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Abstract: CO2 is the second most abundant volatile species of degassing magma. CO2 fluxes carry
information of incredible value, such as periods of volcanic unrest. Ground-based laser remote
sensing is a powerful technique to measure CO2 fluxes in a spatially integrated manner, quickly and
from a safe distance, but it needs accurate knowledge of the plume speed. The latter is often difficult
to estimate, particularly for complex topographies. So, a supplementary or even alternative way of
retrieving fluxes would be beneficial. Here, we assess Bayesian inversion as a potential technique for
the case of the volcanic crater of Solfatara (Italy), a complex terrain hosting two major CO2 degassing
fumarolic vents close to a steep slope. Direct integration of remotely sensed CO2 concentrations of
these vents using plume speed derived from optical flow analysis yielded a flux of 717 ± 121 t day−1,
in agreement with independent measurements. The flux from Bayesian inversion based on a simple
Gaussian plume model was in excellent agreement under certain conditions. In conclusion, Bayesian
inversion is a promising retrieval tool for CO2 fluxes, especially in situations where plume speed
estimation methods fail, e.g., optical flow for transparent plumes. The results have implications
beyond volcanology, including ground-based remote sensing of greenhouse gases and verification of
satellite soundings.
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1. Introduction

Magma contains dissolved volatiles, which are released when magma rises and depressurizes.
Carbon dioxide (CO2) is the second most abundant volatile species of degassing magma [1,2].
Measuring CO2 mass emission rates (fluxes) therefore provides a powerful sampling tool that can be
used, for example, to constrain magma crystallization processes related to the magma dynamics [3],
learn about the geochemical carbon cycle [4] or for monitoring and early warning of volcanic
unrest [5,6]. The nested caldera of Campi Flegrei (CF) is currently in a state of unrest [7,8] and
is, as far as immediate human casualties are concerned, perhaps the most dangerous volcano on Earth,
since it is located right at the edge of the metropolitan area of Naples in Italy (Figure 1a). Approximately
at the center of CF lies the crater of Solfatara. Solfatara is a tuff cone associated with hot soils, intense
hydrothermal activity and fumaroles discharging water vapor and CO2 as the two most abundant
volatile species [7,9,10]. This area is therefore a crucial sampling spot for quantifying degassing in
order to understand the future evolution of CF, immediately impacting civil protection measures.

Remote sensing, notably active, laser-based remote sensing is feasible to acquire spatially
integrated measurements of CO2 concentrations. This technique is therefore ideal to probe extended
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areas of degassing, including volcanic fumarole fields. Active remote sensing has repeatedly been
carried out at CF [5,11–13]. To obtain fluxes, concentration profiles, i.e., gas concentrations versus
scanning angle are needed. Those are obtained by scanning the laser transmitter and receiver across
the area, which includes the degassing features (Figure 1b). Generally, the area-integrated flux is then
directly retrieved as

Q ∼ vpl

∫
S

CdS, (1)

where Q is the flux (in mass per time), vpl is the component of the exit velocity of the gas perpendicular
to the plane of the scan, which here is referred to as plume speed. C depicts the concentration profile,
that is, the volume concentration of the gas as a function of location (such as angle or coordinate,
depending on whether range-resolved or path-integrated concentrations are measured and depending
on the coordinate system used). S depicts the spatial extent of the integration. For instance, for a
degassing plume, it would be the geometrical plume cross section.

Thanks to the spatially integrated manner of detection, all degassing features covered by the
scan contribute to the concentration profiles. Another merit related to this is the ability to scan a
relatively large area swiftly. Conventional probing of complexly degassing areas by in situ techniques,
such as accumulation chambers (e.g., [14,15]) may be very precise and accurate, but it yields point
measurements only, which may miss unknown vents or plumes. Adding remote sensing capabilities
to the conventional approach, therefore, may provide more precise fluxes and higher measurement
frequencies, enabling insights into the degassing dynamics.

A significant effort is committed to maximizing the precision of CO2 remote sensing platforms [16–19].
However, Equation (1) shows that an accurate estimate of the plume speed is as important as precise
gas concentrations. An erroneous transport speed may lead to flux uncertainties of the same order
of magnitude as an error in the concentration. The plume speed issue has implications reaching far
beyond volcanology, touching any other field where fluxes of CO2 or other gases have to be precisely
quantified, such as carbon sequestration. In a blind release experiment at a CO2 sequestration site
to test the capability of nine different atmospheric quantification methods to quantify the leakage
flux, including remote sensing, none of the results contained the true mean of the CO2 flux in their
uncertainty intervals [20]. This is surprising, given that the detection limits of the aforementioned
state-of-the-art remote CO2 sensing techniques are usually better than tens of ppm, which makes
plume speed a potential key source of the observed offset.

Retrieving the plume speed with high accuracy is indeed challenging due to influences of various
parameters, including the degassing geometry and terrain (e.g., height of instrument, height of
observation or laser path over ground, dispersion of the plume as a function of terrain, wind speed
and direction, etc.). The plume speed can be derived in several different ways. The most direct is to
use locally measured [21,22] or predicted wind speed, such as from meteorological reanalysis [23],
which may provide a good estimate of plume speed for unobstructed, exposed vented degassing
features, for example, certain volcanic craters. However, particularly close to the ground or topographic
features, such as at Solfatara, the wind field may suffer from orographic influence, giving rise to a
potentially rather complicated wind field. This makes local wind speed estimation challenging,
in particular for meteorological reanalysis, since it entails model sub-grid effects. In addition, subaerial
magmatic CO2 degassing very often produces buoyant plumes. Therefore, the plume transport
speed and direction are not always consistent with the wind field, which may falsify fluxes [24,25].
For situations like these, more sophisticated methods may be used to estimate the wind speed,
for instance, measuring aerosol speed with a LIDAR probing the plume [26–28], which may provide
an accurate local figure of plume speed. Video-based techniques offer another powerful option for
plume speed estimation, provided the plume is detectable by the imaging device [2,12,29,30].

Since plume speed retrieval is a challenge in its own right, the central motivation of this paper is
as follows: Can the plume speed estimation be circumvented to arrive at the flux? Inverse modeling
provides a potential way to do so [22]. It accounts for gas dispersion and environmental factors such as
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degassing geometry by means of a forward model. However, inversion has its own flaws. For instance,
inverted model parameters are generally non-unique and the forward model may not account for all
real-world parameters. All this may lead to erroneous fluxes.

This paper compares two approaches with the aim to assess the usefulness of an inverse approach
to supplement methods based on Equation (1), using Solfatara as an example case. To that end, the
recently developed portable Laser Absorption Remote Sensing Spectrometer (LARSS) was used to
acquire CO2 concentrations at the two main vents of Solfatara, Bocca Nuova (BN) and Bocca Grande
(BG), which were then used as input for two different retrieval methods to obtain the CO2 flux of
these vents:

• A direct integration over the scanned area, following Equation (1), using plume speed retrieved
from optical flow analysis.

• A Bayesian inversion using a simple Gaussian dispersion forward model.

It was found that, under certain circumstances, Bayesian inversion might be a useful supplement
to volcanic CO2 flux retrieval methods, particularly in situations where plume speed estimation is
difficult. This could be the case where image-based methods fail due to a lack of features traceable by
digital image processing methods.

The rest of the paper is organized as follows. First, LARRS is briefly outlined, followed by an
introduction of the two flux retrieval methods, direct integration and Bayesian inversion. Then, the
field experiment is described and the data are presented. Finally, the retrieved CO2 fluxes are discussed.
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Figure 1. Field measurement situation. (a) Location of Solfatara; (b) Measurement geometry showing
the laser beam paths in blue (rays) with start and stop scanning angle and prevailing wind direction
WD during measurement. The circles at A and B depict positions and viewing directions of the camera.
The two main vents Bocca Grande (BG) and Bocca Nuova (BN) are marked; (c) Scanning geometry of the
remote sensing platform LARRS while at position A, with telescope aligned with start angle; (d) 3D
view of the scanning geometry. The apparent bending of the beam paths results from projecting them
onto the ground.
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2. Material and Methods

2.1. Remote Sensing of CO2 Concentrations with LARRS

LARRS has been developed in the ERC proof-of-concept project CarbSens with the aim to
assess the commercial potential of a turnkey system to remotely measure greenhouse gas fluxes
(www.carbsens.com). The instrument and its working principle are detailed elsewhere [13,31] so only
a brief overview is given. LARSS consists of a main unit and a transmitter/receiver unit (TX/RX unit,
Figure 2a). The latter comprises of the telescope, transmitter and an integrating sphere for power
reference measurement. It is portable (mass: 10 kg main unit + 6 kg TX/RX unit), which allows
it to be transported easily and set up at any kind of surface, such as house roofs or airplanes and
has a range between ~100 m and ~1500 m. The CO2 absorption line at 1572.335 nm is sampled at
40 wavelengths by sweeping the emission wavelength of a diode laser. The laser light is amplified,
transmitted, backscattered at a topographic target and received by the telescope (Figure 2b). After the
detected signal is digitized, the optical transmittance of the telescope’s viewing path is deduced for
each of the 40 wavelengths (Figure 2b). A model absorption spectrum is fitted to the 40 measured
transmittances, resulting in a best estimate of the path-averaged CO2 path density (in m−2), which is
computed as

Ncol(ri) =
ln (min[F(ri)])

2∆σ
, (2)

where F is the best fit transmittance and ∆σ the differential absorption cross section (in m2) of CO2.
The ranges ri (in m) for a given angular position i are measured with a range finder LIDAR aligned
with the telescope.
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Figure 2. Overview of LARRS. (a) Photo of LARRS with the TX/RX unit and detachable main unit;
(b) Scheme of the working principle with an example spectrum from a field measurement.

2.2. Flux Retrieval from Direct Integration

Profiles of CO2 concentrations, i.e., CO2 concentrations versus heading angle, are attained by
scanning the TX/RX unit across a degassing plume. CO2 fluxes are computed following Equation (1)
in discretized form as

Q = vpl
MCO2

NA
∆β ∑

plume
ri Ncol

pl(ri), (3)

where vpl refers to the component of the plume transport speed perpendicular to the plane of the
CO2 concentration profile, i.e., the component perpendicular to the plane of the scan. In this study,
this is the vertical component. For simplicity, it is referred to as plume speed hereafter. MCO2 is the
molar mass of CO2 (in kg mol−1) and NA is Avogadro’s constant (6.02214086 × 1023 mol−1). ∆β is the

www.carbsens.com


Remote Sens. 2018, 10, 125 5 of 16

constant scan angle increment. Ncol
pl , the background-corrected, or in-plume path density of CO2,

is retrieved by subtracting the total CO2 path density by the ambient CO2 path density measured
outside the plume, i.e., Ncol

pl(ri) = Ncol(ri)− Ncol
bg(ri), where Ncol(ri) is the total path density from

Equation (2) and Ncol
bg(ri) depicts the ambient CO2 path density. Background-corrected in-plume

mixing ratios, hereafter referred to as concentrations, are needed for the Bayesian inversion and are
retrieved as

Cpl(ri) = 106 Ncol
pl(ri)

Nairri
, (4)

where Nair is the number density of air, computed using meteorological data.

Plume Speed Retrieval Using Optical Flow Analysis

In previous works, we used a video tracking method to estimate the plume speed [12].
The reasonable assumption was made that close to the vent the visible condensed water vapor
aerosol of the plume propagated with the same velocity as the volcanic CO2. The implementation
of a simple optical flow (OF) analysis presented here is a further evolution of this technique, serving
the need for a more precise plume velocity and a more rigorous uncertainty estimate of that plume
velocity. The two major physical sources of this uncertainty are turbulences and heterogeneities of
plume speed across the plume related to different gas temperatures.

Optical flow analysis is becoming increasingly popular in conjunction with UV-sensitive cameras
to measure SO2 fluxes in volcanology [32–34] and has recently been used in the visible region for CO2

flux estimation [5]. OF calculates the displacement of image features between subsequent video frames,
yielding a displacement vector field for each analyzed pixel by solving

I (x, y, t) = I(x + ∆x, y + ∆y, t + ∆t), (5)

where I is the pixel intensity, which is assumed constant between two frames under the assumption of
small displacements in space (∆x horizontal and ∆y vertical, in pixels) and time ∆t.

There is a fundamental difference between applying OF to SO2 camera footage and the
present application. While for SO2 flux measurement, the camera’s imaging chip measures the
gas concentration and in parallel tracks plume movement, here the camera’s sole purpose is tracking
the plume movement, while the light detector to measure the gas concentration is located inside the
telescope’s optical path (Figure 2a). Therefore, a single estimate of the predominant plume velocity
is required, that is, a velocity vpl representing the entire plume motion. In general, this would
be a plume speed vector describing the dominant plume speed and direction (as in [35]). For the
present application, however, it is not the magnitude of the plume speed vector that is needed but its
component perpendicular to the scanning plane, which here is the vertical plume speed component,
i.e., the vertical displacement ∆y with time.

The Farnebäck algorithm [36] implemented in the Python OpenCV computer vision library is
used to solve Equation (5) for the pixel displacement vector components ∆x and ∆y for each pixel per
frame, yielding a displacement vector field. This allows the spatial variability of the displacements to
be assessed and hence the plume speed. In the following, the basic equations to retrieve the plume
speed vpl from OF analysis of the plume motion are detailed by considering vertical displacements
only. The considerations for horizontal displacements are equivalent. The predominant displacement
∆yj between frames j and j + 1, associated with the jth time step is computed as

∆yj =
R∆pix

f sin αy

m

∑
l=1

pl(∆yl)∆yl . (6)

The first factor coverts pixels into meters. R is the distance (in m) between the camera and the
plume, ∆pix is the effective pixel pitch (in m) of the photo sensor inside the camera and f the focal
length (in m) of the camera. In practice, the direction of vpl is not always perpendicular to the plane of
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the scan (and thus to the camera’s line of sight), underestimating the displacement by a factor of sin αy,
which is therefore used to correct for that. αy is the angle between the horizontal plane of the scan and
the vertical plane of the plume propagation (or horizontal plane of plume propagation for a vertical
scan). For each frame pair, the displacements follow a statistical distribution (number of pixels per
displacement). The second factor (the sum) depicts the first moment of this distribution, where p(∆yl)

is the relative occurrence (or weight) of the vertical displacements ∆yl in bin l and m is the number
of bins.

Optical flow analysis needs two subsequent frames to compute the optical flow velocity as
vpl = ∆y/∆t, where ∆t is the magnitude of the time step between the frames. However, fluctuations in
displacement due to turbulent plume motion that may result in non-linear displacement with time
may not be captured by using two frames only. Figure 3 shows the optical flow field for the main
vents BN and BG, computed from only three consecutive frames with ∆t = 0.5 s, which does not
appear to be completely laminar at places. Therefore, all available frames are considered, which means
the aforementioned analysis is repeated for a set of subsequent frame pairs, leading to a cumulative
vertical displacement over time

y′(tj) =
M−1

∑
j=1

∆yj, (7)

where M is the total number of frames considered. The slope of the linear fit of y′(tj) versus tj = j∆t
yields the plume speed, representing a best estimate of a constant plume speed. The uncertainty of
the plume speed is derived from the root mean square error (RMSE) of the fit and is a measure of the
laminarity of the plume.

In the following, techniques applied here to minimize noisy displacements are detailed. To focus
the analysis on physical plume motion only and exclude parts of the plume not probed by the
laser beam of LARRS, only those displacements inside a region of interest (ROI) are considered
(Figure 3). Figure 4 shows a video frame captured from position A (Figure 1b,c), containing the
Solfatara fumarolic main vents BG and BN in the background. The ROI of the foreground (Figure 4a)
does not contain any distinctively moving feature. The corresponding histogram of the displacements
is thus associated with random displacement (noise) only, which is fairly normally distributed,
centered at an expectation value that randomly changes with analyzed frame pair. In contrast,
the distribution of the displacements for the ROI of the plume in Figure 4b has two distinct peaks.
Both are normally distributed. This indicates that the physical plume displacements are superposed
with noise displacements. Note that the bimodal distribution in Figure 4b also appeared if the ROI
was completely filled out by the plume. The otherwise monomodal distribution suggests a very
directional movement of the plume and that the plume and only the plume would be tracked by
an OF algorithm. This moreover suggests that the sub-plumes coming from the main vents can be
well described by a single plume moving at a single velocity. Displacements associated with the
aforementioned noise are excluded as follows. Before computing the cumulative displacements y′(tj),
the mean noise displacement is retrieved from the static image scenery (Figure 4a) as

〈∆ynoise〉 =
1

M− 1

M−1

∑
j=1

∆yj. (8)

Displacements less than 〈∆ynoise〉+ 3σnoise (excluding 99.73% of the noise displacements), where
σnoise is the sample standard deviation of the noise, are excluded from further analysis. As a result,
〈∆ynoise〉 = 0.013 pixels and σnoise = 0.06 pixels, leading to a lower limit vertical displacement threshold
of 0.19 pixels. Furthermore, negative vertical displacements are discarded.
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Figure 4. Image frame recorded at position A (Figure 1b,c) looking at the main vents with marked
ROI and the corresponding normalized histograms (distributions of vertical displacements ∆yl) for
a single frame pair (time step 0.5 s) for (a) a static foreground and (b) for the plume. Note that the
bin width in the plots was chosen for display purposes and does not reflect the actual resolution of
the displacements.

2.3. Flux Retrieval from Bayesian Inversion

As a method that sidesteps plume speed estimation, Bayesian inversion is used here to solve for
the flux of the two main vents (BN, BG). The code, implemented in Python by [37], is freely available
on Github. The inversion assumes a point source with known position. The two vents are therefore
assumed to be a single vent with an effective vent location and so their combined CO2 flux is inverted
for. This is a reasonable assumption given their proximity and their common plume speed. The inverse
problem can be formulated as

P(Q|C) ∼ P(Q)P(C|Q), (9)
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where P(Q|C) is the posterior probability density function (pdf), i.e., the probability of the flux Q
given a set of measured CO2 concentrations = Cpl (Equation (4)). P(Q) is the prior pdf, which provides
a constraint on the boundaries within which the flux is expected to be. P(C|Q) is called likelihood and
is the probability that a flux gives rise to a set of CO2 concentrations assuming a theoretical model, i.e.,
a forward model, which connects concentrations with flux. Taking input parameters of measurement
geometry and meteorology into account, for each measured CO2 mixing ratio, assuming a CO2 flux,
the forward model computes a corresponding theoretical value of the CO2 mixing ratio. These values
are then used to derive the likelihood function of the form

P(C|Q) ∼ exp

(
−

N

∑
i=1

|Cmod,i − Ci|
τ

)
, (10)

where N is the number of measured concentrations (number of points in the concentration profile from
LARRS), Cmod depicts the modeled concentrations and τ the constant spread in the errors. The forward
model assumes a Gaussian plume described as

Cmod(u, v, w) =
Q

2πχσuσv
exp

(
v2

2σv2

)[
exp

(
− (w− H)2

2σw2

)
+ exp

(
− (w + H)2

2σw2

)]
, (11)

where u, v, w represent the three dimensions in space, χ the wind speed, H the height of the vent,
and σv and σw are the standard deviations of the time-averaged plume concentration in downwind
and vertical directions, respectively. They depend on the downwind distance and height, which are
modeled using a power law taking into account the atmospheric stability class [37]. The latter is
determined by means of the Monin–Obhukov length. The Monin–Obhukov length (in m) specifies
the stability of the atmospheric boundary layer. It has been calculated for various meteorological
conditions and times of day for the case of Solfatara in [38]. A value of −5.5 m was adopted, which
accounts for the hydrodynamic instability of the atmosphere in broad daylight, representing the
daytime atmospheric conditions at Solfatara very well. While the model predicts point concentrations,
the input data from LARRS (Equation (4)) come in path-averaged concentrations. A subroutine
therefore converts point concentrations to line averaged values, taking into account air temperature
and pressure.

The actual inversion process consists of iteratively maximizing the likelihood, i.e., finding the
most likely flux, by performing a Markov Chain Monte Carlo (MCMC) search in parameter space,
which in this case is one-dimensional and consists of a single flux value only. Thinning, i.e., considering
only every nth sample of the posterior pdf, is applied to reduce autocorrelation between samples.

3. Field Measurements at Solfatara and the Data

LARRS was placed on a fixed location inside the crater, scanning a sector of 70◦ (Figure 1b,c) on
26 May 2017 between 9:56 and 10:01 local time. The step-motor mounted TX/RX unit was pivoted
with a velocity of 4 mrad s−1 using 1 s integration time per point, corresponding to a radial section of
~40 cm at the target, the latter being the Solfatara crater wall (Figure 1b–d). Figure 5a shows the target
height versus scanning angle relative to LARRS. The scanned sector contained the two main fumarolic
vents BN and BG. Figure 5b shows the resulting path-averaged mixing ratios computed with Equation
(4). Concentration peaks with path-averaged mixing ratios around 1600 ppm are located at ~110◦

and around ~120◦, i.e., further northwards than the location of the main vents. This can be explained
by the wind direction, which was 210◦ (SW) on average, thus pushing the plumes northeastwards
towards the crater edge.

Ncol
bg were measured by a scan upwind, outside of any volcanic plume, using a hill range

between 700 and 900 m distance as the target. The corresponding path-averaged CO2 mixing ratio
was found to be 499 ppm. For comparison, two in-situ measurements with a LI-COR analyzer were
performed at points near the optical paths of LARSS, yielding CO2 mixing ratios of 550 ppm and
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560 ppm, respectively. These are remarkably high CO2 concentrations, given that the wind came from
the sea. The proximity of the measurement points to the road and the dense network of roads in that
area may well cause these values [39]. Consequently, an ambient CO2 mixing ratio of 499 ± 61 ppm
was considered (Figure 5b).

Uncertainties of path-averaged CO2 mixing ratios were usually between 2% and 5% (or 10
to 30 ppm), associated with a path-averaged detection limit of ~10,000 ppm·m. The main source
of uncertainty was the contribution of the instrument itself (baseline drift) and the fitting error.
The uncertainty calculations and a detailed description of influences of various error sources are
provided in [31]. Meteorological data (temperature, pressure, humidity) were retrieved from the INGV
meteorological station at Solfatara. The average data during the scan is shown in Table 1. These data
were used as input for the Bayesian inversion. Table 2 summarizes the inversion input data.
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Figure 5. Remote sensing results. (a) Height of target relative to LARRS retrieved from Google Earth
data; (b) 1D CO2 concentration profiles, i.e., path-averaged mixing ratios, resulting from pivoting
the TX/RX unit of LARRS around the sector shown in Figure 1b–d. Note that the mixing ratios are
not background corrected. The grey envelope depicts the uncertainty (1 STD). The ambient CO2

mixing ratio is depicted by the red dotted line. The vents BG and BN are situated at angles ~135◦ and
~143◦, respectively.

Table 1. Meteorological data from station IPOZZUOL7 in Pisciarelli, about 1 km from Solfatara. WD
depicts wind direction, WS wind speed, T air temperature, RH relative humidity, P air pressure.

WD (◦) WS (m s−1) T (◦C) RH (%) P (hPa)

210 1.4 18.0 75 1005

Table 2. Input parameters expected by the Bayesian inversion.

Input Parameter Value or Source

In-plume CO2 mixing ratios Equation (4)
Instrument location UTM 427556 4520015
Target location Derived from angle and length of rays (Figure 1b)
Target height Figure 5a
Vent height 1 m
Air temperature 18 ◦C (Table 1)
Air pressure 100,500 Pa (Table 1)
Wind speed 1.4 m s−1 (Table 1)
Wind direction 210◦ (Table 2)
Monin–Obhukov length −5.5 m
Number of MCMC iterations 30,000
Thinning parameter n 3
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4. Results

4.1. CO2 Flux from Direct Integration

For the plume speed estimation, video footage (Video S1) of a length of 32 s with a resolution of
480 × 640 pixels2 was acquired from the plume using a commercial digital camera (Canon IXUS 850 IS,
pixel pitch 1.8 µm, frame rate 15 Hz) placed next to the telescope of LARRS at position A (Figure 1b).
The time interval between two frames was chosen small enough to prevent undersampling of turbulent
plume motion, which could lead to erroneous displacement magnitudes. A time step of ∆t = 0.5 s was
chosen, corresponding to every 8th frame. To estimate αy, video footage was acquired from position B
(Figure 1b) with the camera’s line of sight almost in line with the prevailing wind. Deviations from the
vertical plane were negligibly small and thus sin αy ≈ 1. Although not needed for the vertical plume
speed component, αx was computed as the angle of the camera’s line of sight and the wind direction,
resulting in 79◦.

Figure 6 shows the cumulative optical flow field of 32 s of video projected onto the last video frame.
Figure 7a shows the cumulative vertical component of the displacement and Figure 7b the horizontal
component for comparison. The error of the slope was of the order of 1% (cm s−1) and significantly
lower than the uncertainty arising from shifting the ROI by a few pixels (a pixel corresponds to ~5 cm).
As a consequence, the uncertainty was derived by systematically varying the ROI location by a small
amount and computing the standard deviation of the resulting plume speeds. The resulting mean slope
and error of the linear regression were 0.95 ± 0.05 ms−1 for the vertical displacement. For comparison,
the horizontal velocity component from the fit was −1.38 ± 0.24 ms−1 (Figure 7b) and agrees with
the average wind speed of 1.4 m s−1, suggesting that wind momentum dominated the horizontal
plume motion, which is consistent with our own observation (Section 3). Note that the wind speed in
Table 2 was not measured inside the crater and therefore not expected to be equal. Using Equation (2),
the resulting CO2 flux was computed as 8.3 ± 1.4 kg s−1 (717 ± 121 t day−1).
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4.2. CO2 Flux from Bayesian Inversion

A constant prior pdf was assumed, ranging from 0 to a certain maximum value, in this case
30 kg s−1, being over six times above the expected flux, so that biasing of the inversion would be
avoided. Several tests with changing parameters were performed until reasonable convergence of
the MCMC process was achieved. Given the meteorological data (Table 1), no fluxes satisfactorily
explained the observed concentrations, that is, the inverted fluxes were orders of magnitude above the
anticipated flux magnitude of Section 4.1. This changed once the modeled wind direction was altered,
keeping all other parameters fixed. A very good match was achieved assuming a wind direction of
130◦. The corresponding inversion result is shown in Figure 8.Remote Sens. 2018, 10, 125  12 of 17 

 

 
Figure 8. Inversion result for WD = 130°. Trace of the MCMC sampling for the first 10,000 runs, 
autocorrelation between samples of the posterior pdf, which is reduced to below 10%, shown here 
for the first 100 runs and histogram view of the trace (posterior pdf). All units of the flux Q  are in g 

s−1. 

5. Discussion 

5.1. CO2 Flux from Direct Integration 

Thanks to continuous monitoring by the Vesuvius Observatory of Istituto Nazionale di 
Geofisica e Vulcanologia (INGV), the overall CO2 flux of the Solfatara crater is well documented [40]. 
Dedicated measurements of the flux from the main vents only, however, are rare. In late 2012, using 
a MultiGAS instrument, a combined flux of 2.5 ± 0.7 kg s−1 for BG and BN has been measured [10]. 
Around the same time, using a path-averaging instrument, the authors of [11] measured a CO2 flux 
of 3.5 ± 0.2 kg s−1 (306 ± 20 t day−1), which is higher, likely because their flux retrieval method was 
integrating over all mixing ratios within an extended area around the main vents. This method is 
therefore more similar to the method used here than the MultiGAS approach. It also illustrates the 
uncertainty associated with isolating a vented emission within an area of diffuse degassing and 
degassing from several minor vents under constant dispersion. In other words, CO2 concentrations 
at the main vents are likely always influenced by influx from the immediate surroundings, 
regardless of the flux measurement tool [41]. In fact, trying to isolate the CO2 concentrations at the 
main vent using the data in Figure 5b is challenging as it requires knowledge of the ambient CO2 
concentration in direct proximity upwind of the vents. This was attempted here, but it was found 
that the ambient concentration could be retrieved with a relatively large uncertainty only, which 
would have led to a large uncertainty of the flux. In the following, therefore, the path-integrated flux 
of 717 ± 121 t day−1 is compared with the figure obtained by [11]. Clearly, that figure is roughly half 
of the flux retrieved in the present work. A hint as to why that is is given when comparing the actual 
mixing ratios measured in 2012 and 2017. In 2012, plume-related values of 825 ppm on average were 
observed, whereas during this campaign plume-related values were 1300 ppm on average, which 
could be confirmed by simultaneous measurements around the plume area using the Li-COR 
analyzer. This corresponds to a ~1.6-fold increase in the mixing ratio and a 1.7- to 2-fold increase in 
the background-corrected (in-plume) CO2 mixing ratio (accounting for error margins in [11]). 
Assuming, to first order, that this factor applies to all in-plume mixing ratios at the main vent area 
entails an extrapolated flux for May 2017 between 497 and 662 t day−1, in agreement with the flux 
retrieved here. In conclusion, a flux of 717 ± 121 t day−1 from the main vents is consistent with 
independent measurements of the flux of the BN/BG vent area. 

Figure 8. Inversion result for WD = 130◦. Trace of the MCMC sampling for the first 10,000 runs,
autocorrelation between samples of the posterior pdf, which is reduced to below 10%, shown here for
the first 100 runs and histogram view of the trace (posterior pdf). All units of the flux Q are in g s−1.
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5. Discussion

5.1. CO2 Flux from Direct Integration

Thanks to continuous monitoring by the Vesuvius Observatory of Istituto Nazionale di Geofisica
e Vulcanologia (INGV), the overall CO2 flux of the Solfatara crater is well documented [40]. Dedicated
measurements of the flux from the main vents only, however, are rare. In late 2012, using a MultiGAS
instrument, a combined flux of 2.5 ± 0.7 kg s−1 for BG and BN has been measured [10]. Around
the same time, using a path-averaging instrument, the authors of [11] measured a CO2 flux of
3.5 ± 0.2 kg s−1 (306 ± 20 t day−1), which is higher, likely because their flux retrieval method was
integrating over all mixing ratios within an extended area around the main vents. This method
is therefore more similar to the method used here than the MultiGAS approach. It also illustrates
the uncertainty associated with isolating a vented emission within an area of diffuse degassing and
degassing from several minor vents under constant dispersion. In other words, CO2 concentrations at
the main vents are likely always influenced by influx from the immediate surroundings, regardless
of the flux measurement tool [41]. In fact, trying to isolate the CO2 concentrations at the main vent
using the data in Figure 5b is challenging as it requires knowledge of the ambient CO2 concentration
in direct proximity upwind of the vents. This was attempted here, but it was found that the ambient
concentration could be retrieved with a relatively large uncertainty only, which would have led to a
large uncertainty of the flux. In the following, therefore, the path-integrated flux of 717 ± 121 t day−1

is compared with the figure obtained by [11]. Clearly, that figure is roughly half of the flux retrieved in
the present work. A hint as to why that is is given when comparing the actual mixing ratios measured
in 2012 and 2017. In 2012, plume-related values of 825 ppm on average were observed, whereas
during this campaign plume-related values were 1300 ppm on average, which could be confirmed
by simultaneous measurements around the plume area using the Li-COR analyzer. This corresponds
to a ~1.6-fold increase in the mixing ratio and a 1.7- to 2-fold increase in the background-corrected
(in-plume) CO2 mixing ratio (accounting for error margins in [11]). Assuming, to first order, that this
factor applies to all in-plume mixing ratios at the main vent area entails an extrapolated flux for May
2017 between 497 and 662 t day−1, in agreement with the flux retrieved here. In conclusion, a flux of
717 ± 121 t day−1 from the main vents is consistent with independent measurements of the flux of the
BN/BG vent area.

Since 2012, the average soil CO2 flux from Solfatara has increased by a factor of ~1.5 [40] in
line with the factor of ~1.6, which is arguably quite simplified but suggests that the CO2 flux at the
main vents has, between 2012 and 2017, increased at a similar rate (~1.6) to the medium flux (~1.5)
across Solfatara.

5.2. CO2 Flux from Bayesian Inversion

Given the actual prevailing wind direction of 210◦ (SSW) during the measurement, the modeled
plume and hence the modeled CO2 concentrations (Equation (11)) are expected around the area marked
by C (Figure 1b), where there is a steep slope (Figure 1d), which the forward model does not account
for because for that location no CO2 concentrations could be measured. So, the only way for the
inversion to match the observed concentrations is to increase the CO2 flux towards positive infinity.
This is illustrated in Figure 9, which shows inverted fluxes for different wind directions. For wind
directions between about 20◦ and 180◦, fluxes are moving towards infinity. Once the wind blows
towards areas away from the slope (between ~50◦ and ~160◦), i.e., when coming from between the
NE and SE, the flux decreases until it eventually approaches the expected flux of around 8 kg s−1.
The best match is achieved for the two wind directions 90◦ and 130◦, the latter having the highest
confidence (Figure 9). Clearly, this is only a sensitivity test and a different wind direction would have
led to a concentration profile different from Figure 5b. However, the integrated CO2 amount would
have remained constant and so would have the flux. This suggests that the forward model is suitable
for situations where the full model domain is covered by measured concentrations. While this may
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sound trivial, in practice, it is straightforward only for a fairly flat topography. Generally, the wind
direction and the measurement geometry have to be consistent, which, due to the topography, was not
the case here.

The best estimate of the flux (Figure 8) is moreover quite sensitive to the position of the vent as
another sensitivity test shows. We recall that while the code solves for the flux of a point source of
known position, here an effective vent position was considered, which was assumed to be that of BN
as this yielded a flux value compatible with the value from direct retrieval of Section 4.1. Figure 9
shows the fluxes versus wind direction for an effective vent location at the mean coordinates of BN and
BG (halfway between the two). For all wind directions, the inverted fluxes have increased. In order
for the modeled concentrations to match the concentrations measured by LARRS, a vent located at
the new effective location has to produce a higher flux because this effective vent location is further
upwind than BN (Figure 1b). Realistic fluxes are still retrieved, namely for wind directions between
80◦ and 130◦, yet their mean values, shown in Figure 9, are all higher than 8 kg s−1. When moving
the effective vent location even further away from BN, to BG, which is only 24 m eastwards from BN
(~12% of the model dimension), the inverted fluxes eventually remain above an unrealistic 15 kg s−1,
for all wind directions (not shown in Figure 9). Note that the residuals, that is, the difference between
modeled and measured CO2 concentrations, are equal for all three scenarios.

Although the OF result suggests that the wind speed of 1.4 m s−1 used for the inversion is
consistent, it is still interesting to consider an inversion with a different wind speed of say 1 m s−1.
Then, the resulting fluxes would be smaller by ~20%, for both scenarios, as qualitatively expected
(Equation (11)). Moreover, the temperature measured ~1 km away could differ from the actual
temperature in the Solfatara crater. Given a wind direction of 130◦, a change in temperature by 1 K
would yield a change in inverted flux by only about 5%. A change in atmospheric pressure by 2 hPa
(the largest deviation measured at Pozzuoli that day) would entail a change of the inverted fluxes by
less than 5%.

These tests indicate the vent location to be the chief source of error. Thus, the vent location should
be reasonably well known, or if this is not possible, it should be inverted for in parallel (e.g., [42]).Remote Sens. 2018, 10, 125  14 of 17 
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Figure 9. Sensitivity test results showing the inverted CO2 flux for different presumed wind directions.
Fluxes for wind directions between 220◦ and 360◦ are positive infinitive and not shown. The envelope
depicts , the lower and upper 95% credibility interval (dotted lines in the histogram in Figure 8).
The blue line depicts the fluxes for an anticipated vent location at BN, which matches the flux from
direct integration (dotted line) for angles between ~80◦ and ~140◦. The green line depicts the result of
a second such test for an effective vent location halfway between BN and BG with increasing trend,
indicated by the arrow, not matching fluxes from direct integration.

6. Conclusions

A remote sensing spectrometer has been used to remotely probe the fumaroles of Solfatara volcano
in Italy, yielding path-averaged CO2 concentrations (concentration profiles). The combined flux from
the two main vents Bocca Nuova and Bocca Grande has been computed using plume speed from optical
flow analysis and integration of the concentration profiles, yielding 717 ± 121 t day−1, in line with
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independent measurements. A Bayesian inversion based on a Gaussian plume model yielded a very
similar value, however, only when the wind direction was consistent with the measurement geometry.
For the present case, this means the area downwind the plume has to be covered by measurements.
While for the given wind direction and terrain this was not possible, for many situations it is.

The inversion results indicate that precise (few m) knowledge of the vent location is important
to arrive at accurate fluxes. As in many degassing sites where vent locations are unknown, the vent
location could be inverted for in parallel to the corresponding fluxes.

Not only does the consistency of the result solidify confidence in the direct integration method for
flux retrieval, including the optical flow analysis applied here, but it is also promising for a possible
future application of Bayesian inversion to retrieve volcanic CO2 fluxes.

In conclusion, depending on the terrain, a Bayesian inversion may be a supplement or even an
alternative retrieval method of gas fluxes, in particular for situations where plume speed estimation is
impaired or impossible, for instance, for invisible plumes. A Bayesian inversion is relatively simple to
implement, which suggests that both direct and inverse retrieval could be used side by side to improve
confidence of CO2 flux measurements from volcanoes and gas flux measurements in general, such as
greenhouse gas remote sensing or verification of gas fluxes from satellite remote sensing.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/10/1/25/s1,
Video S1: Plume speed.
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