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Abstract: The Ionosphere Working Group of the International GNSS Service (IGS) has been a reliable
source of global ionospheric maps (GIMs) since 1998. Modeling of the global ionospheric total
electron content (TEC) is performed daily by several Ionosphere Associate Analysis Centers (IAACs).
Four IAACs (CODE, ESA, CAS and WHU) use the spherical harmonic (SH) expansion as their
primary method for modeling GIMs. The IAACs generally solve a normal equation to obtain the SH
coefficients and Differential Code Biases (DCBs) of satellites and receivers by traditional least-squares
estimation (LSE) without any prior knowledge. In this contribution, an improved method is proposed
and developed for global ionospheric modeling based on utilizing prior knowledge. Prior values of
SH coefficients and DCBs of satellites and receivers, as well as the variance factor and covariance
matrix, could be obtained from the ionospheric modeling on the previous day. The parameters can
subsequently be updated through GNSS measurements to achieve higher accuracy. Comparisons are
carried out between WHU products based either on priori information or original LSE and IGS final
products, other IAAC products, and JASON data for the year 2014. The results indicate that there is
improved consistency between WHU GIMs and IGS final GIMs, other IAAC products, and JASON
data, particularly in comparison with ESA and UPC products, with the probabilities of achieving
better consistency with these products exceeding 95%. Moreover, WHU-produced DCBs of satellites
also have slightly improved consistency with IGS final GIMs and IAAC products.

Keywords: total electron content; ionosphere; modeling; priori information

1. Introduction

The ionosphere plays an important role in the Earth’s upper atmosphere. The ionospheric total
electron content (TEC) is a significant parameter for satellite navigation and for scientific studies of
the ionosphere and space weather. For instance, global and regional ionospheric TEC modeling can
enhance the positioning accuracy of a global navigation satellite system (GNSS) [1–10]. Studies on
higher-order ionospheric errors suggest that these also depend somewhat on TEC values [11–13].
Additionally, TEC is an important parameter for the monitoring of ionospheric disturbances, and
for physical studies of the ionosphere [14–16]. Beyond that, ionosphere also affects L-band synthetic
aperture radar (SAR) data [17–19], GNSS-reflectometry from space and satellite altimeter data [20–22].
Moreover, a growing number of microsatellites gaining broad applications need ionospheric correction
with regards to calibration of remote sensing [23–26].

The Ionosphere Working Group of the International GNSS Service (IGS) [27] has been a reliable
source of global ionospheric maps (GIMs) since 1998 [28,29]. The group consists of several Ionosphere
Associate Analysis Centers (IAACs), such as the Center for Orbit Determination in Europe (CODE) [30],
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the European Space Operations Center (ESOC) of the European Space Agency (ESA) [2], the Jet
Propulsion Laboratory (JPL) [31], and the Technical University of Catalonia (UPC) [32]. At its workshop
in February 2016, the IGS announced that three additional members had joined the Ionosphere Working
Group, namely Natural Resources Canada (NRCan), the Chinese Academy of Sciences (CAS), and
Wuhan University (WHU). Based on a general assessment of the new GIMs, they appear to provide
similar or better precision than the existing IGS GIMs [33]. It is anticipated that the final IGS GIMs
culminating from more products generated by the additional IAACs would be more robust and have
better accuracy.

Methods for modeling the global ionospheric TEC have previously been developed and are
maturing, though improved modeling is still an open area for research. The further improvement of
global vertical TEC (VTEC) maps remains as an important goal. Several researchers have proposed
various approaches to overcome the gaps in VTEC maps on the global scale that occur due to the
scarcity of ionospheric pierce points (IPPs) over the oceans and in southern latitudes. The Kriging
interpolation technique has previously been used to update VTEC maps and provides better UPC
GIMs that exhibit approximately 12% improvement in a self-consistency test [34]. Zhang proposed
the inequality-constrained least squares (ICLS) method to eliminate non-physical negative values in
GIMs [35]. In our previous study, ionospheric empirical model IRI 2012 was used to provide VTEC
values as virtual measurements for global ionospheric modeling and the release of improved GIMs [10].
Additional a priori VTEC values obtained from IRI or other empirical models can also be used for
modeling; this has resulted in slightly improved precision [36,37].

Presently, IAACs process GNSS measurements for the release of daily GIMs. The daily data
processing is performed separately. However, additional a priori information could actually be
available before the next daily modeling of global ionospheric VTEC values, such as the coefficients
of the model, DCBs of satellites and receivers, and the standard deviation of and information about
the normal equation from the ionospheric modeling on the previous day. In this contribution, the
priori information is used to provide the initial values for modeling, particularly the coefficients of
the model and the DCBs of satellites. The remaining manuscript is organized as follows. In Section 2,
a methodology for global ionospheric modeling based on utilizing priori information is outlined.
In Section 3, the improved results of the modeling using this methodology are presented and analyzed.
Finally, the study’s conclusions are presented in the last section.

2. Bayesian Estimation for TEC Modeling

2.1. Basic Methodology

Since 1998, IAACs have been releasing daily GIMs independently using different approaches.
CODE uses a spherical harmonic (SH) expansion referring to a solar geomagnetic reference frame
for representing GIMs [30]. UPC uses a two-layer tomographic model for the TEC estimation, then
presents improved GIMs using a Kriging interpolation technique [32,34]. ESA has developed a
three-dimensional mathematical ionosphere model based on a simple Chapman profile approach;
an approach similar to CODE’s SH expansion is then followed. JPL’s approach is based on interpolating
TEC within triangular tiles; the approach has been extended to include climatological models as
simulated data, so that VTEC maps can be generated without gaps [31]. WHU also uses SH functions
for global ionospheric modeling, along with CODE and ESA. The main equation used for modeling is
presented as follows [30,35,38]:

P1 − P2 =
40.3

(
f 2
2 − f 2

1
)

f 2
1 f 2

2
·m f (z)·VTEC + c(DCBs + DCBr) (1)

where P1 and P2 are the smoothed dual-frequency code measurements; f1 and f2 are the carrier
frequencies of the L1 and L2 signals, respectively; m f is the ionospheric mapping function, which
depends on the zenith distance z at the receiver’s location; VTEC is the vertical TEC at the IPP;
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c is the speed of light; DCBs and DCBr are the differential code biases of satellites and receivers,
respectively. Code measurements (P1 and P2) are smoothed by the carrier-phase measurements
to obtain high-precision code observables. The code observables are actually replaced by the
carrier-phases, shifted by the average value of code minus the phase in a continuous arc [39].
We followed the widely used thin-shell approximation of the ionosphere, and used the same MLSM
mapping function [30] as CODE to transform Slant TEC to VTEC. SH functions were used for modeling
VTEC with reference to a solar geomagnetic reference frame according to the following Equation (2):

VTEC(ϕ, λ) =
nmax

∑
n=0

n

∑
m=0

P̃nm(sinϕ)(anm cos(mλ) + bnm sin(mλ)) (2)

where ϕ is the geomagnetic latitude of the IPP; λ is the sun-fixed longitude of the IPP; n and m are the
degree and order of the model, respectively; P̃nm is the normalized associated Legendre function of
degree n and order m; anm and bnm are the unknown SH coefficients and GIM parameters, respectively.

2.2. Estimation Using Priori Information

Suppose L is a vector of observations. Moreover, suppose the probability density function of
vector L is dependent on a vector of unknown parameters X. The random parameter vector X has the
probability density function p(X). The density function of L is introduced as the conditional density
function p(L|X) , which may be called a likelihood function. The probability density function p(X|L)
of parameters X can be described as follows:

p(X|L) ∞ p(X)p(L|X) (3)

where ∞ denotes proportionality. The detailed theoretical derivation is available in Koch [40] and
Berger, et al. [41].

The density function p(X) is known for parameters X before observations L have been taken.
The function therefore represents the prior distribution of parameters X. Once data L have been
obtained, p(X|L) represents the posterior distribution of parameters X. Thus, the posterior distribution
combines the prior information already available with the updated information obtained from the
observations. Bayes theorem states that through the likelihood function, the observations modify the
prior values of the parameters, thus leading to the posterior density function of the parameters [40].

If the prior information for the parameters vector X is known, the prior mathematic expectation
is X, the prior covariance matrix is ΣX, and because X is supposed to obey the normal distribution
function N, the prior distribution of parameters X is X ∼ N(X, ΣX). Moreover, if the observations
vector L obeys a normal distribution and the variance factor is σ2, the prior distribution of
parameters X is a conjugate prior. Hence, the posterior density of X is also normally distributed [40],
i.e., X|L ∼ N(X0, σ2(AT PA + ΣX

−1)
−1

), where A is the design matrix, P is the weight matrix, and
X0 is the posterior mathematic expectation. Therefore, the least squares Bayesian estimation of X is
given as [42]:

X̂ =
(

AT PA + ΣX
−1
)−1

(AT PL + ΣX
−1X) (4)

Furthermore, the variance factor is estimated as:

σ̂2 =
VT PV + VX

TΣX
−1VX

n
(5)

where V = AX̂− L, VX = X̂− X, and n is the number of degrees of freedom, which is equal to total
number of the observations L in the Bayesian estimation. It should be noted that the denominator
in Equation (5) is n − t (where t is the number of unknown parameters) if the equation is solved by
LSE. Conversely, if it is solved by Bayesian estimation with prior knowledge, which involves t virtual
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measurements of parameters in addition to the number of observations L, the degrees of freedom
would be (n + t) − t = n.

To consider whether the prior density of X has a normal distribution, a quantile-quantile (QQ)
plot is used to investigate the gaussianity of the distribution of prior parameters X. Figure 1 shows
the QQ plot, the linear fitting, and a 95% confidence interval. Firstly, the value of the coefficient of
determination (R2 = 0.984) indicated that the standardized SH coefficient data was highly related to the
normal theoretical quantiles. Indeed, the QQ plot showed only minimal deviation from a straight-line
pattern. Most of the QQ points were within the 95% confidence interval, except at the extreme tails.
Therefore, this data provides evidence supporting the assumption that the prior parameters X have a
normal distribution (Figure 1).
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In practical daily modeling of the global ionospheric TEC, the prior values of unknown parameters
X (including SH coefficients and DCBs of satellites and receivers) can be ascertained from the ionospheric
modeling on the previous day, which involves calculation of the prior mathematic expectation, the prior
covariance matrix and the prior variance factor. Then, once the GNSS measurements are available for
modeling on the current day, the parameters vector X can be updated by Bayesian estimation with
priori information.

3. Results and Analysis

In order to evaluate the performance of the proposed method, GPS data from approximately
350 IGS stations in 2014 are collected for daily global ionospheric modeling by both original LSE
without prior knowledge and Bayesian estimation with prior knowledge of SH coefficients and DCBs
of satellites and receivers. Two types of comparison outcomes were investigated: the daily average
(bias) and the root mean square (RMS) of the differences between the modeled data and the IGS final
GIMs or products from other IAACs, as shown in Equations (6) and (7). In these equations, n is the
total number of grid points of a daily GIMs product, which is equal to 67,379 (71 × 73 × 13) [30,43],
and VTECw and VTECr are WHU VTEC values and VTEC values from final IGS GIMs or the other
IAAC products, respectively.

bias =
1
n

n

∑
i=1

(VTECi
w −VTECi

r) (6)
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RMS =

√
∑n

i=1
(
VTECi

w −VTECi
r
)2

n
(7)

Firstly, the differences among the original four IAAC products are shown in Figures 2–4.
The remainder of this section subsequently presents details on the differences in the VTEC maps
and DCBs of satellites and receivers analyzed using bias and RMS calculations for the differences
between the modeled data and the combined IGS final products or the original four IAAC products.

Figure 2 shows the differences in the VTEC maps among the IAAC products in 2014. Generally, the
bias among IAAC products was approximately within ±2 TECU. Most RMS values were within
2~8 TECU, except for days 95 and 96, likely because inadequate data were used by UPC for modeling
on those days, as ascertained through the respective UPC GIMs. The typical number of IGS stations
used for UPC modeling was approximately 250, in contrast to the 133 and 145 stations used on days
95 and 96, respectively. However, the VTEC maps of ESA and UPC had the strongest consistency, with
an annual mean RMS of 3.99 TECU. The VTEC maps of CODE and the other IAACs also have good
consistency, with their relatively low RMS values. Next, the differences in satellite DCBs among IAAC
products is presented in Figure 3. The biases of the satellite DCB comparisons were approximately
within ±0.2 ns. Moreover, annual means of the biases were nearly zero. Additionally, most RMS
values were approximately 0.2 ns or less. There was a small number of RMS values beyond 0.2 ns
and several RMS values beyond 0.4 ns. The set of RMS values beyond 0.2 ns included the RMS of
differences of DCB on pseudorandom noise (PRN) 6 and PRN 10 between the CODE and JPL products.
The set of RMS values beyond 0.4 ns included the RMS of differences of DCB on PRN 6, PRN 10, and
PRN 30 between the CODE and UPC products. It was apparent that the CODE and ESA satellite
DCBs had the strongest consistency in terms of RMS values. Next, Figure 4 showed the differences
in receiver DCBs among IAAC products. The bias was approximately zero for the comparisons in
2014, except for those in spring and early summer. The majority of RMS values were close to or less
than 1 ns, particularly for the differences between CODE and JPL. There were a few RMS values of
approximately 2 ns or more, as shown in Figure 4. Among these larger RMS values, the majority were
for differences between CODE and UPC or for those between JPL and UPC. Nevertheless, the low
annual mean RMS values as shown in Figure 4 indicated that the receiver DCBs provided by IAACs
were not significantly different.
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3.1. Comparison of VTEC Maps

The IGS Ionosphere Working Group has been providing reliable ionospheric products by
combining global ionospheric VTEC maps released by CODE, JPL, ESA and UPC since 1998. Two kinds
of VTEC maps from WHU, i.e., those generated either by LSE or Bayesian estimation, are investigated
to test the performance of the modeling. Figures 5 and 6 present the differences in the new VTEC maps
compared to the IGS final GIMs and other IAAC products, respectively. Also, the annual mean of biases
and RMS values obtained through the comparisons are presented in Table 1. Each figure includes the
biases and RMS values of the differences between the VTEC maps from WHU based on original LSE
(ORG) or Bayesian estimation (BYS) and an IAAC product or the IGS final GIMs. The figures show
that there is a minor increase in the absolute values of biases for the Bayesian estimation compared
to those for the original LSE solution. At the same time, most RMS values decrease slightly in the
comparisons made with the Bayesian estimation relative to those made with the original LSE solution.
According to the annual means of the RMS values, the WHU GIMs based on Bayesian estimation have
better consistency with the IGS final GIMs as well as the other four IAAC products.
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RMSs of differences in VTEC maps based on original LSE and Bayesian, respectively, compared with
IAAC GIMs. (a) Compared with Center for Orbit Determination in Europe (CODE). (b) Compared
with Jet Propulsion Laboratory (JPL). (c) Compared with European Space Agency (ESA). (d) Compared
with Technical University of Catalonia (UPC).
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Table 1. Differences in VTEC maps based on original LSE and Bayesian approaches compared with
IAAC GIMs (unit: TECU).

IGS CODE JPL ESA UPC

Bias
ORG −0.80 −0.050 −2.28 0.16 −0.75
BYS −1.07 −0.33 −2.55 −0.12 −1.03

RMS
ORG 4.48 4.25 5.55 5.80 5.64
BYS 4.20 3.97 5.45 5.40 5.31

For further analysis, the performance of the new approach with Bayesian estimation as
compared to original LSE was investigated and presented in terms of decrement of RMS values in
Figures 7 and 8. The RMS decrease value was calculated by the difference of RMS values between
ORG and BYS solutions compared with IAAC GIMs. Most RMS decrease values were positive,
whereas a few are negative. These results indicated that there was a strong probability of improved
consistency between WHU GIMs based on Bayesian estimation and IGS final GIMs, as well as other
IAAC products. Although the RMS decrease values for the JPL comparison appeared more negative
than those for the IGS, CODE, ESA and UPC comparisons, the values were probably positive in most
cases. Table 2 presents the proportion of positive values, which reflects the probability of achieving
better consistency, as well as the minimum, maximum and mean of RMS decrease values in units
of TECU. From the probabilities depicted in Table 2, it was apparent that for the most part, WHU
GIMs based on Bayesian estimation have improved consistency with IGS final GIMs and other IAAC
products, particularly ESA and UPC, with probabilities of achieving better consistency exceeding
95%. Although it was difficult to state for certain that a real improvement has occurred based on
the comparison of two results that are at the same level of performance, the improved consistency
was clear in comparison with both the IGS final GIMs and all other IAAC products. Thus, a real and
significant improvement of VTEC maps by modeling based on Bayesian estimation is indicated.
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Table 2. RMS decrease information for 2014 (unit: TECU).

IGS CODE JPL ESA UPC

Prob. 89.86% 89.32% 70.96% 97.81% 96.16%
Min −0.42 −0.48 −0.52 −0.20 −0.27
Max 1.46 1.39 0.77 1.43 1.19

Mean 0.28 0.28 0.10 0.39 0.33

3.2. Comparison of Satellites DCBs

In addition to the VTEC maps, satellite DCBs were also compared. Figures 9 and 10 present the
bias and RMS values, respectively, of the differences of 32 GPS satellite DCBs between WHU products
and IGS final products or other IAAC products. Also, the average of the biases and RMS values of the
differences in 32 GPS satellite DCBs are presented in Table 3. Most bias values for satellite DCBs were
approximately within ±0.2 ns, which shows that WHU products had nearly the same performance as
IAAC products. However, the bias values for satellite DCBs in comparisons involving the WHU BYS
solution changed little compared to those involving the WHU ORG solution. For the comparison with
IGS final products, most RMS values were approximately 0.1 ns, except those for the PRN 1 and PRN
30 satellites, which had RMS values of approximately 0.4 ns and 0.3 ns, respectively. The situation
of differences in satellite DCBs for the comparison with CODE products was similar to that of the
IGS comparison. Most RMS values were approximately 0.1 ns, with the exception of those for certain
satellites, particularly PRN 1, 6 and 30, which had RMS values beyond 0.3 ns. The results were similar
for the JPL, ESA and UPC comparisons, as shown in Figure 10. Most RMS values were approximately
0.2 ns, except for a few satellites; these values were similar to RMS values for the differences in
satellites DCBs among IAAC products. Furthermore, the RMS values for the differences with most
of the satellite DCBs when comparing against both IGS final products and other IAAC products
were lower for the new solutions based on Bayesian estimation than those based on original LSE.
Therefore, the proposed method for global ionospheric modeling based on Bayesian estimation with
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prior knowledge could improve not only VTEC maps, but also satellites DCBs. Also, the differences of
satellites DCBs between the two approaches were very small. This is because there are so many GNSS
measurements (over 3 million observed by around 300 IGS stations per day) for global ionosphere
modeling. These rich data are quite enough to estimate 32 GPS satellite DCBs with high accuracy.
Thus, the BYS approach brings no obvious improvement.
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Table 3. Differences in satellites DCBs based on original LSE and Bayesian approaches compared with
IAAC products (unit: TECU).

IGS CODE JPL ESA UPC

Bias
ORG 0.030 0.031 0.0056 0.040 0.00015
BYS 0.029 0.030 0.0063 0.040 0.0014

RMS
ORG 0.15 0.15 0.14 0.21 0.20
BYS 0.14 0.14 0.13 0.20 0.19

3.3. Comparison of Receiver DCBs

Because the prior values of SH coefficients and DCBs of satellites and receivers from the previous
day’s modeling are used for Bayesian estimation, a comparison of receiver DCBs was also performed.
Figures 11 and 12 present the bias and RMS values, respectively, of the differences in receiver DCBs
between WHU products and IGS final products or other IAAC products. Also, the annual mean of
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the biases and RMS values of the differences in receiver DCBs are presented in Table 4. The bias of
receiver DCBs was mostly distributed in an interval from −1 ns to 0 ns, with the exception of some
bias values smaller than −1 ns seen with the UPC comparison for spring days. Most RMS values
were approximately 1 ns, which indicates that WHU products had the same level of performance as
other IAAC products. Notably, the values were beyond 1 ns on most of the days in 2014 for the UPC
comparison, particularly in spring. Moreover, the annual means of RMS values were slightly larger
based on Bayesian estimation than those based on the original LSE. However, the relative value of
this increase was fairly small compared to the absolute values of receivers DCB (general mean value
beyond 10 ns). This was due to the receiver DCB being considered as a constant parameter during a
1-day period in the ionosphere modeling. The modeling errors of receivers DCB may have been larger
than the differences between two approaches. Thus, the BYS approach gives approximately the same
performance as the ORG approach.
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Table 4. Differences in receiver DCBs based on original LSE and Bayesian approaches compared with
IAAC products (unit: TECU).

IGS CODE JPL ESA UPC

Bias
ORG −0.31 −0.19 −0.32 −0.32 −0.75
BYS −0.37 −0.25 −0.38 −0.41 −0.80

RMS
ORG 0.84 0.79 0.83 1.06 1.20
BYS 0.85 0.81 0.86 1.07 1.30

Generally, the comparisons indicated that WHU VTEC maps and satellite DCBs calculated based
on Bayesian estimation with prior knowledge had improved consistency with IGS final combined
products and other IAAC products. Moreover, the receiver DCBs appeared to exhibit approximately
the same performance when calculated based on either of the two approaches. According to the results
presented in this section, it is apparent that WHU products have the same level of performance as
other IAAC products.

3.4. Validation with JASON Data

An independent source of VTEC measurements is the data observed by a dual-frequency altimeter
instrument on a JASON satellite; this data has previously been used to validate final IGS ionospheric
products and IAAC products [28]. In this study, JASON VTEC (hereafter J2TEC) measurements were
used to validate the VTEC values of GNSS-derived VTEC maps (including IGS GIMs, WHU products
based on ORG and BYS solutions, and other IAAC products). Figures 13–16 show bias and RMS values
for the differences between GNSS-derived VTEC maps and J2TEC in 2014.

As depicted in Figure 13, the values of bias at low latitudes were larger than those at mid-high
latitudes. Other scholars have obtained results similarly showing that J2TEC values are larger than the
VTEC values derived from GNSS measurements at mid-high latitudes [28,37,44]. In general, the bias
among GNSS-derived VTEC maps and J2TEC presented a similar trend, with an average difference
of approximately 2 TECU. Figure 14 shows that the RMS values of differences ranged from 4 TECU
to more than 12 TECU. The differences among RMS values were smaller for mid-low latitudes and
middle latitudes than those for low latitudes, and were especially small for middle latitudes of the
Northern Hemisphere. There were obvious differences among the RMS values for low latitudes of the
Northern Hemisphere, with a maximum difference of more than 4 TECU. Figures 15 and 16 showed
that WHU products perform similarly to IGS GIMs and other IAAC products with respect to J2TEC.
Bias for most latitudes decreased with the BYS solution, particularly so for low latitudes. Additionally,
as shown in Figure 16, RMS values also decreased for low latitudes and mid-low latitudes of the
Southern Hemisphere. These results indicated that there was a greater consistency between WHU
products based on Bayesian estimation and JASON VTEC measurements.Remote Sens. 2018, 10, 63  14 of 19 
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4. Conclusions 

Global ionospheric VTEC maps provided by the IGS Ionospheric Working Group are important 
resources for studies of the ionosphere and for satellite positioning. Different methods and data 
processing strategies for ionospheric modeling are performed by IAACs independently, which is the 
main reason of the differences among the IAACs’ products. Although the IGS final combined GIMs 
have been a reliable source of ionospheric products, further improvement of VTEC maps remains an 
open area for research. IAACs have a responsibility to provide better and more robust ionospheric 
products. To this end, this contribution proposes an improved method for global ionospheric 
modeling based on Bayesian estimation with prior knowledge. The estimated SH coefficients and 
DCBs of satellites and receivers obtained from the previous day’s modeling could be considered as 
prior knowledge, thereby providing approximate initial values for unknown parameters. The initial 
values can then be updated through real GNSS measurements such that the final derived VTEC maps 
have better consistency with IAACs GIMs than those by using original LSE without prior knowledge. 
VTEC maps, satellite DCBs and receiver DCBs from WHU products based on either Bayesian 
estimation or original LSE are compared with those from IGS final products and other IAAC 
products. The results show that there is strong agreement between WHU GIMs derived by Bayesian 
estimation and IGS final GIMs or other IAAC products, particularly those of ESA and UPC, with 
probabilities of improved consistency exceeding 95%. Satellite DCBs derived from the Bayesian 
estimation also have improved consistency with IGS final products and IAAC products. At the same 
time, the Bayesian approach gives approximately the same performance of receiver DCBs as that by 
original LSE approach. Additionally, a validation of VTEC maps against external independent 
JASON data is performed. The investigation shows that there is improved consistency between WHU 
products derived by Bayesian estimation and J2TEC measurements relative to those derived by the 
original LSE solution. These results also indicate that WHU’s products have the same level of 
performance as the other IAAC products. However, this study investigates only a limited dataset 
covering a one-year timeframe. Moreover, high levels of solar activity and geomagnetic storms would 
also impact the ionosphere. Therefore, it would be worthwhile for further studies to investigate the 
performance of the proposed method under different space weather conditions. 
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4. Conclusions

Global ionospheric VTEC maps provided by the IGS Ionospheric Working Group are important
resources for studies of the ionosphere and for satellite positioning. Different methods and data
processing strategies for ionospheric modeling are performed by IAACs independently, which is the
main reason of the differences among the IAACs’ products. Although the IGS final combined GIMs
have been a reliable source of ionospheric products, further improvement of VTEC maps remains an



Remote Sens. 2018, 10, 63 15 of 19

open area for research. IAACs have a responsibility to provide better and more robust ionospheric
products. To this end, this contribution proposes an improved method for global ionospheric modeling
based on Bayesian estimation with prior knowledge. The estimated SH coefficients and DCBs of
satellites and receivers obtained from the previous day’s modeling could be considered as prior
knowledge, thereby providing approximate initial values for unknown parameters. The initial values
can then be updated through real GNSS measurements such that the final derived VTEC maps
have better consistency with IAACs GIMs than those by using original LSE without prior knowledge.
VTEC maps, satellite DCBs and receiver DCBs from WHU products based on either Bayesian estimation
or original LSE are compared with those from IGS final products and other IAAC products. The results
show that there is strong agreement between WHU GIMs derived by Bayesian estimation and IGS
final GIMs or other IAAC products, particularly those of ESA and UPC, with probabilities of improved
consistency exceeding 95%. Satellite DCBs derived from the Bayesian estimation also have improved
consistency with IGS final products and IAAC products. At the same time, the Bayesian approach gives
approximately the same performance of receiver DCBs as that by original LSE approach. Additionally,
a validation of VTEC maps against external independent JASON data is performed. The investigation
shows that there is improved consistency between WHU products derived by Bayesian estimation and
J2TEC measurements relative to those derived by the original LSE solution. These results also indicate
that WHU’s products have the same level of performance as the other IAAC products. However, this
study investigates only a limited dataset covering a one-year timeframe. Moreover, high levels of
solar activity and geomagnetic storms would also impact the ionosphere. Therefore, it would be
worthwhile for further studies to investigate the performance of the proposed method under different
space weather conditions.
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