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Abstract: Since Landsat-1 first started to deliver volumes of pixels in 1972, the volumes of
archived data in remote sensing data centers have increased continuously. Due to various satellite
orbit parameters and the specifications of different sensors, the storage formats, projections,
spatial resolutions, and revisit periods of these archived data are vastly different. In addition,
the remote sensing data received continuously by each data center arrives at a faster code rate; it is best
to ingest and archive the newly received data to ensure users have access to the latest data retrieval
and distribution services. Hence, an excellent data integration, organization, and management
program is urgently needed. However, the multi-source, massive, heterogeneous, and distributed
storage features of remote sensing data have not only caused difficulties for integration across
distributed data center spatial infrastructures, but have also resulted in the current modes of data
organization and management being unable meet the rapid retrieval and access requirements of
users. Hence, this paper proposes an object-oriented data technology (OODT) and SolrCloud-based
remote sensing data integration and management framework across a distributed data center spatial
infrastructure. In this framework, all of the remote sensing metadata in the distributed sub-centers are
transformed into the International Standardization Organization (ISO) 19115-based unified format,
and then ingested and transferred to the main center by OODT components, continuously or at
regular intervals. In the main data center, in order to improve the efficiency of massive data retrieval,
we proposed a logical segmentation indexing (LSI) model-based data organization approach, and
took SolrCloud to realize the distributed index and retrieval of massive metadata. Finally, a series
of distributed data integration, retrieval, and comparative experiments showed that our proposed
distributed data integration and management program is effective and promises superior results.
Specifically, the LSI model-based data organization and the SolrCloud-based distributed indexing
schema was able to effectively improve the efficiency of massive data retrieval.

Keywords: multi-sourced remote sensing big data; data integration; data management; distributed
data centers; OODT

1. Introduction

Since Landsat-1 first started to deliver volumes of pixels in 1972, the amount of archived remote
sensing data stored by data centers has increased continuously [1,2]. According to incomplete statistics,
the total amount of data archived by the Earth Observing System Data and Information System
(EOSDIS) reached 12.1 petabytes (PBs) around the year 2015 [3]. Up until August 2017, the archived
data volume of China National Satellite Meteorological Center (NSMC) reached 4.126 PBs [4], and the
China Center for Resources Satellite Data and Application (CCRSDA) archived more than 16 million
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scenes of remote sensing images [5,6]. Such large amounts of remote sensing data have brought great
difficulties in terms of data integration and management of each data center.

For data integration, due to various satellite orbit parameters and the specifications of different
sensors, the storage formats, projections, spatial resolutions, and revisit periods of the archived data are
vastly different, and these differences have resulted in great difficulties for data integration. In addition,
the remote sensing data received by each data center arrives continuously at an ever-faster code rate.
It is preferable to ingest and archive the newly received data in order to provide users with the latest
data retrieval and distribution service [7]. Therefore, a unified metadata format and a well designed
data integration framework are urgently needed.

For data management, the massive amounts of remote sensing data mainly result in difficulties for
data retrieval, but the retrieval efficiency is mainly dependent upon the data organization model and
storage system. Currently, the two most widely used data organization models are: (1) spatio-temporal
recording system-based satellite orbit stripes or scene organization; and (2) globally meshed grid-based
data tiling organization [8]. However, the former has obvious shortcomings for massive data retrieval
and quick access; and the latter causes an increase by about one-third in the amount of data due to
image segmentation, thus requiring larger data storage spaces. Hence, we should explore a reasonable
spatial organization mode for massive, multi-source remote sensing data, so as to improve the efficiency
of massive data retrieval. As for the data storage system, the most widely used mode is the combination
of the file system (FS) and database management system (DBMS). The “DBMS-FS mixed management
mode” solves both the problems of metadata management and quick retrieval, and also maintains the
high read/write efficiency of a file system.

Therefore, in this paper, for data integration across a distributed data center spatial
infrastructure, we firstly proposed an International Standardization Organization (ISO) 19115-based
metadata transform method, and then adopted the internationally popular data system framework
object-oriented data technology (OODT) [9] to complete the distributed remote sensing data integration.
For data management, we proposed a logical segmentation indexing (LSI) model to achieve the
organization of integrated remote sensing metadta, and chose SolrCloud to realize the distributed
index and quick retrieval [10]. LSI model takes the logical segmentation indexing code as the identifier
of each remote sensing data, rather than performing an actual physical subdivision. This not only
increases the efficiency of data retrieval with the help of the global subdivision index, but also avoids
generating numerous small files caused by the physical subdivision of data.

This paper is organized as follows: Section 2 provides an overview of the background
knowledge and related work; Section 3 describes the distributed multi-source remote sensing metadata
transformation and integration; Section 4 details the data management methods, including the LSI
spatial organization model, full-text index construction, and distributed data retrieval; Section 5
introduces the experiments and provides an analysis of the proposed program; and Section 6 provides
a summary and conclusions.

2. Background on Architectures for Remote Sensing Data Integration

This section briefly reviews the distributed integration and spatial organization model of remote
sensing data, as well as the internationally popular data system framework OODT.

2.1. Distributed Integration of Remote Sensing Data

The most widely used data integration models include: [11]

(1) The data warehouse (DW)-based integration model, which copies all data sources of each
heterogeneous database system into a new and public database system, so as to provide users
with a unified data access interface. However, due to the heterogeneity of each independent
database system, vast data redundancy is generated, and a larger storage space is also required.

(2) The federated database system (FDBS)-based integration model, which maintains the autonomy
of each database system and establishes an association between each independent database
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system to form a database federation, then providing data retrieval services to users. However,
this pattern can not solve the problems of database heterogeneity or system scalability [12].

(3) The middleware-based integration model, which establishes middleware between the data layer
and the application layer, providing a unified data access interface for the upper layer users
and realizing the centralized management for the lower layer database system. The middleware
not only shields the heterogeneity of each database system, providing a unified data access
mechanism, but also effectively improves the query concurrency, reducing the response time.
Therefore, in this paper, we will adopt the middleware-based integration mode to realize the
distributed remote sensing data integration.

2.2. Spatial Organization of Remote Sensing Data

The main two models for spatial organization of multi-source remote sensing data are: (1) the
satellite orbit stripe or scene organization based on the spatio-temporal recording system; and (2) data
tiling organization based on the globally meshed grid [13,14].

In the first model, the original orbit data are organized according to reception time, and they are
stored in a scene unit. Each scene unit is identified by upper, lower, left and right four-point latitude and
longitude coordinates. This simple organization method has been adopted by remote sensing data centers
around the world, such as NASA’s Earth Observing System (EOS) [15] and the CCRSDA [8]. However,
due to the four-point index queries in database systems, this model has obvious shortcomings for massive
data retrieval and quick access. Therefore, in this paper, we have proposed the LSI model to reduce the
dimension of the query index, and this will be described in Section 4.1.

In the second model, remote sensing images are subdivided into buckets of grid shape, and each
bucket is labeled by a unique geocode according to certain coding rules. This is especially useful in
database systems where queries on a single index are much easier or faster than multiple-index queries.
Furthermore, this index structure can be used for a quick-and-dirty proximity search: the closed
points are often among the closest geocodes. The longer a shared prefix is, the closer the two buckets
are [16]. This model is generally applicable to the image cache systems and map publishing systems
typically used by Google Earth, Bing Maps, and Tiandi Maps of China, for example [17]. However,
due to image segmentation and pyramid construction, this model means the amount of data increases
by approximately one-third, so that a larger data storage space is required; it also generates a large
number of small tiles, which can easily cause a single point of failure, and are not conducive to data
storage and management using the distributed file system [18]. Hence, in this paper, we proposed
a logical partition index and virtual mapping construction strategy for scene-based remote sensing
data, and this will be also described in Section 4.1.

2.3. OODT: A Data Integration Framework

An FS or DBMS alone are not suited for the storage and management of remote sensing data.
In a “DBMS–FS mixed management mode”, remote sensing images are stored in the file system and
their metadata are stored and managed by the DBMS. Typical examples are the European Space
Agency (ESA) [19], Tiandi Maps of China, the CCRSDA, the NSMC, the China National Ocean Satellite
Application Center (NSOAS), and so on. The mixed management mode both effectively solves the
quick retrieval and metadata management problems and maintains the high read/write efficiency of
the file system. This has been a longtime issue addressed by NASA, whose the Office for Space Science
decided to fund the OODT project in 1998.

Apache OODT [20] is an open-source data system framework that is managed by the Apache
Software Foundation. OODT focuses on two canonical use cases: big data processing [21] and
information integration [22]. It provides three core services: (1) a file manager is responsible for
tracking file locations and transferring files from a staging area to controlled access storage, and for
transferring their metadata to Lucene or Solr; (2) a workflow manager captures the control flow
and data flow for complex processes, and allows for reproducibility and the construction of scientific
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pipelines; and (3) a resource manager handles allocation of workflow tasks and other jobs to underlying
resources, based on the resource monitoring information from Ganglia or other monitoring software.

In addition to the three core services, OODT provides three client-oriented frameworks that
build on these services: (1) a file crawler automatically extracts metadata and uses Apache Tika or
other self-defined toolkits to identify file types and ingest the associated information into the file
manager; (2) a push-pull framework acquires remote files and makes them available to the system;
(3) a scientific algorithm wrapper (called the Catalog and Archive Service Production Generation
Executive, CAS-PGE) encapsulates scientific codes and allows for their execution, regardless of the
environment, while capturing provenance, making the algorithms easily integrated into a production
system (Figure 1).
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Figure 1. An object-oriented data technology (OODT) framework.

3. Distributed Integration of Multi-Source Remote Sensing Data

With distributed multi-source remote sensing data integration, i.e., based on a unified standard,
the remote sensing metadata in the distributed center will be gathered into the main center continuously
or at regular intervals, either actively or passively. In this study, the unified satellite metadata standard
refers to the ISO 19115-2:2009-based geographic information metadata standard [23]. All of the remote
sensing metadata in the distributed sub-centers should be transformed into the ISO 19115-based
metadata format before integration to enable uniform data retrieval and management. The distributed
sub-centers are mainly responsible for the storage of remote sensing images, and provide an open
access interface for the main center based on the HTTP/FTP protocols. The main center is primarily
responsible for the ingestion and archiving of the metadata and thumbnails of remote sensing images,
and enables the uniform query and access for the integrated remote sensing data.

3.1. The ISO 19115-Based Metadata Transformation

Remote sensing metadata represent descriptive information about remote sensing images, as well
as data identification, imaging time, imaging location, product level, quality, the spatial reference
system, and other characteristic information. At present, the metadata forms of different remote
sensing data vary greatly. For example, Landsat 8 collects images of the Earth with a 16-day repeat
cycle, referenced to the Worldwide Reference System-2 [24]. The spatial resolution of the Operational
Land Imager (OLI) sensor onboard the Landsat 8 satellite is about 30 m; its collected images are
stored in GeoTIFF format, with Hierarchical Data Format Earth Observation System (HDF-EOS)
metadata [25,26]. The Moderate-Resolution Imaging Spectroradiometer (MODIS) instruments capture
data in 36 spectral bands ranging in wavelength from 0.4 µm to 14.4 µm and at varying spatial
resolutions (2 bands at 250 m, 5 bands at 500 m, and 29 bands at 1 km). Most of the MODIS data are
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available in the HDF-EOS format, and it is updated every 1 to 2 days [27]. The charge-coupled device
(CCD) sensor, which is carried by the Huan Jing (HJ)-1 mini satellite constellation, has an image swath
of about 360 km, with blue, green, red, and near infrared (NIR) bands, 30-m ground pixel resolution,
and a 4-day revisit period. Its collected images are stored in GeoTIFF format, and their customized
metadata are in eXtensible Markup Language (XML) format [28]. These different metadata formats
have resulted in great difficulties for data integration and management, which could be solved by
transforming them into a uniform metadata format for uniform retrieval and management [29,30].

ISO 19115-2:2009 is the geographic information metadata standard which was published by
the International Standardization Organization (ISO). It mainly defines the metadata schema of
geographic information and services, including the identification, quality, space range, time horizon,
content, spatial reference system, distribution, and other characteristic information [31]. Currently,
ISO 19115-2:2009 has been integrated into the Common Metadata Repository (CMR) as one of the
most popular standards for data exchange [32], data integration, and data retrieval across international
geographic information organizations and geographic data centers.

On the basis of the ISO 19115-2:2009 geographic information standard, we proposed a uniform
remote sensing metadata format. All of the remote sensing metadata in the distributed
sub-centers should be transformed into this uniform format before data integration. In this paper,
the transformational rules we established are mainly aimed at NASA EOS HDF-EOS format metadata
(Aster and Landsat series satellites included) and the customized XML-based metadata of the CCRSDA
(HJ-1A/B, GF and ZY series satellites included) (see Table 1).

It should be noted that in Table 1, the struck-through (-) shows the field does not exist,
and it will be assigned a null value after metadata transformation. In the ISO metadata column,
the term spatialResolution describes the ability of the remote sensor to distinguish small details
of an object, generally in meters, thereby making it a major determinant of image resolution. Hence,
the spatialResolution is mapped to NadirDataResolution in the HDF-EOS metadata column and
pixelSpacing in the CCRSDA metadata column. The terms scenePath and sceneRow are orbit
parameters of the satellite in the Worldwide Reference System (WRS), just mapping to WRS_PATH
and WRS_ROW in the HDF-EOS metadata column. The term imageQualityCode is a characteristic of
a remote sensing image that measures the perceived image degradation, and has the same meaning as
the overallQuality in the CCRSDA metadata column. The term processingLevel denotes the type of
the remote sensing data, and is mapped to the DATA_TYPE in the HDF-EOS metadata column and
productLevel in the CCRSDA metadata column.

Table 1. The ISO 19115-2:2009-based uniform metadata format and transformational rules. ISO:
International Standardization Organization; CCRSDA: China Center for Resources Satellite Data and
Application; HDF-EOS: Hierarchical Data Format Earth Observation System.

Categories ISO Metadata HDF-EOS Metadata CCRSDA Metadata

Metadata information Creation FILE_DATE -
LastRevision - -

Image Information

MD_Identifier LOCALGRANULEID -
TimePeriod_beginposition RangeBeginningDate + RangeBeginningTime imagingStartTime
TimePeriod_endPosition RangeEndingDate + RangeEndingTime imagingStopTime

Platform AssociatedPlatformShortName satelliteId
Instrument AssociatedinstrumentShortName -

Sensor AssociatedsensorShortName sensorId
Datacenter PROCESSINGCENTER -

recStationId STATION_ID recStationId
spatialResolution NADIRDATARESOLUTION pixelSpacing

westBoundLongtude WESTBOUNDINGCOORDINATE productUpperLeftLong
eastBoundLongtude EASTBOUNDINGCOORDINATE productUpperRightLong
southBoundLatitude SOUTHBOUNDINGCOORDINATE productLowerLeftLat
northBoundLatitude NORTHBOUNDINGCOORDINATE productUpperLeftLat

centerLongtude - sceneCenterLong
centerLatitude - sceneCenterLat

scenePath WRS_PATH scenePath
sceneRow WRS_ROW sceneRow

referenceSystemIdentifier PROJECTION_PARAMETERS earthModel+mapProjection
cloudCoverPercentage - cloudCoverPercentage

imageQualityCode - overallQuality
processingLevel DATA_TYPE productLevel
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3.2. Distributed Multi-Source Remote Sensing Data Integration

Distributed multi-source remote sensing data integration refers to the process of validating,
inserting, updating, or deleting metadata in the main center metadata management system; it affects
only the metadata for the distributed data providing sub-centers. The metadata management is mainly
realized by the components of OODT, including the OODT crawler, OODT push-pull, and OODT file
manager [33] (see Figure 2).
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Figure 2. The process of distributed data integration.

In the main data center, the push-pull daemon will be launched automatically by using its daemon
launcher at the defined time interval. The daemon will wrap one of two processes: (1) RemoteCrawler,
or (2) ListRetriever. The RemoteCrawler process crawls remote sites for files in the distributed
sub-centers. Meanwhile, the RemoteCrawler process also automatically extracts metadata and
transforms them into the ISO 19115-2:2009-based uniform metadata format. The ListRetriever retrieves
known files from remote sites in the distributed sub-centers (that is, the path and file name to each
file is known and has been specified in a property file, and a parser for that property file has been
specified). After crawling or retrieval, the push-pull framework will be responsible for downloading
remote content (pull), or accepting the delivery of remote content (push) to the main center for use by
the LocalCrawler for ingestion into the file manager. Here, the remote content includes the metadata
file and thumbnail of remote sensing data. It is worth mentioning that the LocalCrawler is developed
in the main center, and is primarily responsible for crawling the local client system for files in the main
center. The file manager component is responsible for tracking, ingesting, and moving metadata and
thumbnails between a client system and a server system in the main center. Finally, the remote sensing
metadata will be indexed by the SolrCloud, and their corresponding thumbnails will be archived in
the file system.

Both the RemoteCrawler and LocalCrawler have an incremental control mechanism in
order to avoid duplicate data ingestion. In the intervals between crawling and data ingestion,
the RemoteCrawler executes a Message Digest 5 (MD5) file verification process between the remote
sites’ files in the sub-center and the archived files in the main center. If the file has been archived in the
main center, data ingestion will be stopped; otherwise, data ingestion continues. The LocalCrawler
implements the second MD5 file verification process between the files in the client system (files from
sub-centers downloaded to the main center) and the server system (archived files in the main center).
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If the files have been ingested and moved into the server system, the data ingestion will be stopped;
otherwise, it continues.

In addition, there is also the DaemonManager, in which the DaemonLauncher will register each
daemon it creates. The DaemonManager ensures that no two Daemons are ever running at the same
time. If a daemon is running when another requests permission to run, permission will be denied and
the daemon will be added to the wait queue until the current running daemon and all other daemons
ahead of it in the queue complete their tasks [20].

4. Spatial Organization and Management of Remote Sensing Data

In order to achieve the rapid retrieval of integrated massive remote sensing data, we propose
the LSI model for scene-based remote sensing data: First, based on the global segmentation grid,
the logical partition index of each scene-based remote sensing data can be calculated. Then, the virtual
mapping between the logical partition index and the scene parameters of each remote sensing data
can also be established easily. Finally, based on the logical partition index and virtual mapping, as well
as full-text search engine Solr/SolrCloud, quick retrieval of remote sensing data becomes possible.
The LSI model-based data retrieval not only improves data query efficiency with the help of the
global subdivision index encoding, but also avoids generating small files caused by the actual data
subdivision. This section will describe the LSI model and SolrCloud-based remote sensing metadata
management in terms of the LSI model, full-text index construction, and distributed data retrieval, etc.

4.1. LSI Organization Model of Multi-Source Remote Sensing Data

The LSI organization model is based on the Geographical Coordinate Subdividing Grid with One
Dimension Integer Coding on 2nTree (GeoSOT) grid, which was proposed by the research group of Cheng
around 2012 [34]. The main idea is expansion by three times for the latitude and longitude of Earth’s
surface. The first expansion is the original 180◦×360◦ Earth surface extended to 512◦×512◦; the expanded
surface is viewed in level 0 grids, with grid code 0. Then, the level 0 grid is recursively partitioned
quadrilaterally until reaching the 1◦ grid cell, with a total of nine subdivisions. The second expansion
is processed for the 1◦ grid cell, namely, 1◦ extended to 64′. The extended 64′ grid cell is recursively
partitioned quadrilaterally until reaching the 1′ grid cell, with a total of 12 subdivisions. Similarly,
the 1′ grid cell is recursively partitioned quadrilaterally until reaching the 1′′

2048 grid cell, with a total of
11 subdivisions.

Finally, after the three expansions and 32 subdivisions, the system is used to cover the whole
world, dividing the Earth into centimeter-level units using a hierarchy grid system with whole
degrees, whole minutes, and whole seconds. Taking 32-bit quaternary coding at the Z-sequence,
level subdivision cells were named as 00, 01, 02, 03, and so on; the location relationship of various
spatial information products in different coordinate systems can be built with these globally unique
and geographically meaningful codes [35,36] (Figure 3).

Based on the GeoSOT global segmentation strategy, the logical partition indexing code of each
scene-based remote sensing data was calculated first in this paper. It is worth noting that there are
three cases to consider regarding the logical code in general. Firstly, when the minimum bounding
rectangle (MBR) [37] of a remote sensing image is completely contained in a GeoSOT grid, the logical
partition index code is the corresponding GeoSOT grid code. Secondly, when the MBR of a remote
sensing image spans two grids, the two grid codes will be the logical partition index codes. Thirdly,
when the MBR of a remote sensing image spans four grids, the logical partition codes will be composed
of the four codes [38] (Figure 4).
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(a) Level 0 GeoSOT grid (b) Level 1 GeoSOT grid
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Figure 3. Level 0–3 Geographical Coordinate Subdividing Grid with One Dimension Integer Coding
on 2nTree (GeoSOT) grids.
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Figure 4. Three cases with respect to the logical partition index code. MBR: minimum bounding rectangle.

After encoding each type of scene-based remote sensing data, then the virtual mapping between
the logical partition indexing codes and position parameters (latitude and longitude) of each scene can
be established easily (Figure 5). In fact, the logical partition indexing codes have become the form of
spatial identification of each piece of scene-based remote sensing data when the virtual mapping is
created. Reducing 8-index queries (latitude and longitude values of the upper, lower, left, and right
four points) to no more than 4-index queries, the query speed increase in database systems is obvious.
In addition, the logical partition indexing code of each scene center point is always used in the actual
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query process, and just one index query could be made in this situation. Therefore, based on the center
point indexing code, a quick retrieval of massive remote sensing data can be realized.

Latitude

Longitude

001000 001001

001002 001003

Figure 5. The virtual mapping between the logical partition indexing and the scene parameters of
remote sensing data.

4.2. Full-Text Index of Multi-Sourced Remote Sensing Metadata

After spatial organization of multi-source remote sensing data, the full-text index of metadata
should be constructed to enable quick retrieval. It should be added that, as the query index of
remote sensing data involves many terms, the column-oriented key-value data store, like HBase,
cannot effectively handle multi-condition joint retrieval. Hence, in this paper, the multi-sourced remote
sensing metadata retrieval used the full-text index, and its construction was mainly implemented by
Lucene and SolrCloud. In essence, Lucene is a high-performance, full-featured text search engine
library written entirely in Java, and the ready-to-use search platform provided by SolrCloud is also
based on Lucene. Lucene supports the full-text index construction of static metadata fields and
dynamic domain fields. However, Lucene is not a complete full-text search engine; it should be
combined with Solr or SolrCloud to provide a complete search service [39].

SolrCloud supports the following features: (1) central configuration for the entire cluster;
(2) automatic load balancing and failover for queries; and (3) near real-time search [40,41].
SolrCloud uses ZooKeeper to manage these locations, depending on configuration files and schemas,
without a master node to allocate nodes, shards, and replicas. Each node runs one or more collections,
and a collection holds one or more shards. Each shard can be replicated among the nodes. Queries
and updates can be sent to any server. Solr uses the information in the ZooKeeper database to figure
out which servers need to handle the request. Once the SolrCloud cluster starts, one of the nodes is
selected as a leader, which is responsible for all shards [42]. In addition, there is a master controller in
the cluster, called the overseer node, which is responsible for maintaining cluster state information
and thereby provides for failover to the Solr cluster (Figure 6).
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Figure 6. SolrCloud.

In this study, the distributed index based on SolrCloud/Lucene was applied on the static and
dynamic metadata fields. As the name suggests, the distributed index will be used when our
index collections are so large that we cannot construct an index efficiently on a single machine.
The static remote sensing metadata fields are defined the by OODT file manager, and include ID,
CAS.ProductId, CAS.ProductTypeName, CAS.ProductReceivedTime, and CAS.ProductTransferStatus,
CAS.ProductName, CAS.ProductStructure, and so on. The dynamic domain fields mainly include the
satellite type, sensor type, scanning time, and GeoSOT codes. In addition, in order for the comparative
experiments, the original latitude and longitude of each image is also included in the dynamic domain
fields. The static and dynamic fields’ index are as shown in Table 2. It is noted that in Table 2,
the asterisk (*) denotes all of the dynamic domain fields of the remote sensing metadata.

Table 2. The full-text index structure of multi-source remote sensing metadata.

Index Type Field Field Type Indexed

static

ID string true
CAS.ProductId string true

CAS.ProductName string true
CAS.ProductTypeName date true

CAS.ProductTypeId string true
CAS.ProductReceivedTime string true
CAS.ProductTransferStatus string true

CAS.ReferenceOriginal string true
CAS.ReferenceDatastore string true
CAS.ReferenceFileSize long true

CAS.ReferenceMimeType string true
dynamic * string true

The dynamic domain fields are implemented in Lucene by adding the ’text’ and ’text_rev’ fields to
the full-text index field. These two fields are copies of all the dynamic domain fields. Their purpose is
to implement multi-granularity segmentation for the dynamic domain fields. Therefore, the following
configuration should be added in schema.xml of Lucene.

<copyField source=“*” dest=“text” />
<copyField source=“*” dest=“text_rev” />
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4.3. Distributed Data Retrieval

After the construction of the distributed full-text index in Lucene, the index will be partitioned
across several machines. Hence, data retrieval will be executed on several machines, and realized by
the distributed search server SolrCloud. In the SolrCloud distributed clusters, all full-text indexes can
make up a collection comprising one logical index. The collection is usually split into one or more
shards, and evenly distributed on each node based on routing rules. In general, all shards in the same
collection have the same configuration. Each shard usually has one or more replicas; one replica of
each shard will be elected as a leader [43,44]. In this study, the collection was split into three shards,
and each shard had three replicas.

In addition, there is an overseer node in the cluster that is responsible for maintaining cluster state
information. It will monitor the status of each Leader node, acting as a master controller. When one
shard’s leader falls offline, the overseer node will initiate the automatic disaster recovery mechanism,
and another node in the same shard will be designated as the leader to provide service. Even if the
overseer node fails, a new overseer node will be automatically enabled on another node, ensuring high
availability of the cluster. In the meantime, the index replica on the off-line node will be automatically
rebuilt and put to use on other machines.

The retrieval of distributed metadata in SolrCloud is implemented as follows: once any one of the
SolrCloud nodes receives a data query request, the request will be forwarded to one of the replication
nodes by the internal processing logic of the cluster. Then the replication node will launch the
distributed query according to the created full-text index of remote sensing data. The distributed query
will be converted into multiple sub-queries, each of which will be located on any of the replications of
their corresponding shard. It is worth noting that the number of sub queries is equal to the number of
shards. Finally, the results of each sub-query will be merged by the replication node that received the
original query, and the merged final query results will be returned to the user. In addition, automatic
load balancing is also provided by SolrCloud. If the query pressure is too large, the cluster scale can be
expanded and replications increased to smooth the query pressure. The SolrCloud distributed query
process is shown in Figure 7.

Collection1
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Replica
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Figure 7. The SolrCloud distributed query process. (1) The user’s data query request is sent to any one
of the SolrCloud nodes, and then forwarded to one of the replication nodes; (2) The distributed query
is launched and converted into multiple sub-queries, each of which is located on any of the replications;
(3) Results are returned by each sub-query; and (4) sub-query results are merged and returned to users.
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5. Experiment and Analysis

In order to verify the availability of our proposed solution, a virtual multi-data center environment
was set up based on the OpenStack cloud computing framework. The main data center was composed of
three Linux virtual machines. All of the three machines were developed with the SolrCloud environment,
responsible for metadata index and retrieval. One of them was developed with OODT system framework,
responsible for data ingestion and thumbnail archiving. The distributed sub-center was composed of
eight Linux virtual machines, corresponding to eight satellite data centers. Each machine was mounted
with a one-terabyte (TB) cloud drive so as to provide image storage space. In addition, all the machines in
the main and sub centers were configured with 4 gigabytes (GBs) of RAM and 2 virtual processor cores.
The framework of the virtual multi-data center environment is shown in Figure 8.

Main Center

Sub Center 5
Sub Center 4Sub Center 6

Sub Center 1

Sub Center 7
Sub Center 3

Sub Center 2Sub Center 8

Solr SolrSolr

OODT

Figure 8. The framework of the virtual multi-center data environment.

5.1. Distributed Data Integration Experiment

The experimental images of distributed integration test mainly include Landsat 8 OLI_TIRS,
Landsat 7 ETM+, Landsat 5 TM, Landsat 1–5 MSS, Aster L1T, CEBERS-1/2 CCD, HJ-1A/B CCD,
HJ-1A HSI, and FY-3A/B VIRR images, which were freely downloaded from the USGS (https://
earthexplorer.usgs.gov/), NSMC (http://satellite.nsmc.org.cn/portalsite/default.aspx) and CCRSDA
(http://www.cresda.com/CN) websites. A total of 3380 files were downloaded. These images were
distributed in the eight sub-centers according to data type. The total number of our experimental
images are shown in Table 3.

The distributed data integration experiment mainly includes remote sensing data polling,
metadata extraction, thumbnail generation, file transferring, thumbnail archiving, metadata index,
and other processes. The experimental results are primarily with respect to the already-crawled data
volume and total time consumption from the RemoteCrawler launch to metadata being indexed by
SolrCloud/Lucene. Because no two push-pull daemons ever run concurrently, the distributed data
integration experiment was carried out one sub-center at a time. The experiment procedures and
results are shown in Table 4.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://satellite.nsmc.org.cn/portalsite/default.aspx
http://www.cresda.com/CN
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Table 3. A Summary of the Experimental Images.

Sub-Center Satellite Data Type Volume of Images Image Format

1 Landsat 8 OLI_TIRS 310 GeoTIFF
2 HJ-1A HSI 350 HDF5
2 CEBERS-1/2 CCD 270 GeoTIFF
3 Landsat 7 ETM+ 450 GeoTIFF
4 Landsat1-5 MSS 260 GeoTIFF
5 HJ-1A/B CCD 710 GeoTIFF
6 Landsat 5 TM 430 GeoTIFF
7 FY-3A/B VIRR 450 HDF5
8 Aster L1T 150 HDF4

Table 4. Experimental results of distributed data integration.

Satellite Data Type Volume of Images Volume of Images Average Transfer Rate
Stored in Sub-Center Integrated by Main Center (MB/s)

Landsat 8 OLI_TIRS 310 310 9.8
HJ-1A HSI 350 350 10.1

CEBERS-1/2 CCD 270 270 11.7
Landsat 7 ETM+ 450 450 10.5

Landsat1-5 MSS 260 260 12.8
HJ-1A/B CCD 710 710 9.9
Landsat 5 TM 430 430 13.8
FY-3A/B VIRR 450 450 11.2

Aster L1T 150 150 10.8

As can be seen in Table 4, the number of main center-integrated remote sensing images is equal to
the total number of each sub-center’s stored images. That is to say, there is no information lost during
the process of data integration. Moreover, our designed ISO 19115-2:2009-based uniform metadata
model includes all fields of integration by participating remote sensing metadata, and the SolrCloud
indexed metadata can also maintain the metadata information of each remote sensing image perfectly.
As for the transfer rate, it mainly depends on the window size for OODT-push–pull component.
In our experiment, the window size was set at 1024 bytes, and the average transfer rate is between
9.8 and 13.8 MB/s. This is enough to satisfy the demands of metadata and thumbnail transfer across
a distributed data center spatial infrastructure. Therefore, the experimental results showed that our
OODT-based distributed remote sensing data integration was feasible.

5.2. LSI Model-Based Metadata Retrieval Experiment

In addition, in order to verify the retrieval efficiency for massive and multi-source remote sensing
data, we also simulated about 15 million remote sensing metadata files. All of them are organized
by the LSI model and imported into our metadata index and retrieval system SolrCloud. The total
amount of our experimental metadata is shown in Table 5.

In order to test the retrieval capabilities for different volumes of big data, the 15 million pieces
of remote sensing metadata were copied and divided into six groups, and the volumes of the groups
were 1 million, 3 million, 5.5 million, 7.5 million, 10 million, and 15 million. For the follow-up
experiments, each group contained only 896,981 Landsat 8 OLI_TIRS pieces of metadata. In all the
following experiments, we always set the platform and sensor parameters to Landsat 8 and OLI_TIRS,
respectively, with only spatial and time parameters changing.
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As for the spatial query parameters, there were several: parameters within 1 GeoSOT grid,
2 GeoSOT grids, and 4 GeoSOT grids. Therefore, the retrieval experiment of each group was divided
into three subgroups. As for the time query parameters, in each subgroup of experiments, the query
time frames were set to one day, one month, and six months, in order to verify the performance
of our proposed method thoroughly. Furthermore, in order to exclude the influence of accidental
factors, 20 retrievals were executed separately in each experiment and the average query time was the
final result.

In addition, taking the GeoSOT code of the center point as the spatial identification of each
remote sensing data is equivalent to converting polygon queries to point queries. It will improve the
efficiency of data query, but the precision will be discounted. Therefore, a second filtering process,
using longitude and latitude, should be made for the query results. Since the first query had ruled out
the vast majority of irrelevant data, the second filtering process took little time. Hence, the efficiency
of LSI model-based data query was very high. The search conditions of each group of experiment and
time consumed are as shown in Table 6.

Table 5. A summary of experimental remote sensing metadata.

Satellite Data Type Volume of Metadata Metadata Format

Landsat 8 OLI_TIRS 896,981 HDF-EOS
HJ-1A HSI 85,072 Customized XML

CEBERS-1/2 CCD 889,685 Customized XML
Landsat 7 ETM+ 2,246,823 HDF-EOS

Landsat1-5 MSS 1,306,579 HDF-EOS
HJ-1A/B CCD 2,210,352 Customized XML
Landsat 5 TM 2,351,899 HDF-EOS
FY-3A/B VIRR 2,343,288 Customized HDF5-FY

Aster L1T 2,951,298 HDF-EOS

Table 6. The search conditions and time consumed of each retrieval.

Group Subgroup Query Time Frames

Metadata Volume (Million) Spatial Parameters 1 Day 1 Month 6 Months

1 1 GeoSOT Grid 133 ms 144 ms 145 ms
2 GeoSOT Grids 139 ms 144 ms 151 ms
4 GeoSOT Grids 151 ms 154 ms 155 ms

3 1 GeoSOT Grid 211 ms 213 ms 215 ms
2 GeoSOT Grids 218 ms 224 ms 235 ms
4 GeoSOT Grids 220 ms 239 ms 261 ms

5.5 1 GeoSOT Grid 310 ms 324 ms 325 ms
2 GeoSOT Grids 340 ms 359 ms 375 ms
4 GeoSOT Grids 365 ms 398 ms 421 ms

7.5 1 GeoSOT Grid 340 ms 350 ms 355 ms
2 GeoSOT Grids 401 ms 405 ms 421 ms
4 GeoSOT Grids 457 ms 476 ms 510 ms

10 1 GeoSOT Grid 480 ms 495 ms 525 ms
2 GeoSOT Grids 566 ms 589 ms 603 ms
4 GeoSOT Grids 650 ms 668 ms 691 ms

15 1 GeoSOT Grid 613 ms 655 ms 681 ms
2 GeoSOT Grids 850 ms 856 ms 861 ms
4 GeoSOT Grids 965 ms 994 ms 1110 ms
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As can be seen in Table 6, in each group and subgroup, with the increase of query time frames,
the time consumed showed an upward trend as a whole. However, the increase was not obvious.
This type of situation could benefit from the inverted index of SolrCloud. The small amount of time
increment was mainly spent in the query results return process. As for the spatial query parameters
changing, the time consumed within the 4-GeoSOT grid query was clearly greater than that of within
1 GeoSOT grid, and this gap increased with the amount of metadata. This is perfectly understandable.
The 4-GeoSOT grid query was the worst condition, and the comparison with the center point GeoSOT
code of each remote sensing image should be made four times. However, within a 1 GeoSOT grid
query, a one-time comparison would obviously be faster. Whether it is the spatial query parameters or
query time frames that are changing, the retrieval times increase linearly with the increase of metadata
volume. More specifically, the times for an increase rate below 10 million are a little shorter than those
for an increase rate of 10 to 15 million.

5.3. Comparative Experiments and Analysis

In order to fully prove the superiority of our proposed LSI model-based metadata retrieval method,
the following comparative experiments and analysis were carried out. Each type of comparative
experiment contained six groups, and each group of experiments was carried out under the same
data volumes and the same query parameters as the LSI model-based metadata retrieval experiments,
using 20 average response time measurements [45].

5.3.1. Comparative Experiments

(1) In order to show the advantages of our proposed LSI mode, the longitude and latitude were
directly used to perform a full-text search, and other parameters were the same as in the LSI
model-based experiments. For simplicity, the LSI model-based metadata retrieval method is
simply referred to as SolrCloudLSI, and the longitude and latitude retrieval method is referred to
as SolrCloudLatLon.

(2) In order to show the big data management and retrieval capabilities of SolrCloud, we built a
single Solr node environment in a new virtual machine, with the same configuration as the
SolrCloud nodes. The comparative experiment included two types: LSI model-based data
retrieval, and the longitude- and latitude-based data retrieval on the single Solr node. The query
parameters of the two types of experiments were the same as the LSI model-based data retrieval
experiments. Similarly, the LSI model-based data retrieval on the single Solr node is referred to
as SolrLSI, and the longitude- and latitude-based data retrieval on the single Solr node is referred
to as SolrLatLon.

(3) In order to show the superiority of our proposed data management scheme with respect to
other existing schemes, we chose HBase as the comparison object [45]. As a column-oriented
key-value data store, HBase has been idolized widely because of its lineage with Hadoop and
HDFS [46,47]. Therefore, LSI model-based data retrieval and the longitude- and latitude-based
data retrieval experiments in HBase clusters were carried out. The cluster was provisioned with
one NameNode and two DataNodes. The NameNode and DataNodes were configured in the
same way as the SolrCloud cluster, 2 virtual processor cores and 4 GB of RAM. Hadoop 2.7.3,
HBase 0.98.4 and Java 1.7.0 were installed on both the NameNode and the DataNodes. The query
parameters and metadata volume of comparative experiments in the HBase cluster were the
same as in the above experiments. Similarly, the LSI model-based data retrieval in the HBase
cluster is referred to as HBaseLSI, and the longitude- and latitude-based data retrieval is referred
to as HBaseLatLon.

The time consumptions of all comparative experiments are shown in Figure 9.
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Figure 9. The results of all comparative experiments.

5.3.2. Results Analysis

As can be seen in Figure 9, the following conclusions can be made.
Case 1: The spatial and time query parameters remained. In this case: (a) when the amount

of metadata was less than 7.5 million items, the time consumption of the LSI model-based retrieval
method was a little less than that of longitude- and latitude-based data retrieval; (b) with the increase
of the metadata volume, the LSI model-based data retrieval was more efficient than the longitude- and
latitude-based data retrieval; (c) when the amount of metadata was less than 5.5 million items, the time
consumption of LSI model-based metadata retrieval on a single Solr node was not very different from
that of SolrCloud; (d) when the metadata volume increased, the retrieval speed differences between
SolrCloud and Solr became larger; (e) as for the longitude- and latitude-based data retrieval on the
single Solr node, its retrieval speed was much slower than that of our proposed metadata retrieval
program; and (f) although the query time increased little with the increase of metadata volume in the
HBase cluster, it was still larger than that of the LSI model-based method. This may be because HBase
has to manually scan the entire database to get results if we try to “filter” based on a “component” of
the key or any of the values [45]. SolrCloud, on the other hand, with its inverted index, can handle
queries on any of the fields in any combination, and can simply blaze them fast.

Case 2: The spatial query parameters remained but time frames changed. In this case: (a) with
the increase of query time frames, the time consumed showed an upward trend as a whole, but this
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was not obvious, not only for SolrCloud but also in the Solr single node—this type of situation could
benefit from the inverted index of SolrCloud and Solr; and (b) the query time increased little with the
increase of query time frames in the HBase cluster.

Case 3: The time frames remained but spatial query parameters changed. In this case: (a) the
time consumption increased with the increase of query spatial extent, regardless of using the LSI
model-based metadata retrieval method or the longitude- and latitude-based data retrieval method;
and (b) for both the SolrCloud/Solr and the HBase cluster, the query time growth rate of LSI
model-based metadata retrieval method was greater than that of the longitude- and latitude-based
data retrieval method. This may be because the comparison increased with the GeoSOT grid number
increase. However, such a small flaw still did not affect the overall query efficiency of LSI model-based
data retrieval method.

In short, the results of all the comparative experiments proved the superiority of our proposed
data retrieval program.

6. Conclusions

In view of the current issues of remote sensing data integration and management, this paper
proposed an OODT and SolrCloud-based data integration and management framework. Specifically,
aiming at heterogeneous features of multi-source remote sensing data, we proposed an ISO
19115-2:2009-based metadata transform method to achieve the unity of metadata format in the
distributed sub-centers. In order to achieve efficient, stable, secure and usable remote sensing data
integration across a distributed data center spatial infrastructure, we adopted the OODT framework
based on its stable, efficient, and easy-to-expand features, to implement remote sensing data polling,
thumbnail generation, file transfer, thumbnail archiving, metadata storage, etc. Finally, for efficient
retrieval problems of integrated massive data, we proposed the LSI model-based data organization
approach, and took SolrCloud to realize the distributed index and quick retrieval of metadata.
In addition, in order to verify the availability of our proposed program, a series of distributed data
integration, retrieval, and comparative experiments were carried out. The results showed that our
proposed distributed data integration and management program was effective and provided superior
capabilities. In particular, the LSI model-based data organization and the SolrCloud-based distributed
indexing schema could effectively improve the efficiency of massive data retrieval.

However, in this paper, the unified metadata conversion rule was pre-configured, and the
metadata transformation was done manually. This was convenient and easy to operate, but less
efficient. In particular, with an increase of data types, a great burden would be brought to data
integration. Future studies based on deep learning algorithms using semantic matching and unified
format conversion of remote sensing metadata will be performed. In addition, in this paper, the GeoSOT
code length of each remote sensing image was calculated according to the image swath. This calculation
is easy, and the obtained GeoSOT code is not very long. These relatively short GeoSOT codes could
not bring a heavy query burden. However, despite this disadvantage, these relatively short GeoSOT
codes, to a certain degree, have reduced query accuracy. Thus, future work will be focused on
exploring a suitable GeoSOT code length calculation method, such as introducing the feedback control
theory [48–52] to calculate GeoSOT code length of each type remote sensing image, so that neither the
query efficiency nor accuracy will be affected.
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