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Abstract: The Landsat series of satellites provide a nearly continuous, high resolution data record of
the Earth surface from the early 1970s through to the present. The public release of the entire Landsat
archive, free of charge, along with modern computing capacity, has enabled Earth monitoring at the
global scale with high spatial resolution. With the large data volume and seasonality varying across
the globe, image selection is a particularly important challenge for regional and global multitemporal
studies to remove the interference of seasonality from long term trends. This paper presents an
automated method for selecting images for global scale lake mapping to minimize the influence
of seasonality, while maintaining long term trends in lake surface area dynamics. Using historical
meteorological data and a simple water balance model, we define the most stable period after the
rainy season, when inflows equal outflows, independently for each Landsat tile and select images
acquired during that ideal period for lake surface area mapping. The images selected using this
method provide nearly complete global area coverage at decadal episodes for circa 2000 and circa
2014 from Landsat Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager (OLI)
sensors, respectively. This method is being used in regional and global lake dynamics mapping
projects, and is potentially applicable to any regional/global scale remote sensing application.
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1. Introduction

Lakes are important features of the landscape at any scale. For example, lakes are crucial as
local habitat for aquatic plants and animals, and as a storage component of the global water cycle [1].
They are sensitive to global scale changes in climate and localized direct human intervention via
damming, irrigation, etc. [2]. Each lake is a discreet unit of land cover that could be as small as
sub-hectare, but lakes are a global phenomenon existing in all kinds of biomes around the world [3,4].
Their diversity and ubiquity make lakes important components of the Earth system and make them
difficult to map at the global scale.

In the past, the large data volume and the prohibitive cost of remote sensing data impeded global
lake shoreline and surface area mapping projects [5]. Advances in technology, however, have made
it possible to store and process the massive amount of data required for global, high-resolution lake
shoreline mapping. In addition, the release of the full historical Landsat archive and the launch of
Landsat 8 have secured the availability of high resolution data for the past, present, and future [6].
These advances offer new and exciting opportunities for researchers to study lake area, and other land
surface, changes over time at finer resolutions and over larger extents than previously possible. With
these new opportunities also come new challenges that are specific to working at the global scale.

Several recent attempts at global scale lake mapping take different approaches with their source
data. A longtime standard global lake surface area map is the Global Lakes and Wetlands Database
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(GLWD), which was produced by combining several regional lake maps and databases into one [7].
Because of the multiple non-standard data sources, there are limits to the accuracy of this database,
particularly in the Arctic [8]. The more recent GLObal WAter BOdies (GLOWABO) database was
based on the static GeoCover circa 2000 image dataset mapped lake surface area globally at a single
time [9,10]. Yamazaki et al. [11] produced a global water body map at 90 m resolution based on the
Landsat Global Land Survey (GLS) database. The Landsat GLS database is available for four epochs at
circa 1975, circa 1990, circa 2000, and circa 2005, which allow for multitemporal comparison of lake
areas [12]. Another global lake mapping effort by Pekel et al. [13] used the full USGS archive of all the
available Landsat images and develop a pixel-based method that estimates the likelihood that a pixel
will be water. None of these approaches explicitly address the seasonality of lake surface area.

One challenge facing global remote sensing is selecting which images to use in multitemporal lake
shoreline and area mapping [14,15]. Multitemporal image comparison generally requires that an image
pair be either acquired from the same season or be somehow corrected for any seasonal change in the
observed phenomena [16]. If the image pair are not seasonally consistent, then seasonal variability is
indistinguishable from longer term, interannual changes observed between the two images. When
working at a local spatial scale it is relatively simple to apply a single date range across multiple years
to select seasonally consistent images. However, at regional to global scales, there are many different
local seasonal cycles across space [17]. While a single date range would allow comparisons across time,
comparisons across space would then be subject to seasonal interference. For instance, at the same time
one region is in the rainy season, a neighboring region may be in the dry season. Therefore, date ranges
for image selection must be identified for each location based on that region’s local seasonality [18].

Previous methods for observing seasonally dependent variables with Landsat incorporated
normalized difference vegetation index (NDVI) data to either select images or calibrate observations.
Tatem et al., [14] used Landsat to monitor land use change across Africa. In order to calibrate the NDVI
observations from Landsat, they compared concurrent NDVI observations from the NOAA-AVHRR
sensor with long term seasonal averages. This was the method that was employed for generating the
global orthorectified Landsat dataset [19,20]. The Global Land Survey of 2005 (GLS-2005) employed the
Landsat Scene Selection Interface (LASSI) tool to assign weights to candidate Landsat images according
to variables such as image quality, cloud cover, and NDVI [15]. Here, again, seasonal variation in NDVI
was used as a proxy for the seasonal vegetation cycle. NDVI, however, may not be an appropriate
proxy for seasonal variability in lake surface area, since vegetation greenness is not solely dependent
on hydrology. In high latitude regions, for instance, spring green-up is largely driven by temperature
change rather than water availability [21]. We propose to use a simple water balance, modeled and
interpolated from surface observations, to estimate lake surface area change over a season [22]. From
this dataset, we can identify ideal date ranges and select images from the Landsat archive.

The United States Geological Survey (USGS) Landsat archive includes images that are produced
by sensors aboard seven satellites spread over the program’s 40+ year history. The combination
of a long historical data coverage period, relatively fine spatial resolution, and 16 day repeat time
make Landsat the best available option for mapping the extent of lakes at the global scale [5,23,24].
Currently, Landsat 8 carries the Operational Land Imager (OLI) sensor, which continues to acquire
new images [25].

Here, we propose a method for selecting Landsat images for global multitemporal lake extent
mapping based on seasonality in modeled water balance. The algorithm, called LakeTime, informs
the selection of images that will be used to map lakes. The algorithm defines the optimal lake surface
area mapping period as the month with the smallest net change in surface water storage after the
month of maximum rainfall. This definition can be applied globally and is quantifiable using available
meteorological data. This paper will consider two periods of Landsat data: the Landsat 7 Enhanced
Thematic Mapper Plus (ETM+) SLC-on period from April 1999 to May 2003, and the Landsat 8 OLI
period from May 2013 to November 2014. We applied a similar method to historical Landsat images
from the circa 1975 Multispectral Scanner (MSS) and circa 1990 Thematic Mapper (TM) periods as
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well, but global coverage was not possible and they were not included in this paper. Historical
Landsat coverage is inconsistent due to changing scheduling priorities, ground station networks,
and technical limitation [26,27]. Thanks to the application of a consistent long-term acquisition plan
for Landsats 7 and 8, we were able to identify seasonally appropriate images from the ETM+ and
OLI achieves, while maintaining near-global spatial coverage for circa 2000 and circa 2014 [28]. This
Landsat image selection method has been used in the production of decadal global lake dynamics
products, and is broadly applicable to mapping any seasonally changing land cover features over time
with Landsat [29].

2. Materials and Methods

2.1. Data

The hydrological seasonality was defined by long-term climate data. Precipitation, snow melt,
potential evaporation, and temperature data were provided as monthly global gridded long term
means (1950–1999) by the Center for Climatic Research at the University of Delaware at 0.5 × 0.5 deg
resolution [22]. Precipitation and temperature data were gridded from station observations using a
spherical spatial-interpolation algorithm and were downloaded as the Terrestrial Air Temperature
and Precipitation: Monthly and Annual Climatologies (V. 3.02) [30]. Potential evaporation and snow
melt were modeled independently for each grid cell from the temperature and precipitation fields
and came together in the Terrestrial Water Balance Data Archive: Regridded Monthly Climatologies
(V. 1.02) dataset [31]. These global hydrology datasets offer a higher spatial resolution than most
climate reanalysis products and because each value represents an interpolated point estimate, it better
represents spatial variability in most locations. The drawback of using interpolated values is that the
accuracy depends on the spatial coverage of the original station data, which is unevenly distributed
and changes over time [32]. Using long term monthly means, rather than contemporary data, limits
this effect.

To select the specific images to be used for lake mapping, the determined optimal lake mapping
month is then compared with the available Landsat images in the entire Landsat archive. The metadata
for the full USGS Landsat archive were downloaded from the USGS Landsat Bulk Metadata Service
website [33]. Landsat metadata, which is updated daily to include new image acquisitions, contains
many descriptive fields including acquisition quality, date acquired, cloud cover, which help the
algorithm to identify the images to be selected.

2.2. Methods (Algorithm Description)

Since hydrology varies from place to place, the optimal lake surface area mapping period must
be defined based on local hydrology at each location. A simple water balance was used to model
seasonal changes in surface water storage at a monthly interval and at 0.5 × 0.5 deg spatial resolution.
The simplified water balance equation was used as follows:

Net = P + SM − E0 (1)

where, Net is the change in surface water storage, P is precipitation, SM is snow melt, and E0 is potential
evaporation. Evaporation from a lake is more reasonably represented by potential evaporation than
actual evaporation, because the availability of water is essentially infinite and not dependent on
soil moisture. Snow melt is particularly important in the high latitudes and high altitudes where a
significant percentage of annual precipitation falls as snow. When monthly precipitation and snow
melt are equal to potential evaporation, the net change in surface water storage is minimal. At this
seasonal point, the model indicates that lake surface areas are not growing or shrinking, and are
most likely to be comparable from year to year. To avoid ice-cover periods, months with mean air
temperatures near or below freezing must be avoided. Months with a mean monthly air temperature
above freezing may still have enough below-freezing-days to freeze lakes, so a threshold of 5 ◦C
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ensures that lakes are ice free. The three criteria are prioritized as follows: The season must (a) be ice
free; (b) have relatively stable surface water storage; and (c) be following the seasonal month with
maximum rainfall.

The LakeTime algorithm begins with identifying the month of maximum precipitation (PmaxMonth)
for each grid cell from the precipitation climatology dataset (Figure 1). If the change in water storage
term (Net) is positive at PmaxMonth, then the algorithm moves forward at monthly time steps until
Net becomes negative. That negative Net value is then compared to the previous month’s value to
identify which has the minimum absolute value. The month with the Net value closest to zero is the
zero crossing month (NetzeroMonth). Similarly, if Net is negative at PmaxMonth, then the algorithm
moves forward until Net becomes positive and compares with the previous month’s Net value to
find NetzeroMonth. If Net is always positive (i.e., rainforest) or always negative (i.e., desert), then
NetzeroMonth is the month with the Net value closest to zero (lowest absolute value). Next, if the mean
surface air temperature for NetzeroMonth is less than 5 ◦C, the algorithm moves back in time at monthly
time steps until the temperature reaches the 5 ◦C threshold. The resulting month is the optimal lake
area mapping month for that grid cell. The result of this classification performed at each 0.5 × 0.5 deg
cell is a gridded map of optimal lake surface area mapping months (Figure 2a).
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Figure 1. This schematic illustrates the optimal month selection method. The algorithm detects the
zero-crossing month on the net water balance curve (black dashed line) after the rainy season, during
the ice free period.

Landsat ETM+ and OLI images are distributed in World Reference System 2 (WRS-2) tiles that
contain between 10 and 21, 0.5 × 0.5 deg grid cells each depending on latitude and orbital geometry.
In order to determine the optimal lake surface area mapping month for each WRS-2 tile from the
gridded map, the grid cells are overlaid by the WRS-2 tiles and are aggregated. The most abundant
optimal month from the gridded map is chosen as the optimal month for each WRS-2 tile (Figure 2b).
This aggregation method also serves to remove any small anomalies and spatially smooth the map
of optimal months. These anomalies were generally the result of single grid cells with high sub-grid
variability in the climate data often occurring on the borders of climatological zones or at the edge
of mountain ranges. In the WRS-2 optimal month map (Figure 2b), Greenland and Antarctica were
excluded from the analysis at this point because they were not intended to be included in the global
lake map due to the consistent ice cover.
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Figure 2. Optimal lake surface area mapping month is shown (a) for each 0.5 × 0.5 degree grid cell and
(b) aggregated to each WRS-2 tile. The largely ice covered regions in Greenland and Antarctica were
excluded from this analysis.

Once the optimal month is identified for each WRS-2 tile, the LakeTime algorithm searches
through the USGS Landsat archive, using its metadata, for images that are acquired in the optimal
month or one month before and after (to include more quality images), which also satisfy prescribed
quality and cloud contamination criteria. For this study, the minimum image quality threshold was 4
(out of 9) and the maximum cloud contamination was 20%, but these thresholds can be easily changed
to suit other applications. The scenes that pass the quality control and fall within the time window
are then ranked according to their absolute number of days before or after the center of the optimal
month. Although the temporal resolution of this study does not justify ranking scenes within the ideal
month, the alternatives are clearly worse. Choosing scenes within the ideal month randomly would
reduce the repeatability of the process and choosing scenes from the beginning to the end of the month
would introduce a systematic bias. As such, the LakeTime algorithm generates a ranked list of the
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10 best Landsat images for each WRS-2 tile. The listed images may come from any year within the
specified input year range (1999–2003, for instance). Some of the tiles have more seasonally acceptable
images and some others may have only a few. The result can be exported as a list of scene IDs that
are ready to order in bulk from the USGS website. Lastly, a human operator browses the candidate
images to remove poor quality or overly cloudy images that are selected due to unreliable information
in the metadata.

3. Results

The identified optimal lake mapping months match the general distribution of diverse
climatological zones around the globe. The method performed well in both northern and southern
hemispheres, including specific regions with unique seasonal timing (Figure 2a,b). The general pattern
of optimal months across the globe follows global atmospheric circulation patterns. Most clearly visible
is the effect of the movement of the Inter-Tropical Convergence Zone (ITCZ) summer rains that move
across the equator, resulting in the zonal bands of optimal months that stretch across central Africa.
High northern latitudes are generally restricted by the temperature threshold to a narrow summer
window that moves earlier at higher latitudes. Islands and mountainous regions did not perform as
well as larger land masses due to high variability in climate variables within the grid cell.

The high spatial autocorrelation of optimal months (Moran’s I value of 0.675 calculated using
first order polygon contiguity) indicates that the spatial aggregation of 0.5 × 0.5 deg grid cells to
WRS-2 tiles effectively minimized anomalous optimal month classifications and spatially smoothed
the dataset. This smoothing effect is shown in the difference between Figure 2a,b.

Ten representative locations across the globe (Figure 3) are presented here to verify the optimal
month selection process in various climate conditions. The locations are: (a) central California (37.5◦N,
120.5◦W) for the Mediterranean hot climate; (b) Barrow Alaska (71.5◦N, 156.5◦W) for the Arctic tundra
climate; (c) central India (22◦N, 77.5◦E) for the Tropical savanna climate; (d) central Siberia (63.5◦N,
131◦E) for the Subarctic wet climate; (e) Sahara Desert (26◦N, 20.5◦E) for the Subtropical desert climate
in the Northern Hemisphere; (f) South Africa (28.5◦S, 19.5◦E) for the Subtropical desert climate in
the Southern Hemisphere; (g) Western Australia (21◦S, 125.5◦E) for the Subtropical desert climate in
the Southern Hemisphere; (h) Brazilian Amazon (8◦S, 56◦W) for the Tropical wet climate; (i) Sumatra
(3.5◦S, 104.5◦E) for the Tropical wet climate; and (j) Equatorial Africa (0◦N, 18.5◦E) for Equatorial
wet climate. Each location plot shows the simplified water balance data and optimal month from
a single 0.5 × 0.5 deg grid cell. The temperate California site (Figure 3a) experiences winter rains
and a hot, dry summer with temperatures never dropping below 5◦C so the optimal month comes
in the early spring. High latitude sites (Figure 3b,d) show the importance of the temperature criteria
(green line) and the influence of snow melt (yellow line) on the seasonal water balance. There is
a strong spring pulse of melt water that brings Net positive. The zero crossing in high latitudes is
often after the temperature drops below the 5 ◦C threshold, so the optimal month is moved back
until the temperature is high enough. Net is always negative for desert sites (Figure 3e,f) and thus
the optimal month for both sites is simply the month closest to zero. Wet tropical sites (Figure 3h,i)
experience little variation in temperature or evaporation (red line) so Net is driven by the summer
rainy seasons. The India and Western Australia sites (Figure 3c,g) experience monsoon rainfall patterns
with clearly defined wet and dry seasons, which make optimal month classification relatively simple.
Three sites form a North-South transect across Africa (Figure 3e,f,j). The Sahara Desert (3e) and South
Africa (3f) sites each have one very clearly defined, and opposite, seasonal cycle, while the equatorial
Africa site (3j) has two rainy seasons with relatively dry periods between them. This is caused by the
seasonal movement of the ITCZ, which crosses the equator twice each year, bringing rainfall with it.
The LakeTime algorithm identifies the rainy season with the highest peak rainfall as the primary rainy
season and works forward from that month.



Remote Sens. 2018, 10, 54 7 of 13Remote Sens. 2018, 10, 54  7 of 13 

 

 
Figure 3. Simplified water budgets for nine locations around the world: (a) central California (37.5°N, 
120.5°W); (b) Barrow Alaska (71.5°N, 156.5°W); (c) Central India (22°N, 77.5°E); (d) Central Siberia 
(63.5°N, 131°E); (e) Sahara Desert (26°N, 20.5°E); (f) South Africa (28.5°S, 19.5°E); (g) Western 
Australia (21°S, 125.5°E); (h) Brazilian Amazon (8°S, 56°W); (i) Sumatra (3.5°S, 104.5°E); and (j) 
Equatorial Africa (0°N, 18.5°E). The optimal lake surface area mapping month as selected by the 
LakeTime algorithm is indicated with a vertical box. 

Figure 3. Simplified water budgets for nine locations around the world: (a) central California (37.5◦N,
120.5◦W); (b) Barrow Alaska (71.5◦N, 156.5◦W); (c) Central India (22◦N, 77.5◦E); (d) Central Siberia
(63.5◦N, 131◦E); (e) Sahara Desert (26◦N, 20.5◦E); (f) South Africa (28.5◦S, 19.5◦E); (g) Western Australia
(21◦S, 125.5◦E); (h) Brazilian Amazon (8◦S, 56◦W); (i) Sumatra (3.5◦S, 104.5◦E); and (j) Equatorial Africa
(0◦N, 18.5◦E). The optimal lake surface area mapping month as selected by the LakeTime algorithm is
indicated with a vertical box.
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Available Landsat images were identified from the USGS Landsat data archive within 45 days of
the middle of the optimal month for each tile. Thresholds for maximum cloud contamination (20%)
and minimum image quality (4) were also considered. Global coverage of tiles with one or more image
varied by region and by sensor, but was almost complete for both sensors. Global coverage was 86%
for both ETM+ (1999–2003) and OLI (2013–2014) (Table 1). The United States was given the highest
priority in ETM+ acquisitions and the sensor acquisition setting was “always on”, regardless of season
or cloud cover (Arvidson et al. 2001). Thus, ETM+ coverage was best in the United States with 93% of
ETM+ tiles and 91% of OLI tiles covered. ETM+ coverage was relatively poor in coastal equatorial
regions, central China, and the Arabian Peninsula (Figure 4a). OLI (2013–2014) generally had fewer
images per WRS-2 tile than ETM+ (1999–2003) (Figure 4b).

Remote Sens. 2018, 10, 54  8 of 13 

 

Available Landsat images were identified from the USGS Landsat data archive within 45 days 
of the middle of the optimal month for each tile. Thresholds for maximum cloud contamination (20%) 
and minimum image quality (4) were also considered. Global coverage of tiles with one or more 
image varied by region and by sensor, but was almost complete for both sensors. Global coverage 
was 86% for both ETM+ (1999–2003) and OLI (2013–2014) (Table 1). The United States was given the 
highest priority in ETM+ acquisitions and the sensor acquisition setting was “always on”, regardless 
of season or cloud cover (Arvidson et al. 2001). Thus, ETM+ coverage was best in the United States 
with 93% of ETM+ tiles and 91% of OLI tiles covered. ETM+ coverage was relatively poor in coastal 
equatorial regions, central China, and the Arabian Peninsula (Figure 4a). OLI (2013–2014) generally 
had fewer images per WRS-2 tile than ETM+ (1999–2003) (Figure 4b). 

 
Figure 4. Global coverage of optimal images for (a) Landsat 7 Enhanced Thematic Mapper Plus 
(ETM+) (1999–2003) and (b) Operational Land Imager (OLI) (2013–2014). Coverage is generally good 
with occasional gaps in the tropics and high latitudes due to cloudiness. 

  

Figure 4. Global coverage of optimal images for (a) Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
(1999–2003) and (b) Operational Land Imager (OLI) (2013–2014). Coverage is generally good with
occasional gaps in the tropics and high latitudes due to cloudiness.
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Table 1. Coverage of Seasonally Appropriate Landsat Scenes.

OLI

Region Tiles with ≥1 Image Total Tiles % of Tiles w/ ≥1 Image % of Area Covered

Global 7939 9244 86% 98%
USA 659 726 91% 100%

North America 1801 2108 85% 99%
South America 745 820 91% 94%

Africa 1265 1327 95% 98%
Middle East 193 197 98% 100%

Europe 562 622 90% 99%
Asia 1790 3323 84% 98%

Australia/Oceania 714 874 82% 97%

ETM+

Region Tiles with ≥1 Image Total Tiles % of Tiles w/ ≥1 Image % of Area Covered

Global 7939 9244 86% 98%
USA 678 726 93% 100%

North America 1892 2108 90% 100%
South America 721 820 90% 98%

Africa 1264 1327 88% 99%
Middle East 166 197 95% 84%

Europe 577 622 93% 100%
Asia 2822 3323 85% 99%

Australia/Oceania 741 874 85% 98%

Because neighboring tiles overlap each other, the area coverage was generally higher than
the coverage based on WRS-2 tiles. Global area coverage was 98% for both ETM+ and OLI. This
overlapping was particularly evident at high latitudes where the orbits are close enough that most of
the land areas are covered by at least two tiles, helping to counteract the persistent cloudiness in the
region. Coastal tiles which contain only a small fraction of land were also generally redundant and
had little effect on the area coverage. These coastal tiles account for most of the difference between the
% of tiles with ≥1 image and the % of area covered columns in Table 1.

Lastly, the output scene list from LakeTime for ETM+ was analyzed and downloaded by a human
operator, who inspected the browse image for each of the ranked images and selected the best candidate
for download and use in lake mapping. The operator downloaded images for all of the land surface
areas south of 45◦N and logged the rank of the downloaded image for each tile. The mean rank of the
downloaded image for tiles with coverage of one or more images was 2.46.

4. Discussion

Although developed independently and based on different criteria, the LakeTime optimal month
results tend to fall within with the seasons prioritized by the Landsat Long-Term Acquisition Plan
(LTAP). The LTAP was developed for Landsat 7/ETM+ and considers vegetation seasonality and
cloud persistence when prioritizing images to be acquired each day [27,28]. A new plan, developed
for Landsat 8, called LTAP-8, was based on the original LTAP and maintains similar priorities [34].
The acquisition plan assigns high priority to leaf-on seasons where green vegetation would be clearly
visible and to the wettest seasons to offset image loss to cloud contamination [27]. It is not enough,
however, to rely on the LTAP alone to select images for hydrological applications, because it also
acquires images from all the seasons for balance. The requirements for long term lake surface
area mapping are far stricter than the LTAP, which must acquire images for all the potential users.
The ultimate benefit is improved coverage, even after the strict parameters of the LakeTime algorithm
are applied.

LakeTime output coverage is fundamentally limited by the images available in the USGS Landsat
archive. This is particularly evident in coverage of historical Landsat images from the MSS and TM
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periods, which had significantly lower global coverage than contemporary sensors, and therefore were
not included in this study. TM coverage in the 1990s was particularly poor in Siberia, due to the lack
of a ground station within line-of-sight of the sensor. More modern sensors have improved onboard
storage capacity to mitigate this problem. The priorities for Landsat image acquisitions before the
implementation of the LTAP were also driven by political and bureaucratic forces, which changed
over time. As the Landsat program was shifted from agency to agency, the coverage shifted and
changed to suit the priorities and capabilities of the managing agency or company [27]. Sharing of
data from international collaborators has been inconsistent and many of these historical images remain
unavailable through the USGS archive [26]. Little can be done to improve the historical archive but
the consistent application of LTAP, and LTAP-8 will build a future archive with maximum coverage
and scientific utility. As the archive becomes larger in the future, coverage will improve and the
image quality and cloud thresholds could be adjusted to be more selective. Additionally, the window
of seasonally appropriate images could be shrunk from the current size of 90 days to a 60 day or
30 day window.

This hydrology based method for seasonal Landsat image selection is complimentary to other
image selection methods focused on land cover or vegetation [14,15]. Studies that involve remote
sensing and mapping of terrestrial water in rivers, lakes, floodplains, etc. can use this or a similar
method for minimizing the seasonal signal from long term change. River width, for example, can be
measured reliably from Landsat imagery and be used to model discharge in remote rivers without
in-situ measurements [35,36]. Seasonality must be taken into account in these observations, and a
method similar to LakeTime could be employed for selecting Landsat images.

The choice to use the Landsat WRS tiles as the fundamental geographical unit rather than either
the 0.5◦ climate data grid cells or some other predefined climate or bio region comes from the necessity
of using Landsat images for the broader lake mapping study. This presupposes the treatment of Landsat
scenes as single units that are either used or excluded as a whole. Other studies, like Pekel et al., have
taken a pixel-based approach that would allow for a sub-image breakdown along edge features [13].
This is a potentially valid alternative, although it pushes the limits of the resolution of climate reanalysis
data [22]. Indeed, mapping projects that take this approach do not generally treat seasonality explicitly
as in this study [13,37].

We compared the ideal month map, aggregated to WRS tile, to the Köppen Geiger Climate
Classification Map, and saw some agreement in rough delineation of broad climate zones [38].
However, the climate map falls short of our needs in that seasonality is only treated locally and
in a relative sense. For instance, zone BWh (hot desert climate) is the dominant climate zone for
both the Sahara Desert and Central Australia because both of these regions have high annual mean
temperatures and low annual total precipitation. However, as these regions are in the Northern and
Southern Hemispheres, respectively, their hottest and driest months will be totally different. This
study needs to have a result that ties the climate to a calendar month that can be used to select images.
Ultimately, the best reason to use Landsat WRS tiles is that the map would eventually need to be
applied at that fundamental geographical unit anyways for scene selection.

The water balance equation that is used in this study was simplified, missing runoff and
ground storage terms entirely, due to the lack of global hydrology datasets. While this would be an
oversimplification for a water balance model, the representation of surface water is broadly adequate
for selecting Landsat images. The most important factor here is seasonality, so we focused on the water
balance terms that experience large seasonal changes. Furthermore, the absolute values of the water
balance terms are not as important because we are only interested in seasonality.

5. Conclusions

This paper addresses critical remote sensing image selection issues in global scale, high-resolution
remote sensing. The proposed lake mapping image selection method is able to consistently identify
an optimal lake surface area mapping season that (a) is ice free; (b) has relatively stable surface water
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storage; and (c) is after the rainy season. Candidate images selected from within this optimal season
from the USGS Landsat archive for ETM+ and OLI sensors provide sufficient coverage for global lake
surface area mapping. Contemporary lake mapping studies using ETM+ and OLI imagery will have
98% areal coverage, and OLI imagery will likely have 100% coverage soon if the LTAP-8 plan continues.
Unfortunately, multitemporal studies based on historical Landsat imagery from TM and MSS sensors
will have poor areal coverage due to large spatial gaps.

Newly available data from the Sentinel satellites, operated by the European Space Agency
(ESA), and “flocks” of microsats, launched by the privately run Planet Labs offer huge potential for
transformative research [39,40]. This is one example of the kind of applications that are needed to
extract valuable information from the vast quantities of remote sensing data. This work has been
successfully implemented in regional and global lake mapping projects [29]. The principles discussed
here are broadly applicable to global and regional mapping projects beyond lakes and beyond the
Landsat series.
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