given ground truth and the overlapping segment, it could
be concluded that an optimal segmentation has been achieved. Liu et al. [40] proposed three
discrepancy metrics (i.e., Potential Segmentation Error (PSE), Number-of-Segments Ratio (NSR),
and Euclidean Distance 2 (ED2)) for the supervised optimization of MRS parameters. In that study,
PSE was defined as a measure of undersegmentation (i.e., a PSE value equal to zero indicates no
undersegmentation), NSR as a measure of oversegmentation (i.e., larger values of NSR indicate
oversegmentation occurred), and ED2 was used to combine the other two metrics into a single value
that takes into account both undersegmentation and oversegmentation (i.e., the smaller the value of
ED2 is, the more the resulting segments match the corresponding reference polygons). In another
study, Clinton et al. [41] compared several different supervised metrics and combinations approaches,
and found that the D-metric, calculated as the root-mean-square of an oversegmentation measure
(OverSegmentationij or OSeg) and an undersegmentation measure (UnderSegmentationij or USeg), was
consistently a good indicator of segmentation quality. In a further work, Zhang et al. [42] used similar
undersegmentation/oversegmentation measures, and compared different approaches for combining
them (F-measure, Euclidean Distance, ED2), and found that F-measure was more appropriate for
combining the undersegmentation and oversegmentation metrics together due to its higher sensitivity
to excessive under-/oversegmentation.

In contrast to supervised methods, unsupervised SP optimization methods can be applied without
the need for reference polygons. Many unsupervised methods aim to identify the segmentation
parameters that maximize the average intra-segment heterogeneity and inter-segment homogeneity of
segmentation results [29]. Compared to supervised methods, unsupervised techniques can potentially
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be faster (not requiring reference polygons) and less subjective. Aside from the methods based on
maximizing intra-segment heterogeneity/inter-segment homogeneity, Drǎgut et al. [28] developed a
method known as the Estimation of Scale Parameter (ESP) tool, which was inspired by the concept
of Local Variance (LV) that earlier proved to be beneficial for recognizing the structure of a given
image with respect to its spatial resolution and land cover [43], and for applying to the GEOBIA
framework [44]. The basis on which the ESP tool is built is that as larger SPs are used for segmenting a
given image, the average global standard deviation (as a representative of LV) of the spectral values of
image segments increases accordingly. This increase in the average standard deviation stops when the
boundaries of some image segments approximately correspond to a real-world feature. By monitoring
the LV curve resulting from this approach, it can be observed that several break points appear on the
curve, and each of these abrupt changes can be indicative of an optimal SP for the corresponding land
cover. As a result, using the ESP tool it is possible to estimate multiple SPs for various image objects
with different sizes and structures.

Parameterizing the MRS algorithm has also been carried out using the notion of spatial
autocorrelation in some studies [45–47]. Spatial autocorrelation is important in the sense that
it effectively reveals the statistical separability of spatial image objects from each other [45].
Martha et al. [47] made use of the objective function (composed of a spatial autocorrelation indicator
(i.e., Moran’s I) and inter-segment variance analysis) proposed by Espindola et al. [45] to develop a
plateau objective function (POF) capable of constraining the lower limit of the objective function for
detecting multiple optimal SPs. The authors hypothesized that the peak values of the POF are close
to the maximum values of the objective function. Thus, it can be concluded that a trade-off between
oversegmentation and undersegmentation in the results can be found where the peaks exceeding the
constrained lower limit of the objective function are observed; that is, such a trade-off indicates an
optimal SP for the image under consideration. In addition, the local peaks on the curve of the objective
function can be indicative of optimal SPs for land features with different sizes in the image. Johnson
and Xie [29] proposed another multi-scale approach that estimates optimal segmentations in two steps,
namely a global evaluation step, and a local evaluation step. Optimal segmentations are selected by
normalizing and combining (through addition) weighted variance (for evaluation of intra-segment
heterogeneity), and Moran’s I (for evaluation of inter-segment heterogeneity). Following that study,
Johnson et al. [22] found that combining the Weighted Variance and Moran’s I metrics using the
F-measure was more effective than combining them using addition, which echoed the findings by
Zhang et al. [42] that the F-measure was more sensitive to excessive over- and undersegmentation.
In a more recent study, Cánovas-García and Alonso-Sarría [48] adapted the method introduced by
Espindola et al. [45] and developed a local SP optimizing technique by replacing the Moran’s I index
with the Geary index (as an intra-segment heterogeneity measure) to also include objects’ variability
when optimizing the SP. The main advantage of their method is its local optimization nature (uniform
spatial units) that is beneficial in cases where the study area is large and covers diverse types of land
use/cover. The main reason that local approaches could typically lead to more desirable results is that
they can better capture the spectral contrast between objects than global approaches can, thus yielding
more appropriate SPs [19].

In 2014, Yang et al. [49] developed a multiband unsupervised approach based on measuring
the spectral homogeneity of image segments generated to estimate appropriate SP automatically.
According to their study, as the size of an image object increases, its corresponding spectral
homogeneity continues to decrease until it conforms to a real-world object. Therefore, measuring
spectral homogeneity can be considered as a proxy for objectively estimating the SP. In order to
measure spectral homogeneity, the authors adopted spectral angle [50]. The spectral angle indicates
the amount of similarity between two pixels; that is, the more the two pixels are similar to each other,
the smaller the value of the spectral angle is. Based on this fact, Yang et al. [49] first calculated the
spectral angle between each pair of two pixels in each segment. Then, the calculated mean spectral
angle values of all the pairs of two pixels for each segment were averaged over the entire image. Finally,
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the SP resulting in the smallest value of mean spectral angle (i.e., the largest spectral homogeneity)
was considered as an optimal SP.

In a recent study, Jozdani et al. [20] developed a scene-independent unsupervised approach to
optimizing the SP to extract urban buildings of different sizes. In that research, by assuming that the
sizes of buildings in a given urban block are close to each other, a degree-2 polynomial regression
model was established that associated appropriate SPs with the median size of buildings and the
spatial resolution of the image. According to their experiments, it is possible to estimate appropriate
multiple SPs to quickly extract differently sized buildings with reasonable accuracy and without
relying on intensive computations.

In addition to the abovementioned approaches, other methods have been proposed that do not
heavily rely on the SP to optimize segmentation. For instance, Martha et al. [51] first performed an
initial segmentation with a small SP to generate oversegmented results. These oversegmented results
were then fed into the chessboard segmentation algorithm to be fine-tuned and merged, resulting in
more appropriate final segmentation results without directly optimizing the SP. In a similar study,
Witharana and Lynch [31] combined the segmentation derived from the multi-threshold segmentation
(MTS) algorithm with that derived from the MRS to improve segmentation results without applying
an intensive trial-and-error process. In their method, MTS is first applied to the image to generate
undersegmented, simplified image objects. Subsequently, MRS is performed on the simplified segments
to obtain finer image objects whose boundaries more reasonably correspond to real-world features of
interest. Finally, a straightforward trial-and-error process can be applied to the segmentation results of
the MRS to further fine-tune image objects generated.

Rather than hybridizing the MRS algorithm with other segmentation algorithms to optimize
segmentation and to improve classification accuracy, in a study by Stumpf and Kerle [52], the main
objective was to identify which features were more significant at each scale level to improve final
classification results in the GEOBIA framework (in this case, distinguishing landslides from other image
objects). For this purpose, they first performed multiple segmentations with different SP values (i.e., 10,
15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, and 100) and then calculated several features (i.e., spectral,
textural, geometric, etc.) for the resulting image objects at different scale levels. Following this step, an
RF-based variable-importance model was applied to the calculated features to recognize significant
features at each segmentation level that could lead to more accurate classification results, namely
smaller out-of-bag (OOB) error resulting from the RF model. To put it simply, instead of solely taking
the SP into account to improve the extraction of objects of interest, final classification accuracy can be
considered as a function of the SP and significant features calculated for image objects generated.

Although unsupervised methods to optimize the SP/segmentation do not require reference
polygons, they can be still computationally intensive. For example, most existing unsupervised
approaches require iteratively testing many different SP values to identify an optimal segmentation,
which can be problematic especially when segmenting a large volume of remotely sensed images.
Even though the framework proposed by Jozdani et al. [20] avoids this iterative procedure, it is still
limited to the appropriate extraction of urban buildings and thus cannot be generalized to other land
covers in its current form.

3. Methodology

In this paper, we investigated the potential of mathematical modeling to estimate appropriate SPs
for different urban land covers based on a meta-analysis. The main goal was to identify if suitable
SP values could be found for several different land cover types using the information derived from
past GEOBIA studies (e.g., what segmentation parameters were used for: different land cover types,
different types of images, etc.?). The meta-analysis scheme in this study closely followed the pattern
used by Ma et al. [35]. Accordingly, this research was organized into three main steps: (1) searching
for relevant papers, (2) collecting information needed from each study, and (3) applying regression
modeling to estimate suitable SPs for different land cover types.
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3.1. Literature Survey

In the first step, a comprehensive survey of recent studies involving GEOBIA for urban land
cover mapping was conducted. To find potentially relevant research papers, we used Scopus
(http://www.scopus.com) and Google Scholar (http://www.scholar.google.com), which are web
databases of peer-reviewed (and non-peer-reviewed) literature. The criteria and search terms used
in these engines were as follows: “object-based” AND “urban” AND “land cover”, and the search
was limited to peer-reviewed journal papers. We focused our investigation on urban areas because
of the extensive application of the GEOBIA framework for urban area mapping using VHR imagery,
and because of the challenging task of segmenting/classifying urban land cover (e.g., due to high
within-class spectral heterogeneity and high between-class spectral similarity, other segment-level
features like size/shape are very useful). We also focused only on studies published from 2010 to 2017
(the last search was performed on 21 June 2017), as it was during the time that the GEOBIA framework
really became mainstream in remote sensing (an exponential increase in GEOBIA studies occurred
starting from 2010) [35].

3.2. Extracting Image/Segmentation Parameter Information from Past Studies

The second step of our methodology was to extract the relevant information from each paper.
For this purpose, information related to three types of parameters was collected from each paper:

• Image-based information
• MRS parameter information
• Land cover information

Each of these information groups plays an important role in the quality of a segmentation
result. The image-based information included the spatial and radiometric resolutions of the images
used in each research paper. The MRS parameter information comprised the SP, shape/color, and
compactness/smoothness parameters used in each study. The land cover information collected
included the land cover types corresponding to the MRS parameter settings in each study. The common
land cover classes that presented in the considered studies were tree, grass, bare soil, impervious
(including roads, asphalt, parking lots, etc.), building, water, road, and pool. It should be however
underlined that in several studies, some details were missing. For example, some studies did not
report any information on the spatial or radiometric resolutions, or on the MRS parameters used.
In such cases, we assumed the default values for missing data (more details on this issue are given
in Section 4).

3.3. Regression Analysis to Estimate Appropriate SP Values

The last step was to formulize the relationship between all the three information groups
(i.e., image-based, the shape and compactness parameters, and land cover) and the SPs selected
in the studies. In order to associate the SPs with the rest of the information extracted, we made use
of regression modeling. In this respect, since the goal of this study was to narrow down the range of
suitable SPs for different urban land cover types, regression modeling was performed for each type of
land cover separately. The dependent variable was chosen to be SP used for segmenting the land cover
class of interest, and the independent variables were chosen to be the shape parameter, compactness
parameter, spatial resolution, and radiometric resolution. There are several regression models that can
be used for prediction purposes. Generally, since the real-world relationships of different variables are
rarely linear, nonlinear regression models can often yield more accurate predictions. In many remote
sensing studies, complex nonlinear regression models (e.g., Artificial Neural Networks (ANN), Support
Vector Regression (SVR), Random Forests (RF), etc.) have been able to achieve satisfactory results, but
because they act as a black box (i.e., the procedures through which they are fitted to the data are hidden)
their results are difficult to interpret. Moreover, they do not provide any explicit, reproducible equations

http://www.scopus.com
http://www.scholar.google.com
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that can be easily applied by other researchers (i.e., generalized). Because of these two problems, we
did not use these types of complex models, even though they could possibly result in higher modeling
accuracy. We instead utilized a regression tree (RT) approach to predict the SP values, as RTs can also
be used for nonlinear regression modeling and provide interpretable/explicit relationships (in the
form of rulesets) between the independent and dependent variables [44]. In general, an RT is a binary
splitting process that recursively stratifies the feature space into sub-divisions. Stratification is based on
the minimization of deviation from the mean of the response variable. The structure of this rule-based
regression model is composed of root nodes, internal nodes, branches, and terminal nodes (leaves).
The number of leaves has an important effect on the prediction accuracy of the model. If the model
redundantly grows and results in a deep tree, the prediction accuracy on the test set could be negatively
affected; in other words, a deep RT increases the possibility of overfitting, and thus it is necessary
to prune the tree (typically using cross-validation). In the case of data deficiency, however, pruning
may decrease the prediction accuracy due to underfitting. To establish the RT modeling approach, we
adopted the same approach used by Jozdani et al. [20], in which the RT algorithm implemented in R
programming language within “rpart” package was employed [53]. This RT approach, as described
earlier, fits a non-linear model to the data using a step-by-step recursive partitioning of the feature
space, leading to binary trees. The general criterion used for finding the variable resulting in the best
split in the RT modeling is based on the analysis of variance (ANOVA) method, aiming at choosing the
split leading to the maximum between-group sum-of-squares in the feature space.

3.4. Evaluating the Performance of the RT Models for Each Land Cover Type

To evaluate the performance of the RT models, we used the RT model results to select SP
values and segment six VHR test images of different urban areas (Table 1), and analyzed the
segmentation results visually and quantitatively. The 25-cm, 30-cm, 65-cm, and 75-cm aerial images
were acquired by USGS and downloaded from the EarthExplorer website (https://www.earthexplorer.
usgs.gov), and the 1-m IKONOS image and 50-cm WorldVew-2 images were downloaded from the
ISPRS (http://www.isprs.org/data/default.aspx) and DigitalGlobe (https://www.digitalglobe.com/
resources/product-samples) websites, respectively. These images were selected in the way that they
covered urban areas with different complexities. In fact, two main goals were targeted while evaluating
the results in this research. The first goal was to analyze how well the proposed approach performed
in various urban areas (with different architectures). This goal was important because it would show
the level of generalizability of the approach. The other goal was to test the approach on images
with different spatial resolutions, as this image property has an integral role in image segmentation.
Given these two objectives, we attempted to select the images that were in line with our needs for
the evaluation phase. In addition, the selected images contained most of the land cover classes that
we considered while constructing the RT models. For the quantitative assessment of segmentation
accuracy in the test images, we digitized reference polygons for three land cover classes with clearly
defined boundaries (buildings, vegetation, and water), but not for the other two classes (soil and roads)
with fuzzy or difficult-to-determine boundaries, and calculated the geometric discrepancies between
the computer-generated segments and reference polygons using supervised segmentation evaluation
metrics. These evaluation metrics are not applied to single pixels, but rather are calculated based on
the polygon boundary of the segment. This type of evaluation better corresponds to the concept of
GEOBIA, because it also considers the object itself (not its individual pixels) for accuracy assessment.
The supervised metrics selected were Undersegmentationij (USeg) and Oversegmentationij (OSeg), as
defined in [41], and they were combined together into a single segmentation quality metric using
the D-metric (D) [41] as well as the F-measure (F) [42]. In the six test images, a total of 128 polygons
were digitized for the building class, 74 for the vegetation class (some individual trees and some
homogeneous grassy areas), and 14 for the water class. There is no clear standard for identifying which
values of these supervised evaluation metrics indicate a “good” segmentation, so we employed a
comparative approach. To compare the accuracy of our approach with that of an existing unsupervised

https://www.earthexplorer.usgs.gov
https://www.earthexplorer.usgs.gov
http://www.isprs.org/data/default.aspx
https://www.digitalglobe.com/resources/product-samples
https://www.digitalglobe.com/resources/product-samples
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method, we also calculated the supervised metrics for the optimal segmentations selected by the ESP
tool in each image [28]. Additionally, to understand the accuracy of our approach as compared to a
naïve segmentation parameter selection approach, i.e., applying the same segmentation parameter
for all images (e.g., using an SP of 50 to segment vegetation in all images, regardless of the image’s
spatial/radiometric resolutions), we also calculated the supervised metrics for segmentations generated
using a wide range of SPs (10–200 with a step size of 10). Because these four supervised evaluation
metrics are calculated for each reference polygon individually, the aggregated results for each class
were calculated by averaging the values of all reference polygons belonging to that class.

Table 1. Details of the six test images used in this study.

Sensor Radiometric
Resolution

Spatial
Resolution

Bands Used for
Segmentation Location Tested Classes

Airborne 8 bit 25 cm RGB Cache, Utah,
USA

Building,
vegetation,

water

Airborne 8 bit 30 cm RGB Calhoun,
Illinois, USA

Building,
vegetation,
water, road

World-View-2 11 bit 50 cm RGB Washington
DC, USA

Buildings, road,
water

Airborne 8 bit 65 cm RGB Riverside,
California, USA

Building,
vegetation,

water

Airborne 8 bit 75 cm RGB
Dakota,

Minnesota,
USA

Buildings,
vegetation,

water

IKONOS 11 bit 1 m RGB
Hobart,

Tasmania,
Australia

Buildings,
vegetation,

road, bare soil
water

4. Results and Discussion

Based on a title and abstract screening of the journal papers identified by the Scopus/Google
Scholar search queries, 215 journal papers were identified as potentially relevant to our study.
(More details on the selection and reviewing design in this research are shown in Tables 2 and 3.)
Examining these selected papers, we encountered three types of papers: (1) papers that used the MRS
and provided all the details we needed for the RT modeling (i.e., the MRS parameters, corresponding
land cover class(es), and spatial and radiometric resolutions), (2) papers that applied MRS but did
not mention some or any of the information needed, and (3) papers that did not use MRS for the
segmentation phase. After discarding the papers that did not use the MRS for segmentation, the main
challenge was with the papers that did not report some values related to MRS parameters, image
spatial resolutions, and/or image radiometric resolutions. To address this problem, we applied a
different approach for each group of missing information. If no detail on the spatial resolution of the
image was given in a paper, the spatial resolution of the panchromatic band was recorded (we assumed
that the image had been pansharpened by the vendor or the author(s) prior to segmentation, as this
was often the case in the other studies that did report the image spatial resolutions). If the radiometric
resolution of an image was not reported, we also assumed that it had not been changed from its
original resolution by the authors. Finally, in the case of lacking information on the MRS parameters,
we used the default value for each of the parameters (i.e., shape = 0.1, compactness = 0.5), as these
default parameters are used quite commonly (if the SP was not reported, we discarded the study from
our analysis).
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Table 2. General information on the review process and the data extracted from reviewed papers.

Total Number of
Papers Reviewed

Number of Papers
Data Extracted from Total Number of Data Extracted Parameters Last Search Date

215 39 114
SP,

Compactness/Smoothness,
Shape/Color

21 June 2017

As mentioned earlier, the common classes considered in the papers were trees, grass, bare soil,
impervious features (including buildings, roads, asphalt, and other artificial features), buildings, water,
roads, parking lot, and pools. Since some of these classes had overlap with one another, we merged
similar classes with each other: the tree and grass classes were merged into a vegetation class, and the
water and pool classes were merged into a water class. We decided not to consider the impervious
class in our analysis because it often consisted of multiple more specific land cover classes (e.g., roads
and buildings), which were also included in our analysis. Merging the overlapping classes led to two
decisive advantages: (1) avoiding the construction of redundant regression models, and (2) increasing
the number of samples in some classes that did not have sufficient samples for regression modeling
before the merging. As a result, five final land cover classes (i.e., building, vegetation, road, bare soil,
and water) were selected for subsequent analyses in this study.

Table 3. Number of papers considered at each step of reviewing and reasons for eliminating papers in
subsequent analyses.

Step of Reviewing Number of Papers Considered Reason for Not Considering

1 215 Not related to urban mapping
2 151 MRS not applied
3 124 Optical/VHR imagery not applied
4 88 No classification applied
5 39 MRS parameters not reported

4.1. Regression Modeling

The majority of the papers reviewed in this study only employed VHR optical data; however, a
few papers also used other types of remotely sensed data (e.g., RADAR, LiDAR, etc.) for segmentation.
However, because the number of the papers that used non-optical images in their procedures was not
sufficient, we only considered optical images for the fitting process. In addition, since for urban area
mapping, VHR imagery is of vital importance due to the high spatial heterogeneity of cities [45], VHR
images are mostly used. We thus further filtered out the recorded data by only considering VHR images.
The images considered as VHR in this study were those with spatial resolutions of ≤5 m. However,
due to a lack of data for images coarser than 3.2 m (the spatial resolution of IKONOS’s multispectral
bands) and finer than 9 cm, we limited our analysis to images with spatial resolutions between 9 cm
and 3.2 m. After performing all the refinements on the data extracted from the reviewed papers, of the
remaining 39 papers, a total number of 114 samples consisting of selected MRS parameters, spatial
resolution, and radiometric resolution were used for regression modeling. In Figure 3, the number of
samples for each class is given. As can be seen in this figure, the largest and smallest classes were the
vegetation (30 samples) and water classes (18 samples), respectively.



Remote Sens. 2018, 10, 73 12 of 29

Remote Sens. 2018, 10, 73  11 of 28 

 

regression modeling before the merging. As a result, five final land cover classes (i.e., building, 
vegetation, road, bare soil, and water) were selected for subsequent analyses in this study.  

Table 3. Number of papers considered at each step of reviewing and reasons for eliminating papers 
in subsequent analyses. 

Step of Reviewing Number of Papers Considered Reason for Not Considering 
1 215 Not related to urban mapping 
2 151 MRS not applied 
3 124 Optical/VHR imagery not applied 
4 88 No classification applied 
5 39 MRS parameters not reported 

4.1. Regression Modeling 

The majority of the papers reviewed in this study only employed VHR optical data; however, a 
few papers also used other types of remotely sensed data (e.g., RADAR, LiDAR, etc.) for 
segmentation. However, because the number of the papers that used non-optical images in their 
procedures was not sufficient, we only considered optical images for the fitting process. In addition, 
since for urban area mapping, VHR imagery is of vital importance due to the high spatial 
heterogeneity of cities [45], VHR images are mostly used. We thus further filtered out the recorded 
data by only considering VHR images. The images considered as VHR in this study were those with 
spatial resolutions of ≤5 m. However, due to a lack of data for images coarser than 3.2 m (the spatial 
resolution of IKONOS’s multispectral bands) and finer than 9 cm, we limited our analysis to images 
with spatial resolutions between 9 cm and 3.2 m. After performing all the refinements on the data 
extracted from the reviewed papers, of the remaining 39 papers, a total number of 114 samples 
consisting of selected MRS parameters, spatial resolution, and radiometric resolution were used for 
regression modeling. In Figure 3, the number of samples for each class is given. As can be seen in this 
figure, the largest and smallest classes were the vegetation (30 samples) and water classes  
(18 samples), respectively.  

 
Figure 3. Proportion of the samples data gathered from the reviewed studies for each land cover class. 

In addition, in the studies we reviewed, an equal weight was assigned to all of the spectral bands 
that were used for segmentation. Not all of the studies used the same number of spectral bands, 
though, and some studies used only a subset of the available spectral bands for segmentation. 
Because we could not find evidence in the literature that spectral band selection/band weighting 
greatly affected the SP value(s) that were selected as most appropriate for segmentation (and also 
because of our already relatively small sample size), we chose not to exclude any studies from our 
analysis on the basis of spectral the bands that they utilized (or did not utilize) for segmentation. 

To perform regression modeling on these samples, the dependent variable was chosen to be the 
SP, and the independent variables were chosen to be the spatial and radiometric resolutions, shape, 
and compactness. Because the main goal of this paper was to construct an equation separately for 

Building
27

Vegetation
30

Road
23

Bare soil
18

Water
16

Number of samples

Figure 3. Proportion of the samples data gathered from the reviewed studies for each land cover class.

In addition, in the studies we reviewed, an equal weight was assigned to all of the spectral bands
that were used for segmentation. Not all of the studies used the same number of spectral bands, though,
and some studies used only a subset of the available spectral bands for segmentation. Because we
could not find evidence in the literature that spectral band selection/band weighting greatly affected
the SP value(s) that were selected as most appropriate for segmentation (and also because of our
already relatively small sample size), we chose not to exclude any studies from our analysis on the
basis of spectral the bands that they utilized (or did not utilize) for segmentation.

To perform regression modeling on these samples, the dependent variable was chosen to be the
SP, and the independent variables were chosen to be the spatial and radiometric resolutions, shape,
and compactness. Because the main goal of this paper was to construct an equation separately for each
land cover to estimate appropriate SPs, we fitted a separate RT model to the data of each class. Because
of the limited number of data (specifically in the water class), no specific parameter was applied to the
RT models, and no pruning was performed. The graphical representations of the equations of the RT
models are shown in Appendix C.

4.2. Evaluation of Image Segmentation Results

4.2.1. Applying the RT Model Results

As mentioned earlier, to estimate SPs using the RT models, one needs to incorporate the spatial and
radiometric resolutions of the image (i.e., image-based information), and the shape and compactness
parameters (MRS parameters information). The default values for the shape and compactness
parameters are commonly set to 0.1 and 0.5, respectively, which can be incorporated into the models to
estimate the SP for each land cover. However, assigning the default values to these parameters can
cause some degree of uncertainty and bias in the SPs that are derived from the RT models for different
land covers. To address this problem, we first calculated the mean of each of these parameters for each
class separately (Table 4) and then used their mean values to estimate the SPs for the corresponding
classes. As examples of our RT model outputs, Table 5 shows the class-specific SPs estimated for
several common VHR satellite sensors as well as the airborne sensors used in our test images.

Table 4. Calculated mean values of the shape and compactness parameters used in the reviewed
scientific papers.

Class Shape Compactness

Building 0.38 0.61
Vegetation 0.31 0.56

Road 0.44 0.54
Bare soil 0.36 0.55

Water 0.38 0.59
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Table 5. SPs estimated by the RT models for common VHR satellite sensors and the airborne
sensors applied in this study. Note: the SPs were derived from the RT models based on the shape
and compactness criteria defined in Table 4. The SP values are valid for pansharpened images
(where applicable).

Satellite/Airborne Sensor Building Vegetation Road Bare Soil Water

IKONOS (1 m, 11 bits) 110 85 80 40 40
Quickbird (60 cm, 11 bits) 110 85 40 85 40
GeoEye-1 (41 cm, 11 bits) 110 10 10 50 30
GeoEye-2 (31 cm, 11 bits) 110 20 10 50 30

WorldView-1 and 2 (46 cm, 11 bits) 110 85 40 50 30
WorldView-3 and 4 (31 cm, 11 bits) 110 20 10 50 30

Pléiades (50 cm, 12 bits) 110 85 120 120 120
Airborne (25 cm, 8 bits) 110 185 115 115 115
Airborne (30 cm, 8 bits) 110 185 115 115 115
Airborne (65 cm, 8 bits) 110 185 115 100 40
Airborne (75 cm, 8 bits) 110 185 115 100 40

4.2.2. Visual Evaluation Results for the Test Images

For a visual evaluation of results, we segmented the test images using the SPs identified by the
RT models (as reported in Table 5), in combination with the shape/color and compactness parameters
given in Table 4. It is worth noting that because the data used to construct the RT models were
assumed to be pansharpened (if applicable), we also pansharpened (using the Gram-Schmidt Spectral
sharpening method) the satellite images for segmentation. In Figures 4–7, the segmentation results
for different classes in four of the six test images (the 30-cm, 50-cm, 75-cm, 1-m) are depicted (for the
sake of brevity, the segmentation results for the 25-cm and 65-cm test images are instead shown
in Appendix B). For the 30-cm test image (Figure 4), we selected four representative land covers
(i.e., building, vegetation, road, and water) to visually evaluate the performance of the respective
RT models. Given the complexity of the building rooftops, the segmentation result of the buildings
was generally satisfactory. However, some degree of undersegmentation occurred in areas where the
rooftops had a very similar appearance to nearby non-building land covers. The vegetation class was
also extracted relatively accurately, as green spaces (e.g., trees and grass) were distinguished from
other land covers in most cases. The problem with green spaces in remotely sensed imagery is that
their extraction could be highly scale-dependent; that is, using a single SP, it might not be possible to,
for example, extract both urban forests and single trees simultaneously. This problem also occurred in
this image, where trees, grass, and urban forests were all present at the same time. As a result, it can
be seen that the large urban forests were oversegmented, while a few areas containing small patches
of grass or single trees were undersegmented (mixed with the pixels of roads). One way to mitigate
this issue could be to construct a separate RT model for each type of vegetation (e.g., one for single
trees, one for tree patches, one for parks, and so on), although it may be difficult to find sufficient
samples from the literature to construct these models. The results for the extraction of the roads were
also generally satisfactory, having some acceptable degree of oversegmentation and no excessive
undersegmentation. In general, roads could be very difficult to be appropriately extracted because of
various nearby non-road features (e.g., cars, shadows, vegetation, asphalt defects, etc.) that hinder the
segmentation algorithm from detecting correct boundaries of roads. The RT model established for the
extraction of water bodies in this test image also performed relatively well in segmenting the pond in
the image.
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Figure 4. Segmentation results of the building, vegetation, road, and water classes in the 30-cm
test image.

In the 50-cm test image (Figure 5), the accuracy of the extracted building, road, and water features
was evaluated. Undersegmentation of the extracted buildings from this image was more prevalent than
in the 30-cm image. One reason for this problem could be the highly spectrally similar information of
some buildings to their neighboring buildings. Nevertheless, this type of undersegmentation did not
cause the buildings to be mixed with other land covers. In contrast to the 30-cm test image, the roads
present in the 50-cm image were not extracted properly, resulting in oversegmentation. The extraction
of the small lake in this image also led to some oversegmentation, but not as much as was observed
for roads.
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In the 75-cm test image (Figure 6), it is evident that vegetation, road, and bare soil land cover
features were extracted better than buildings and water bodies. There was again an apparent degree of
oversegmentation in the extracted water bodies in this image. Moreover, some of the buildings were
undersegmented, which was undesirable.
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Figure 6. Segmentation results of the building, vegetation, road, bare soil, and water classes in the
75-cm test image.

As with the segmentation results of the 50 cm and 75 cm test images, the water bodies in the 1-m
image (Figure 7) were oversegmented. The buildings in this image, however, were more successfully
extracted than those of the 75 cm image, although a few undersegmented buildings could be still
observed. As with the results of the 30 cm image, the road class was segmented very reasonably
in this test image, although there were similar spectral properties between the roads and nearby
features, specifically vegetation. The vegetation land cover extracted using the SP estimated by the
corresponding RT model did not generally behave consistently in this test image; that is, in some cases
(e.g., over urban forests), some level of oversegmentation was apparent, but in some other cases, where
the nearby buildings had similar spectral information to vegetation, undersegmentation occurred.
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4.2.3. Quantitative Evaluation Results for the Test Images

Table 6 and Figure 8 show the values of the supervised metrics calculated for the segmentations
selected by our RT models for all the six test images, as well as the values for the segmentations
selected by the ESP tool, and the results for a range of other segmentations. From Figure 8, it can be
seen that our RT models produced more accurate segmentations than the ESP tool (lower D values
and higher F values) for the building and vegetation classes, while the ESP tool performed better than
our RT model for the water class. For the building and vegetation classes, our RT models also had
segmentation accuracies that were among the highest of the other SPs tested, while for the water class
our RT model produced less accurate segmentations than many of the other tested SPs. The main
problem with our RT model predictions for the water class was likely due to the large differences in
the sizes/shapes of water features extracted in the past studies, e.g., some studies aimed to accurately
segment pools, others aimed to segment linear water features (rivers or canals), and yet others large
water bodies (e.g., ponds or lakes). From Table 6, it is also clear that our RT models (as well as the
ESP tool) resulted in more undersegmentation than oversegmentation for the building and vegetation
classes, but more oversegmentation than undersegmentation for the water class. Comparing the D
and F values of the RT models obtained for the building and vegetation classes, the building class was
extracted more accurately, perhaps because the polygons for the vegetation class were more diverse
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in size and spectral heterogeneity (e.g., some polygons were of individual trees, some were larger
grassy areas).

Table 6. Values of the supervised metrics calculated using all of the reference polygons for each class.
The SP values used for the RT model varied by land cover class and image, and are provided in
Table 3. The SP values selected by the ESP tool were: 161 (25-cm image), 236 (30-cm image), 251 (50-cm
image), 266 (65-cm image), 291 (75-cm image), 271 (1-m image). Note: The parameters used for the
segmentation of the test images are given in Tables 4 and 5.

Building Vegetation Water

Scale OSeg USeg D F OSeg USeg D F OSeg USeg D F

10 0.95 0.18 0.71 0.09 0.98 0.10 0.71 0.04 1.00 0.04 0.71 0.01
20 0.83 0.16 0.62 0.24 0.91 0.11 0.66 0.13 0.99 0.07 0.71 0.02
30 0.70 0.17 0.53 0.38 0.83 0.18 0.63 0.21 0.97 0.10 0.70 0.04
40 0.58 0.22 0.48 0.46 0.73 0.26 0.60 0.27 0.95 0.10 0.69 0.07
50 0.49 0.27 0.45 0.51 0.63 0.33 0.56 0.33 0.93 0.12 0.68 0.10
60 0.42 0.31 0.43 0.53 0.56 0.37 0.55 0.35 0.92 0.13 0.67 0.12
70 0.34 0.35 0.41 0.55 0.46 0.45 0.52 0.38 0.90 0.16 0.66 0.14
80 0.24 0.44 0.41 0.54 0.36 0.49 0.50 0.40 0.86 0.16 0.64 0.17
90 0.18 0.49 0.42 0.51 0.34 0.51 0.51 0.39 0.84 0.16 0.62 0.20

100 0.13 0.55 0.43 0.49 0.25 0.53 0.48 0.41 0.82 0.17 0.62 0.21
110 0.12 0.59 0.45 0.46 0.16 0.60 0.48 0.41 0.80 0.17 0.60 0.24
120 0.11 0.65 0.49 0.41 0.14 0.66 0.51 0.36 0.75 0.17 0.57 0.28
130 0.10 0.68 0.50 0.38 0.12 0.67 0.50 0.36 0.73 0.18 0.55 0.31
140 0.09 0.71 0.52 0.35 0.10 0.71 0.53 0.32 0.70 0.18 0.54 0.32
150 0.09 0.73 0.54 0.32 0.10 0.71 0.53 0.32 0.66 0.19 0.52 0.36
160 0.07 0.76 0.55 0.30 0.09 0.72 0.53 0.31 0.64 0.19 0.50 0.38
170 0.07 0.79 0.57 0.27 0.07 0.74 0.53 0.31 0.53 0.21 0.44 0.48
180 0.07 0.79 0.57 0.26 0.07 0.74 0.54 0.30 0.51 0.22 0.42 0.50
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200 0.05 0.83 0.60 0.22 0.07 0.78 0.56 0.26 0.48 0.24 0.43 0.49

ESP tool 0.03 0.88 0.63 0.16 0.07 0.81 0.59 0.23 0.30 0.33 0.39 0.53
RT models 0.12 0.58 0.44 0.47 0.17 0.69 0.53 0.34 0.92 0.15 0.67 0.12
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4.3. General Discussion

As the experiments in this study showed, in order to segment different land cover types
successfully it is necessary to use different SPs. In other words, as already suggested in a number
of studies, instead of using a single-scale segmentation approach, it is more effective to employ a
multi-scale approach to extract different land cover features in a given image. Although the level
of complexity of different features can vary from landscape to landscape and from image to image,
thus affecting the selection of appropriate SPs, this study indicated that it is possible to narrow
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down the range of suitable SPs for segmenting a specific type of land cover using information from
the literature and regression modeling. In previous studies, a strong emphasis was put mainly on
the inverse relationship between the SP selected and the spatial resolution of an image. However,
there are some other image characteristics that contribute to the selection of SPs. In this research,
in contrast to many previous studies, we considered radiometric resolution of the image as another
determinant of the SP estimation, although its effect on the SP was much less than that of the spatial
resolution. Furthermore, the evaluation results showed that such approaches to the parametrization
of SP are only a proxy for narrowing down the wide range of possible SPs to segment a given image
optimally. Therefore, such an approach could significantly reduce the time and labor required to
generate desirable segmentation results.

The RT models represented in this research can be applied to other urban areas as well. However,
it should be noted that the RT models may fail to estimate appropriate SPs in cases where the urban
structure is significantly different from those whose data were used to construct the RT models.
The main cause of this problem is that the fitted RT models, which are generated using a limited
number of samples, cannot completely account for all the variability encountered in the real world.
One of the most viable ways through which this problem can be addressed is by increasing the amount
and diversity of the data used to generate the RT models, so that they can be further generalized and
better adapted to more types of urban areas. In this regard, we have provided all of the data that
we used to construct the RT models in this study (provided as a Supplementary Table), so that other
researchers can build upon it to achieve better results in the future (e.g., by adding more data for their
classes/study areas of interest and then rerunning the RT models).

Another caveat that should be noted here is that in some studies that we reviewed and extracted
details from to establish the models, a single universal SP (e.g., an SP of 10) had been used to extract
all of the land covers, potentially resulting in over- or undersegmentation of some classes in these
studies. This could have affected the accuracy of some of our RT models, especially for those land cover
classes with small sample sizes. For instance, the oversegmented results of the water class in most
of our cases demonstrate the negative effect of applying a single SP to extract multiple types of land
cover present in an image. Although it is generally agreed that oversegmentation is less harmful than
undersegmentation, it could still deteriorate the classification results because potentially informative
non-spectral information (e.g., size and shape of land cover features) will not be utilized for training
the classifier [36]. It should be hence again accentuated that the quality of a segmentation yielded in
the GEOBIA framework should not be easily neglected by assigning a universal, and in most cases,
very small value to the SP to extract different types of land cover in urban areas, whose complexities
call for more attention in the segmentation phase.

In addition to the aforementioned problem affecting the quality of the RT models, it is important
to note that the predicted SP values for the classes with lower sample sizes should be used with greater
caution, and may require more fine-tuning by the user than for other classes (e.g., users may want to
perform segmentation using a wider range of SP values greater/less than our identified SP value to
select the most appropriate SP value for their own images).

In this study (as in many other GEOBIA studies), we have found that different land cover classes
were better represented at different segmentation levels (i.e., using different SP values). However, in
many cases, it is desirable to produce a multi-class land cover map (rather than separate maps of each
individual land cover class). To use our approach for multi-class land cover map production, one
possibility would be to perform classification in a step-wise manner (e.g., classifying the land cover
types with lower SP values first, or vice versa), as has been done in several other GEOBIA studies
that utilized multiple segmentation levels for classification [37,54–56]. More sophisticated solutions
for multi-scale classification also exist (and may indeed work better than our simple example), but a
deeper discussion/comparison of these methods is not provided here because it is outside the main
focus of our study.
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5. Conclusions

In this study, we conducted a meta-analysis to investigate the potential of employing information
derived from past GEOBIA urban land cover mapping studies to select appropriate, i.e., reasonably
accurate, segmentation parameters (specifically the scale parameter (SP)) for the commonly used
multiresolution segmentation (MRS) algorithm. In this regard, we reviewed peer-reviewed journal
papers involving GEOBIA for urban land cover mapping published from 2010 to 2017, and extracted
data on the MRS parameters used, image spatial/radiometric resolutions used, and land cover types
mapped, from a total number of 39 papers selected from 215 potentially relevant papers. Afterward,
considering five classes (i.e., building, vegetation, road, bare soil, and water), we applied an RT model
to the corresponding data of each class to predict the appropriate SP. The experiments performed
on six test images (two pansharpened satellite images, and four aerial images) with different spatial
resolutions (25 cm, 30 cm, 50 cm, 65 cm, 75 cm, 1 m) and with different radiometric resolutions (8 bits,
11 bits) showed that it was possible to narrow down the wide range of possible SPs that can be
used to segment remotely sensed imagery for urban land cover mapping. Therefore, the RT models
and equations from this study can be applied to different urban areas, although there would be no
guarantee that the results would be suitable in every case. This study also confirmed the conclusions
drawn by a number of other studies on GEOBIA that highlight the importance of applying a multi-scale
approach to segment and extract different land cover types more accurately.
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Appendix A

In this appendix, the evaluation metrics used for accuracy assessment are presented.
Four evaluation metrics were used in this study: OverSegmentationij (or OSegij) (Equation (A1)),
UnderSegmentationij (or USegij) (Equation (A2)), D-metric (Equation (A3)), and F-measure
(Equation (A4)).

OSegij = 1−
area(xi ∩ yj)

area(xi)
(A1)

USegij = 1−
area(xi ∩ yj)

area(yj)
(A2)

Dij =

√
OSeg2

ij + USeg2
ij

2
(A3)

F =
2× ((1−OSegij)× (1−USegij))

((1−OSegij) + (1−USegij))
(A4)

In the above equations, xi is the reference polygon, yj is the segment intersecting the reference
polygon xi, and area(xi ∩ yi) is the calculated area of the intersection of the reference polygon xi and
the segment yj. The range of all these metrics is between 0 and 1. If the OSegij, USegij, and D-metric
approach to 0, it can be concluded that an optimal segmentation result was generated. On the other
hand, as the F-measure approaches 1, the quality of the segmentation results improves.
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Note: spt = spatial resolution, rdm = radiometric resolution, shp = shape/color weight,  
and cmp = compactness/smoothness weight, n = the number of samples at each node; the values in 
the rectangles are the estimated SPs. 
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Figure A3. Graphical representation of the rulesets of the RT model established for the building
class. Note: spt = spatial resolution, rdm = radiometric resolution, shp = shape/color weight, and
cmp = compactness/smoothness weight, n = the number of samples at each node; the values in the
rectangles are the estimated SPs.
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Figure A4. Graphical representation of the rulesets of the RT model established for the vegetation
class. Note: spt = spatial resolution, rdm = radiometric resolution, shp = shape/color weight, and
cmp = compactness/smoothness weight, n = the number of samples at each node; the values in the
rectangles are the estimated SPs.
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Figure A5. Graphical representation of the rulesets of the RT model established for the road
class. Note: spt = spatial resolution, rdm = radiometric resolution, shp = shape/color weight, and
cmp = compactness/smoothness weight, n = the number of samples at each node; the values in the
rectangles are the estimated SPs.
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Figure A6. Graphical representation of the rulesets of the RT model established for the bare soil
class. Note: spt = spatial resolution, rdm = radiometric resolution, shp = shape/color weight, and
cmp = compactness/smoothness weight, n = the number of samples at each node; the values in the
rectangles are the estimated SPs.
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34. Belgiu, M.; Drǎguţ, L. Comparing supervised and unsupervised multiresolution segmentation approaches
for extracting buildings from very high resolution imagery. ISPRS J. Photogramm. Remote Sens. 2014, 96,
67–75. [CrossRef] [PubMed]

35. Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image
classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [CrossRef]

36. Johnson, B.A. High-resolution urban land-cover classification using a competitive multi-scale object-based
approach. Remote Sens. Lett. 2013, 4, 131–140. [CrossRef]

37. Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. Object-based classification of
urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161.
[CrossRef]

38. Berger, C.; Voltersen, M.; Hese, O.; Walde, I.; Schmullius, C. Robust extraction of urban land cover information
from HSR multi-spectral and LIDAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1–16.
[CrossRef]

39. Cowen, D.J.; Jensen, J.R.; Bresnahan, P.J.; Ehler, G.B.; Graves, D.; Huang, X.; Wiesner, C.; Mackey, H.E.
The design and implementation of an integrated geographic information system for environmental
applications. Photogramm. Eng. Remote Sens. 1995, 61, 1393–1404.

40. Liu, Y.; Bian, L.; Meng, Y.; Wang, H.; Zhang, S.; Yang, Y.; Shao, X.; Wang, B. Discrepancy measures for
selecting optimal combination of parameter values in object-based image analysis. ISPRS J. Photogramm.
Remote Sens. 2012, 68, 144–156. [CrossRef]

41. Clinton, N.; Holt, A.; Scarborough, J.; Yan, L.; Gong, P. Accuracy assessment measures for object-based image
segmentation goodness. Photogramm. Eng. Remote Sens. 2010, 76, 289–299. [CrossRef]

42. Zhang, X.; Feng, X.; Xiao, P.; He, G.; Zhu, L. Segmentation quality evaluation using region-based precision
and recall measures for remote sensing images. ISPRS J. Photogramm. Remote Sens. 2015, 102, 73–84.
[CrossRef]

43. Woodcock, C.E.; Strahler, A.H. The factor of scale in remote sensing. Remote Sens. Environ. 1987, 21, 311–332.
[CrossRef]

44. Kim, M.; Madden, M.; Warner, T. Estimation of optimal image object size for the segmentation of forest stands
with multispectral IKONOS imagery. In Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven
Remote Sensing Applications; Blaschke, T., Lang, S., Hay, G.J., Eds.; Springer: Berlin/Heidelberg, Germany,
2008; pp. 291–307.

45. Espindola, G.M.; Camara, G.; Reis, I.A.; Bins, L.S.; Monteiro, A.M. Parameter selection for region-growing
image segmentation algorithms using spatial autocorrelation. Int. J. Remote Sens. 2006, 27, 3035–3040.
[CrossRef]

46. Gao, Y.; Mas, J.F.; Kerle, N.; Pacheco, J.A.N. Optimal region growing segmentation and its effect on
classification accuracy. Int. J. Remote Sens. 2011, 32, 3747–3763. [CrossRef]

47. Martha, T.R.; Kerle, N.; Westen, C.J.V.; Jetten, V.; Kumar, K.V. Segment optimization and data-driven
thresholding for knowledge-based landslide detection by object-based image analysis. IEEE Trans. Geosci.
Remote Sens. 2011, 49, 4928–4943. [CrossRef]

http://dx.doi.org/10.1080/13658810903174803
http://dx.doi.org/10.1016/j.isprsjprs.2011.02.006
http://dx.doi.org/10.14358/PERS.78.10.1029
http://dx.doi.org/10.3390/rs8050375
http://dx.doi.org/10.1016/j.isprsjprs.2013.05.003
http://dx.doi.org/10.1016/j.isprsjprs.2014.07.002
http://www.ncbi.nlm.nih.gov/pubmed/25284960
http://dx.doi.org/10.1016/j.isprsjprs.2017.06.001
http://dx.doi.org/10.1080/2150704X.2012.705440
http://dx.doi.org/10.1016/j.rse.2010.12.017
http://dx.doi.org/10.1109/JSTARS.2013.2252329
http://dx.doi.org/10.1016/j.isprsjprs.2012.01.007
http://dx.doi.org/10.14358/PERS.76.3.289
http://dx.doi.org/10.1016/j.isprsjprs.2015.01.009
http://dx.doi.org/10.1016/0034-4257(87)90015-0
http://dx.doi.org/10.1080/01431160600617194
http://dx.doi.org/10.1080/01431161003777189
http://dx.doi.org/10.1109/TGRS.2011.2151866


Remote Sens. 2018, 10, 73 29 of 29

48. Cánovas-García, F.; Alonso-Sarría, F. A local approach to optimize the scale parameter in multiresolution
segmentation for multispectral imagery. Geocarto Int. 2015, 30, 937–961. [CrossRef]

49. Yang, J.; Li, P.; He, Y. A multi-band approach to unsupervised scale parameter selection for multi-scale image
segmentation. ISPRS J. Photogramm. Remote Sens. 2014, 94, 13–24. [CrossRef]

50. Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H.
The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer
data. Remote Sens. Environ. 1993, 44, 145–163. [CrossRef]

51. Martha, T.R.; Kerle, N.; Jetten, V.; van Westen, C.J.; Kumar, K.V. Characterising spectral, spatial and
morphometric properties of landslides for semi-automatic detection using object-oriented methods.
Geomorphology 2010, 116, 24–36. [CrossRef]

52. Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using random forests. Remote Sens. Environ.
2011, 115, 2564–2577. [CrossRef]

53. R Core Team, R. R: A Language and Environment for Statistical Computing; The R Foundation for Statistical
Computing: Vienna, Austria, 2017.

54. Kim, M.; Warner, T.A.; Madden, M.; Atkinson, D.S. Multi-scale geobia with very high spatial resolution
digital aerial imagery: Scale, texture and image objects. Int. J. Remote Sens. 2011, 32, 2825–2850. [CrossRef]
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