
remote sensing

Article

A CNN-Based Method of Vehicle Detection from
Aerial Images Using Hard Example Mining

Yohei Koga *, Hiroyuki Miyazaki ID and Ryosuke Shibasaki

Center for Spatial Information Science (CSIS), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi,
Chiba 2778568, Japan; heromiya@csis.u-tokyo.ac.jp (H.M.); shiba@csis.u-tokyo.ac.jp (R.S.)
* Correspondence: y.koga@csis.u-tokyo.ac.jp; Tel.: +81-4-7136-4290

Received: 31 October 2017; Accepted: 16 January 2018; Published: 18 January 2018

Abstract: Recently, deep learning techniques have had a practical role in vehicle detection. While
much effort has been spent on applying deep learning to vehicle detection, the effective use of
training data has not been thoroughly studied, although it has great potential for improving training
results, especially in cases where the training data are sparse. In this paper, we proposed using hard
example mining (HEM) in the training process of a convolutional neural network (CNN) for vehicle
detection in aerial images. We applied HEM to stochastic gradient descent (SGD) to choose the most
informative training data by calculating the loss values in each batch and employing the examples
with the largest losses. We picked 100 out of both 500 and 1000 examples for training in one iteration,
and we tested different ratios of positive to negative examples in the training data to evaluate how
the balance of positive and negative examples would affect the performance. In any case, our method
always outperformed the plain SGD. The experimental results for images from New York showed
improved performance over a CNN trained in plain SGD where the F1 score of our method was
0.02 higher.

Keywords: vehicle detection; hard example mining; high-resolution; aerial image; satellite image;
convolutional neural network (CNN)

1. Introduction

Recently, vehicle detection methods have achieved very high performance owing to deep learning
techniques; moreover, many more sources of high-resolution aerial and satellite images have become
available and affordable. Worldview3 by Digital Globe [1] provides images with a resolution of 0.3 m
per pixel, and now many startup companies such as Planet Labs [2] and Black Sky [3] plan to launch
small satellites and provide images with a resolution typically around one meter per pixel. For aerial
images, in Japan, NTT Geospace [4] provides aerial images that cover 83% of Japan and updates them
frequently. In this context, vehicle detection is now being applied to practical issues such as traffic
volume surveys and the estimation of economic activity on the ground.

Research and development of object detection techniques have significantly progressed in recent
years by the advancement of deep learning techniques, in particular, the convolutional neural network
(CNN). Region-based CNN (R-CNN) [5] was one of the earliest algorithms to employ CNN for
object detection and to demonstrate its great capability. In R-CNN, image regions that possibly
contain target objects (called “region proposals”) are chosen by a selective search algorithm [6], and
then a CNN algorithm is applied to map target objects in the region proposals. Following R-CNN,
many descendants have been proposed. Fast R-CNN [7] and the Spatial Pyramid Pooling network
(SPP-net) [8] have improved accuracy and runtime over R-CNN by utilizing an RoI pooling layer—a
special case of the spatial pyramid pooling (SPP) layer—and a SPP layer, respectively. They compute
a feature map from an entire image only once, and by utilizing the RoI pooling layer or SPP layer,

Remote Sens. 2018, 10, 124; doi:10.3390/rs10010124 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-7262-4566
http://dx.doi.org/10.3390/rs10010124
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2018, 10, 124 2 of 21

they classify region proposals by projecting each of them onto that feature map, whereas R-CNN
classifies each region proposal independently. However, they also employ a selective search to search
region proposals in a target image, which can be time consuming. In Faster R-CNN [9], the selective
search is replaced with region proposal networks (RPN). In Faster R-CNN, RPN calculates region
proposals from an input image and Fast R-CNN network classifies the region proposals, while these
two networks share the same feature map. Faster R-CNN is comprised of only deep learning networks
and is 900% faster than Fast R-CNN. However, Faster R-CNN still has room to improve by directly
connecting the RPNs and the classifier network. You Look Only Once (YOLO) [10] and Single Shot
Multibox Detector (SSD) [11] include such methods, where both the region proposal function and the
classification function are embedded in a single network. In these methods, possible object locations
(bounding boxes) and class confidences are simultaneously predicted at each pixel of a feature map.
These two methods are much faster than Faster R-CNN, while achieving almost the same or even
higher accuracy.

CNN-based object detection methods, including the ones described above, have been applied to
vehicle detection. Chen et al. [12] classified sliding windows, which are bounding boxes densely
scattered over an entire image, by a CNN that was enhanced by ramifying the last block of
convolutional and pooling layers into three different branches to deal with different scales. They
achieved much higher accuracy than those using conventional methods by combining the histogram
of oriented gradients (HOG) [13] feature descriptor and the support vector machine (SVM) classifier.
Qu et al. [14] employed the Binarized Normed Gradients (BING) [15] algorithm, where gradient
features are learnt and used for detecting possible object locations, to obtain region proposals and
significantly improved the runtime over [12], while keeping the same level of accuracy as [12]. Faster
R-CNN has difficulty when directly applied to vehicle detection in satellite and aerial images, because
such images are much larger than natural images and target vehicles are much smaller than objects
in natural images. Tang et al. [16] solved this by using enhanced RPNs that utilize a shallow fine
feature map and by splitting large target images into small tiles, which are recombined after detection.
Similarly, in [17], large images were split into small tiles and fed into YOLO [10] for vehicle detection.
While methods such as Faster R-CNN and YOLO are becoming prevalent, the sliding window and
region proposal methods are still useful, as they are easy to implement and can adopt any kind of
network architecture as a classifier, for instance, a very deep network or novel network architecture.
Mundhenk et al. [18] proposed a large open vehicle detection dataset called the “Cars Overhead with
Context (COWC)” dataset, and evaluated the usability of context information for vehicle detection.
They adopted the sliding window method with a rich model based on GoogLeNet [19] and ResNet [20],
which achieved high accuracy on their COWC dataset.

While we have shown that vehicle detection methods have improved greatly, the effective use
of training data has not been well studied even given its great potential to improve training results,
especially in cases where training data are sparse. In practice, data are often sparse in our region of
interest and obtaining additional data is usually costly. If we need to train a classifier using only such
sparse data, the obtained classifier would be unable to discriminate detailed features. Therefore, it is
important to extract as much useful information as possible from the training data. As an alternative,
it is also possible to use a classifier trained in a different place where data are abundant. However,
the training data acquired from other regions do not necessarily yield better accuracy than the one
acquired from the original region. We can improve accuracy by fine-tuning such classifiers with data
from our region of interest, but the effective use of training data is also important in these cases.

Nevertheless, to our knowledge, this topic does not seem to have been sufficiently studied.
Tang et al. [16] employed hard example mining (HEM)—a method to weight more informative
samples in learning processes to improve accuracy—by replacing the final classifier part of their Faster
R-CNN-based model with a cascade of boosted classifiers of shallow decision trees. In each stage
of their Real AdaBoost [21] training, one of the candidate weak classifiers, which best classified the
training data, was selected as a part of the final classifier. The misclassified examples were weighted,

Remote Sens. 2018, 10, 124 3 of 21

and the candidate weak classifiers in the next stage were imposed on well classifying those weighted
hard examples. While their attempt succeeded, they did not focus on improving the feature learning
part in terms of the effective use of training data, which is more straightforward.

In this paper, we proposed the application of HEM to the feature learning process of a CNN
model for vehicle detection from high-resolution aerial images.

2. Methodology

We applied HEM to the stochastic gradient descent (SGD), a commonly used algorithm in deep
learning training. Specifically, we used a large batch size, and in each batch, calculated the loss values
and employed only examples with the largest loss values for training. In this way, we could always
use the most informative examples for training and to improve accuracy.

The details are as follows. In Section 2.1, we introduce our basic methodology and its drawbacks.
We first introduce our vehicle detection steps and then explain the characteristics of SGD where there
is room for improvement. In Section 2.2, we briefly introduce the related studies of HEM and explain
the details of our method. In Section 2.3, we explain our method of accuracy assessment for the
experiments in this paper.

2.1. Basic Methodology

In this paper, we used a simple sliding window method for vehicle detection. Candidate bounding
boxes were scattered densely over an entire image and then those with no existence of vehicles were
screened out. HEM was applied to the training of CNN used for the screening. Employed CNN
architecture was also simple. We employed the simple sliding window method and CNN architecture,
because we mainly focused on the effectiveness of our HEM method. Our HEM method is easily
scaled, for instance, by replacing the CNN architecture with a richer one, such as the model used
in [18].

Our HEM method was actually a variant of Online Hard Example Mining (OHEM) [22], which
was originally designed for Fast R-CNN, but required modifications to suit our method as our training
process and the Fast R-CNN training process were different. (The details are described in Section 2.2.)

2.1.1. Vehicle Detection Methodology

We structured the algorithm based on the method of [12]. Figure 1 shows our CNN architecture.

Remote Sens. 2018, 10, 124 3 of 20

examples. While their attempt succeeded, they did not focus on improving the feature learning part
in terms of the effective use of training data, which is more straightforward.

In this paper, we proposed the application of HEM to the feature learning process of a CNN
model for vehicle detection from high-resolution aerial images.

2. Methodology

We applied HEM to the stochastic gradient descent (SGD), a commonly used algorithm in deep
learning training. Specifically, we used a large batch size, and in each batch, calculated the loss values
and employed only examples with the largest loss values for training. In this way, we could always
use the most informative examples for training and to improve accuracy.

The details are as follows. In Section 2.1, we introduce our basic methodology and its drawbacks.
We first introduce our vehicle detection steps and then explain the characteristics of SGD where there
is room for improvement. In Section 2.2, we briefly introduce the related studies of HEM and explain
the details of our method. In Section 2.3, we explain our method of accuracy assessment for the
experiments in this paper.

2.1. Basic Methodology

In this paper, we used a simple sliding window method for vehicle detection. Candidate
bounding boxes were scattered densely over an entire image and then those with no existence of
vehicles were screened out. HEM was applied to the training of CNN used for the screening.
Employed CNN architecture was also simple. We employed the simple sliding window method and
CNN architecture, because we mainly focused on the effectiveness of our HEM method. Our HEM
method is easily scaled, for instance, by replacing the CNN architecture with a richer one, such as the
model used in [18].

Our HEM method was actually a variant of Online Hard Example Mining (OHEM) [22], which
was originally designed for Fast R-CNN, but required modifications to suit our method as our
training process and the Fast R-CNN training process were different. (The details are described in
Section 2.2.)

2.1.1. Vehicle Detection Methodology

We structured the algorithm based on the method of [12]. Figure 1 shows our CNN architecture.

Figure 1. The CNN architecture employed in this study. We introduced batch normalization layers to
accelerate learning.

CONV, BN, ReLU, POOL, FC represent the convolutional layer, batch normalization layer,
Rectified Linear Unit layer, and fully connected layer, respectively. While we simplified the CNN
architecture of [12], we added batch normalization [23] layers to accelerate the learning process.

The window size was set so that it finally became 50 pixels before classification, which was large
enough to cover a typical vehicle size (see details of our data in Section 3.1). The detailed vehicle
detection steps are as follows:

• Threshold a test image by pixel intensity greater than 60 or less than 100 and calculate gradient
images, yielding three gradient images (Figure 2).

• Generate sliding windows that overlap each other on half of width and height (Figure 3).
• Move centers of the windows to geometric centers, which represent possible positions of objects

in windows. Geometric centers are calculated as Equation (1):

Figure 1. The CNN architecture employed in this study. We introduced batch normalization layers to
accelerate learning.

CONV, BN, ReLU, POOL, FC represent the convolutional layer, batch normalization layer,
Rectified Linear Unit layer, and fully connected layer, respectively. While we simplified the CNN
architecture of [12], we added batch normalization [23] layers to accelerate the learning process.

The window size was set so that it finally became 50 pixels before classification, which was large
enough to cover a typical vehicle size (see details of our data in Section 3.1). The detailed vehicle
detection steps are as follows:

• Threshold a test image by pixel intensity greater than 60 or less than 100 and calculate gradient
images, yielding three gradient images (Figure 2).

• Generate sliding windows that overlap each other on half of width and height (Figure 3).

Remote Sens. 2018, 10, 124 4 of 21

• Move centers of the windows to geometric centers, which represent possible positions of objects
in windows. Geometric centers are calculated as Equation (1):

gcenter =
W

∑
i

H

∑
j

pi,j Ii,j

S

S =
W

∑
i

H

∑
j

Ii,j

(1)

where gcenter is a vector which express a pixel position of a geometric center; W and H are the
width and height of a window patch, respectively (both are equal to the window size); vector pi,j
is a pixel position (i, j) (1 ≤ i ≤W, 1 ≤ j ≤ H); Ii,j is a gradient intensity value of a pixel (i, j);
and S is the sum of the gradient intensity values at all pixels in a window patch (Figure 4a,b).

• Enlarge them by a factor of √2 , and move them to the new geometric centers (Figure 4c,d).

• Discard unnecessary windows that were close to the others. We regarded the windows whose
centers were within a distance of 0.15 of window size as unnecessary (Figure 5).

• Apply a CNN to RGB pixels in the windows remaining after the above steps.
• Examine if the windows had overlapping windows with more than 0.5 of IoU from the highest

probability of vehicle existence to the lowest. If a window had overlapping windows, the
overlapping windows were discarded (this is called non-maximum-suppression).

Remote Sens. 2018, 10, 124 4 of 20

= , ,

= ,

(1)

where is a vector which express a pixel position of a geometric center; and are
the width and height of a window patch, respectively (both are equal to the window size); vector , is a pixel position , 	 1 , 1 ; , is a gradient intensity value of a pixel , ; and is the sum of the gradient intensity values at all pixels in a window patch (Figure
4a,b).

• Enlarge them by a factor of √2, and move them to the new geometric centers (Figure 4c,d).
• Discard unnecessary windows that were close to the others. We regarded the windows whose

centers were within a distance of 0.15 of window size as unnecessary (Figure 5).
• Apply a CNN to RGB pixels in the windows remaining after the above steps.
• Examine if the windows had overlapping windows with more than 0.5 of IoU from the highest

probability of vehicle existence to the lowest. If a window had overlapping windows, the
overlapping windows were discarded (this is called non-maximum-suppression).

(a) (b) (c) (d)

Figure 2. Original image and calculated gradient images. (a) Original image; (b) gradient of the
original image; (c) gradient of the image thresholded over 60; (d) gradient of the image thresholded
under 100.

Figure 3. How sliding windows are spaced in an image.

(a) (b) (c) (d)

Figure 4. An example of a sliding window move. (a) An initial window; (b) moved to its geometric
center; (c) enlarged; (d) moved to its new geometric center.

Figure 2. Original image and calculated gradient images. (a) Original image; (b) gradient of the original
image; (c) gradient of the image thresholded over 60; (d) gradient of the image thresholded under 100.

Remote Sens. 2018, 10, 124 4 of 20

= , ,

= ,

(1)

where is a vector which express a pixel position of a geometric center; and are
the width and height of a window patch, respectively (both are equal to the window size); vector , is a pixel position , 	 1 , 1 ; , is a gradient intensity value of a pixel , ; and is the sum of the gradient intensity values at all pixels in a window patch (Figure
4a,b).

• Enlarge them by a factor of √2, and move them to the new geometric centers (Figure 4c,d).
• Discard unnecessary windows that were close to the others. We regarded the windows whose

centers were within a distance of 0.15 of window size as unnecessary (Figure 5).
• Apply a CNN to RGB pixels in the windows remaining after the above steps.
• Examine if the windows had overlapping windows with more than 0.5 of IoU from the highest

probability of vehicle existence to the lowest. If a window had overlapping windows, the
overlapping windows were discarded (this is called non-maximum-suppression).

(a) (b) (c) (d)

Figure 2. Original image and calculated gradient images. (a) Original image; (b) gradient of the
original image; (c) gradient of the image thresholded over 60; (d) gradient of the image thresholded
under 100.

Figure 3. How sliding windows are spaced in an image.

(a) (b) (c) (d)

Figure 4. An example of a sliding window move. (a) An initial window; (b) moved to its geometric
center; (c) enlarged; (d) moved to its new geometric center.

Figure 3. How sliding windows are spaced in an image.

Remote Sens. 2018, 10, 124 5 of 21

Remote Sens. 2018, 10, 124 4 of 20

= , ,

= ,

(1)

where is a vector which express a pixel position of a geometric center; and are
the width and height of a window patch, respectively (both are equal to the window size); vector , is a pixel position , 	 1 , 1 ; , is a gradient intensity value of a pixel , ; and is the sum of the gradient intensity values at all pixels in a window patch (Figure
4a,b).

• Enlarge them by a factor of √2, and move them to the new geometric centers (Figure 4c,d).
• Discard unnecessary windows that were close to the others. We regarded the windows whose

centers were within a distance of 0.15 of window size as unnecessary (Figure 5).
• Apply a CNN to RGB pixels in the windows remaining after the above steps.
• Examine if the windows had overlapping windows with more than 0.5 of IoU from the highest

probability of vehicle existence to the lowest. If a window had overlapping windows, the
overlapping windows were discarded (this is called non-maximum-suppression).

(a) (b) (c) (d)

Figure 2. Original image and calculated gradient images. (a) Original image; (b) gradient of the
original image; (c) gradient of the image thresholded over 60; (d) gradient of the image thresholded
under 100.

Figure 3. How sliding windows are spaced in an image.

(a) (b) (c) (d)

Figure 4. An example of a sliding window move. (a) An initial window; (b) moved to its geometric
center; (c) enlarged; (d) moved to its new geometric center.
Figure 4. An example of a sliding window move. (a) An initial window; (b) moved to its geometric
center; (c) enlarged; (d) moved to its new geometric center.

Remote Sens. 2018, 10, 124 5 of 20

Figure 5. How to discard unnecessary windows.

We did not use any meta information such as shadow directions. In terms of sliding window
accuracy, we evaluated the negative impact of clutter and shadows in the Appendix A.

2.1.2. Stochastic Gradient Descent (SGD) and Room for Improvement

SGD is an algorithm for optimizing parameters in machine learning that is commonly used in
deep learning. First, we explain gradient descent (also called batch gradient descent) on which SGD
is based. In machine learning, parameters are optimized by minimizing the objective function (also
often called the loss function). In gradient descent, a parameter is updated by

θ← θ-α∇θJ(θ) (2)

where θ is the parameter, α is the learning rate, J is the objective function, and its derivative θJ θ
is called the gradient. In gradient descent, gradients are calculated over all examples in the training
data and used to update θ [24,25]. This is repeated until there is convergence. However, this becomes
inefficient or infeasible when the number of training data is huge [24,25]. Hence in SGD, a small
number of examples—called a minibatch—are sampled from the entire training dataset and used for
training. Sampling a minibatch is random as giving training data in some meaningful order can bias
gradients and lead to poor convergence [25]. Specifically, all of the training data are first shuffled [25]
and partitioned (usually equally) into minibatches, then each minibatch is processed for optimization
in order. Strictly speaking, this should be called minibatch gradient descent, and SGD originally
meant using only a single training example [24]; however, we use this term as it is commonly used
in a deep learning context. This is based on the assumption that each minibatch approximates the
entire training dataset well [24]. One minibatch process is called an iteration, and processing the
entire dataset is called an epoch. Training continues over epochs until convergence.

Now let the weight variables of our model be W, minibatch input data be X, labels (the numbers
which express the classes) of X be T, and loss function be L(W, X, T). Note that if x and t are single
examples of X and T, respectively, L(W, X, T) must be the summation of all L(W, x, t) [26]. Given
concrete input X and labels T, we can regard the X and T as the coefficients of L. Therefore, L is
regarded as a function of W. We can interpret Equation (2) as follows:

W←W-α∇WL(W, X, T) (3)

This equation updates W so that the loss function becomes smaller. As a consequence, the model
becomes able to classify input well. The gradient of each weight variable is calculated by propagating
derivatives from the tail to the head of the model based on the chain rule, which is called back
propagation [26]. Conversely, calculating output or loss function of a model when given an input is
called forward propagation.

As training progresses, most of the loss values in a minibatch become very small. However, there
are still some examples where the loss values are relatively large. We can find analogs of these in the
test results. When we conduct vehicle detection with a trained classifier, many of the bounding boxes
are classified correctly, but still there can be some that are misclassified. These are sometimes called
hard examples. For instance, they may have vehicle-like features that are difficult to discriminate (see
Figure 6 for examples).

Figure 5. How to discard unnecessary windows.

We did not use any meta information such as shadow directions. In terms of sliding window
accuracy, we evaluated the negative impact of clutter and shadows in the Appendix A.

2.1.2. Stochastic Gradient Descent (SGD) and Room for Improvement

SGD is an algorithm for optimizing parameters in machine learning that is commonly used in
deep learning. First, we explain gradient descent (also called batch gradient descent) on which SGD is
based. In machine learning, parameters are optimized by minimizing the objective function (also often
called the loss function). In gradient descent, a parameter is updated by

θ ← θ − α∇ θ J(θ) (2)

where θ is the parameter, α is the learning rate, J is the objective function, and its derivative ∇θ J(θ)
is called the gradient. In gradient descent, gradients are calculated over all examples in the training
data and used to update θ [24,25]. This is repeated until there is convergence. However, this becomes
inefficient or infeasible when the number of training data is huge [24,25]. Hence in SGD, a small
number of examples—called a minibatch—are sampled from the entire training dataset and used for
training. Sampling a minibatch is random as giving training data in some meaningful order can bias
gradients and lead to poor convergence [25]. Specifically, all of the training data are first shuffled [25]
and partitioned (usually equally) into minibatches, then each minibatch is processed for optimization
in order. Strictly speaking, this should be called minibatch gradient descent, and SGD originally meant
using only a single training example [24]; however, we use this term as it is commonly used in a deep
learning context. This is based on the assumption that each minibatch approximates the entire training
dataset well [24]. One minibatch process is called an iteration, and processing the entire dataset is
called an epoch. Training continues over epochs until convergence.

Now let the weight variables of our model be W, minibatch input data be X, labels (the numbers
which express the classes) of X be T, and loss function be L(W, X, T). Note that if x and t are single
examples of X and T, respectively, L(W, X, T) must be the summation of all L(W, x, t) [26]. Given

Remote Sens. 2018, 10, 124 6 of 21

concrete input X and labels T, we can regard the X and T as the coefficients of L. Therefore, L is
regarded as a function of W. We can interpret Equation (2) as follows:

W ← W− α∇WL(W, X, T) (3)

This equation updates W so that the loss function becomes smaller. As a consequence, the model
becomes able to classify input well. The gradient of each weight variable is calculated by propagating
derivatives from the tail to the head of the model based on the chain rule, which is called back
propagation [26]. Conversely, calculating output or loss function of a model when given an input is
called forward propagation.

As training progresses, most of the loss values in a minibatch become very small. However, there
are still some examples where the loss values are relatively large. We can find analogs of these in the
test results. When we conduct vehicle detection with a trained classifier, many of the bounding boxes
are classified correctly, but still there can be some that are misclassified. These are sometimes called
hard examples. For instance, they may have vehicle-like features that are difficult to discriminate (see
Figure 6 for examples).Remote Sens. 2018, 10, 124 6 of 20

Figure 6. Instances of hard example patches.

Such examples are likely to give clues to discriminating confusing features; therefore, utilizing
them in training processes seems to yield better accuracy. However, they would not sufficiently
contribute to learning in an ordinary SGD. As described above, most loss values in a minibatch
become very small as training progresses, and gradients calculated over a minibatch are aggregated
and averaged. This means the few informative examples are diluted by another large part of the
minibatch that do not contribute to improving accuracy. In this way, hard examples contribute little
to learning. To address this, we needed to choose the informative examples and preferentially use
them for training, which is called hard example mining.

2.2. Hard Example Mining (HEM) in SGD Training

In HEM, hard examples, which are difficult to classify correctly, are weighted more than other
examples for training. Typically, hard examples are selected if they are difficult to correctly classify
for a current classifier. HEM has been conventionally used in machine learning, e.g., for SVM training.
For pedestrian detection, Dalal and Triggs [13] searched hard examples with a preliminarily trained
detector and additionally used them for training a final detector. Felzenszwalb et al. [27] iteratively
updated the training data subset by discarding easy examples that were correctly classified beyond
the current classifier’s margin and adding hard examples that violated the current classifier’s margin.
Using a non-SVM method, Tang et al. [16] adopted a cascade of boosted classifiers of shallow decision
trees as the final classification part of their vehicle detection method. In each stage of their Real
AdaBoost [21] training, a weak classifier that best classified the training data was selected as part of
the final classifier. The misclassified examples were weighted, and the candidate weak classifiers in
the next stage were imposed on well classifying those weighted hard examples.

In object detection by deep learning, a heuristic method has been previously used. In Fast R-
CNN [7] and SPP-net [8], when sampling reference background patches for training data, if the IoU
between a background patch and a foreground patch is lower than 0.1, the sampled background
patch is excluded from training data, because the patch is not a hard example given that the patch is
easily classified to the background patch. If a background patch overlaps a foreground patch in a
much portion, such as cases where the IoU is much higher than 0.1, the patch is chosen as training
data because the patch is useful as a hard example as the background patch is likely to be confused
with the foreground. This improves accuracy to some extent but is suboptimal, as there could be some
hard examples in the excluded patches.

To address this, Shrivastava et al. [22] proposed Online Hard Example Mining (OHEM). In
OHEM, the loss values of all region proposals in an image are calculated by the current classifier and
only examples with the largest losses are picked for a minibatch. OHEM further improved accuracy
over the heuristic method.

However, we could not directly apply OHEM to our method because OHEM is designed for
Fast R-CNN, a training process that is different from ours. In Fast R-CNN training, an image is
randomly selected from all training images, region proposals are calculated in the image, and 64 of
them are selected for a minibatch (in practice, their minibatch consists of 128 examples from two
images). As Fast R-CNN employs RoI pooling—in which the feature map is calculated from an entire
image only once and region proposals are classified by projecting each of them onto the feature
map—this image-wise training is effective. OHEM replaces the selection of region proposals for a

Figure 6. Instances of hard example patches.

Such examples are likely to give clues to discriminating confusing features; therefore, utilizing
them in training processes seems to yield better accuracy. However, they would not sufficiently
contribute to learning in an ordinary SGD. As described above, most loss values in a minibatch become
very small as training progresses, and gradients calculated over a minibatch are aggregated and
averaged. This means the few informative examples are diluted by another large part of the minibatch
that do not contribute to improving accuracy. In this way, hard examples contribute little to learning.
To address this, we needed to choose the informative examples and preferentially use them for training,
which is called hard example mining.

2.2. Hard Example Mining (HEM) in SGD Training

In HEM, hard examples, which are difficult to classify correctly, are weighted more than other
examples for training. Typically, hard examples are selected if they are difficult to correctly classify for
a current classifier. HEM has been conventionally used in machine learning, e.g., for SVM training.
For pedestrian detection, Dalal and Triggs [13] searched hard examples with a preliminarily trained
detector and additionally used them for training a final detector. Felzenszwalb et al. [27] iteratively
updated the training data subset by discarding easy examples that were correctly classified beyond
the current classifier’s margin and adding hard examples that violated the current classifier’s margin.
Using a non-SVM method, Tang et al. [16] adopted a cascade of boosted classifiers of shallow decision
trees as the final classification part of their vehicle detection method. In each stage of their Real
AdaBoost [21] training, a weak classifier that best classified the training data was selected as part of
the final classifier. The misclassified examples were weighted, and the candidate weak classifiers in
the next stage were imposed on well classifying those weighted hard examples.

Remote Sens. 2018, 10, 124 7 of 21

In object detection by deep learning, a heuristic method has been previously used. In Fast
R-CNN [7] and SPP-net [8], when sampling reference background patches for training data, if the
IoU between a background patch and a foreground patch is lower than 0.1, the sampled background
patch is excluded from training data, because the patch is not a hard example given that the patch
is easily classified to the background patch. If a background patch overlaps a foreground patch in a
much portion, such as cases where the IoU is much higher than 0.1, the patch is chosen as training
data because the patch is useful as a hard example as the background patch is likely to be confused
with the foreground. This improves accuracy to some extent but is suboptimal, as there could be some
hard examples in the excluded patches.

To address this, Shrivastava et al. [22] proposed Online Hard Example Mining (OHEM). In OHEM,
the loss values of all region proposals in an image are calculated by the current classifier and only
examples with the largest losses are picked for a minibatch. OHEM further improved accuracy over
the heuristic method.

However, we could not directly apply OHEM to our method because OHEM is designed for Fast
R-CNN, a training process that is different from ours. In Fast R-CNN training, an image is randomly
selected from all training images, region proposals are calculated in the image, and 64 of them are
selected for a minibatch (in practice, their minibatch consists of 128 examples from two images).
As Fast R-CNN employs RoI pooling—in which the feature map is calculated from an entire image
only once and region proposals are classified by projecting each of them onto the feature map—this
image-wise training is effective. OHEM replaces the selection of region proposals for a minibatch
and also benefits from RoI pooling in terms of effective computation. Meanwhile, in our algorithm
proposed in Section 2.1.1., we preliminarily extracted patches from all training images, and sampled
minibatches randomly from them. We needed to modify OHEM to our training procedure.

Here we explain our method in detail. Figure 7 shows an overview of the algorithm.

Remote Sens. 2018, 10, 124 7 of 20

minibatch and also benefits from RoI pooling in terms of effective computation. Meanwhile, in our
algorithm proposed in Section 2.1.1., we preliminarily extracted patches from all training images, and
sampled minibatches randomly from them. We needed to modify OHEM to our training procedure.

Here we explain our method in detail. Figure 7 shows an overview of the algorithm.

Figure 7. Algorithm overview. Loss values are calculated in each checkbatch and only examples with
the largest losses are used for training.

First, we shuffled the entire training dataset and partitioned it into batches of size ncheck. We
called each batch a checkbatch, and ncheck is the number of examples where the loss values are
checked in one iteration. Then, we processed each checkbatch one by one. In each checkbatch, we
calculated the loss values with a current classifier, sorted examples by loss values in descending
order, picked nlearn examples with the largest losses, and used them for training to update the current
classifier; nlearn is the number of examples that are actually used for training. This process was
repeated over epochs until convergence. While ncheck was larger than nlearn, the ratio can be decided
arbitrarily. The algorithm is summarized in Algorithm 1.

Algorithm 1: Hard example mining in SGD
Input: Training dataset D, nlearn, ncheck, epochs, classifier
Output: Trained classifier
Initialize variables of
For e = 1 to epochs:

Shuffle D
Split D into size(D)/ncheck checkbatches
For each checkbatch:

Compute loss values of examples in the checkbatch by
Sort the examples in the checkbatch by loss values in descending order
Train using the top nlearn examples

In this way, for training, only the examples with the largest losses are always used, which are
the most informative ones. We expect our method to promote the learning of finer features, and it
should also find the optimal balance of positive and negative examples in the training examples, the
same as in [22]. Recall that SGD is based on the assumption that each minibatch approximates the
entire training dataset well, as described in Section 2.1.2. From this viewpoint, we can say that our
proposed method approximates checking the loss values of all the training data and only selected the
most informative examples for training in one iteration.

In plain SGD, the entire training dataset is split into minibatches and each minibatch is used for
training, which means all the examples in the training data are used for training. However, in the
proposed method, we only used a part of the examples for training in one epoch because we selected
only the examples with the largest loss values. Therefore, we compared plain SGD and the proposed
method in the same iteration, not in the same literal epoch.

Here, we also explain the implementation details. As is common practice, we adopted softmax
cross entropy as the loss function as defined as follows:

Figure 7. Algorithm overview. Loss values are calculated in each checkbatch and only examples with
the largest losses are used for training.

First, we shuffled the entire training dataset and partitioned it into batches of size ncheck. We called
each batch a checkbatch, and ncheck is the number of examples where the loss values are checked in
one iteration. Then, we processed each checkbatch one by one. In each checkbatch, we calculated
the loss values with a current classifier, sorted examples by loss values in descending order, picked
nlearn examples with the largest losses, and used them for training to update the current classifier;
nlearn is the number of examples that are actually used for training. This process was repeated over
epochs until convergence. While ncheck was larger than nlearn, the ratio can be decided arbitrarily.
The algorithm is summarized in Algorithm 1.

Remote Sens. 2018, 10, 124 8 of 21

Algorithm 1: Hard example mining in SGD

Input: Training dataset D, nlearn, ncheck, epochs, classifier f
Output: Trained classifier f
Initialize variables of f
For e = 1 to epochs:

Shuffle D
Split D into size(D)/ncheck checkbatches
For each checkbatch:

Compute loss values of examples in the checkbatch by f
Sort the examples in the checkbatch by loss values in descending order
Train f using the top nlearn examples

In this way, for training, only the examples with the largest losses are always used, which are the
most informative ones. We expect our method to promote the learning of finer features, and it should
also find the optimal balance of positive and negative examples in the training examples, the same
as in [22]. Recall that SGD is based on the assumption that each minibatch approximates the entire
training dataset well, as described in Section 2.1.2. From this viewpoint, we can say that our proposed
method approximates checking the loss values of all the training data and only selected the most
informative examples for training in one iteration.

In plain SGD, the entire training dataset is split into minibatches and each minibatch is used for
training, which means all the examples in the training data are used for training. However, in the
proposed method, we only used a part of the examples for training in one epoch because we selected
only the examples with the largest loss values. Therefore, we compared plain SGD and the proposed
method in the same iteration, not in the same literal epoch.

Here, we also explain the implementation details. As is common practice, we adopted softmax
cross entropy as the loss function as defined as follows:

loss(y, t) = − 1
N

N

∑
n=1

C

∑
c=1

tnc ln ync, (4)

where y is the softmax output; N is minibatch size; C is the number of classes; and t is a label. Only
one true label among C is 1 and the others are 0. According to this equation, when we want to sort
examples of a minibatch by loss values, we only need to check the prediction results, i.e., the last
activation of the model corresponding to the true class.

There are two ways to implement the proposed method. The first is to calculate all of the loss
values in a checkbatch, set the loss values to zeros (except the largest ones), and train. The second is to
preliminarily select examples with the worst prediction results in a checkbatch, calculate their loss
values, and train. We adopted the second procedure in this paper, mainly because we introduced batch
normalization layers [23] into our CNN, as mentioned in Section 2.1.1. Batch normalization normalizes
a minibatch so that the mean and the variance of the minibatch become 0 and 1, respectively. If the
first implementation is adopted, after examples with the largest losses in a checkbatch are selected,
the batch normalization needs to be re-calculated, because the minibatch statistics are generally
changed. However, we cannot recalculate the batch normalization by linear transformation of the
previous forward propagation result because our CNN also has non-linear ReLU layers as mentioned
in Section 2.1.1. Therefore, there is a need to recalculate the loss values of the selected examples after
all. For this reason, we adopted the second implementation.

Batch normalization has a training mode and a testing mode, and different statistics are used to
normalize a minibatch in each mode. In the training mode, it uses the statistics of the current minibatch,
and in testing mode it uses the statistics of all the data that have been used for training. We used the
testing mode in the loss checking process, because our idea was to use examples that were difficult to
classify by the current classifier.

Remote Sens. 2018, 10, 124 9 of 21

2.3. Accuracy Assesment

2.3.1. Vehicle Detection Criteria

We adopted the same criteria as [12]. When a window was detected as containing vehicles, if the
distance of centers between it and any groundtruth was smaller than 0.45 of the window size, it was
judged as true positive (TP), otherwise it was a false positive (FP). A groundtruth was judged to be
detected if it had at least one corresponding TP. In these criteria, it is possible to have multiple TPs for
one vehicle, which are redundant except for one TP. One TP is allowed to detect only one vehicle.

2.3.2. Quantitative Measure

We calculated the recall rate (RR), precision rate (PR), and false alarm rate (FAR) as per [12,14].
We also calculated the F1 scores by using the obtained RR and PR scores.

RR =
detected groundtruths

groundtruths

PR =
detected groundtruths

detected windows

FAR =
false positives
groundtruths

F1 =
2× PR× RR

PR + RR

3. Experiment and Results

We evaluated the performance of our method by comparing it with plain SGD training (hereinafter
called the normal method). First, we trained CNNs by the normal and proposed methods, and then
conducted vehicle detection with those classifiers. An overview of the experiment is shown in Figure 8.

Remote Sens. 2018, 10, 124 9 of 20

methods, and then conducted vehicle detection with those classifiers. An overview of the experiment
is shown in Figure 8.

Figure 8. Experiment overview.

We used sparse training data as explained in Sections 3.1 and 3.2. We conducted preliminary
experiments using the normal method and found that it still had room for improvement, because the
FAR in the result was high. We aimed to reduce false positives and improve the accuracy by using
the proposed method, which was the first motivation of this paper.

3.1. Training and Test Images

We downloaded aerial ortho images of New York from the U.S. Geological Survey (USGS), cut
out areas of harbors and malls, and used them for training and testing. The pixel size of all images
was 0.15 m. Table 1 shows the images and their attributes. The train_2 image was taken in the spring
of 2013, and the rest was taken in April–May of 2014. These were the only images used in this paper.

Table 1. Training and test images.

 Training Images Test Images

Name train_1 train_2 test_1 test_2
City New York New York

Feature Harbor Mall Harbor Mall
Area 0.16 km2 0.08 km2 0.16 km2 0.12 km2

Vehicle 687 821 806 510

3.2. Data Preparation

We prepared groundtruth maps of all the images described in Section 3.1 by choosing a pixel in
the center of each vehicle by hand. Then we generated the training dataset by extracting patches from
the training images. For positive examples, we first extracted bounding boxes around the dots in the
groundtruth maps as groundtruth patches. The window size was 50 pixels, which was designed to
well cover the typical size of vehicles. To increase the variance of the positive examples, we generated
10 rotated duplications of each groundtruth patch at rotation angles from 9° to 90° in increments of
9°. This is called data augmentation. Then, for negative examples, we extracted background patches
randomly where the IoU between a candidate patch and any groundtruth was lower than 0.4. These
types of methods are commonly used. The authors in [14] used similar methods for data preparation.
Finally, all patches were resized to 48 by 48 pixels, which was the input size of our CNN.

Figure 8. Experiment overview.

We used sparse training data as explained in Sections 3.1 and 3.2. We conducted preliminary
experiments using the normal method and found that it still had room for improvement, because the
FAR in the result was high. We aimed to reduce false positives and improve the accuracy by using the
proposed method, which was the first motivation of this paper.

3.1. Training and Test Images

We downloaded aerial ortho images of New York from the U.S. Geological Survey (USGS), cut
out areas of harbors and malls, and used them for training and testing. The pixel size of all images was
0.15 m. Table 1 shows the images and their attributes. The train_2 image was taken in the spring of
2013, and the rest was taken in April–May of 2014. These were the only images used in this paper.

Remote Sens. 2018, 10, 124 10 of 21

Table 1. Training and test images.

Training Images Test Images

Remote Sens. 2018, 10, 124 9 of 20

methods, and then conducted vehicle detection with those classifiers. An overview of the experiment
is shown in Figure 8.

Figure 8. Experiment overview.

We used sparse training data as explained in Sections 3.1 and 3.2. We conducted preliminary
experiments using the normal method and found that it still had room for improvement, because the
FAR in the result was high. We aimed to reduce false positives and improve the accuracy by using
the proposed method, which was the first motivation of this paper.

3.1. Training and Test Images

We downloaded aerial ortho images of New York from the U.S. Geological Survey (USGS), cut
out areas of harbors and malls, and used them for training and testing. The pixel size of all images
was 0.15 m. Table 1 shows the images and their attributes. The train_2 image was taken in the spring
of 2013, and the rest was taken in April–May of 2014. These were the only images used in this paper.

Table 1. Training and test images.

Training Images Test Images

Name train_1 train_2 test_1 test_2
City New York New York

Feature Harbor Mall Harbor Mall
Area 0.16 km2 0.08 km2 0.16 km2 0.12 km2

Vehicle 687 821 806 510

3.2. Data Preparation

We prepared groundtruth maps of all the images described in Section 3.1 by choosing a pixel in
the center of each vehicle by hand. Then we generated the training dataset by extracting patches from
the training images. For positive examples, we first extracted bounding boxes around the dots in the
groundtruth maps as groundtruth patches. The window size was 50 pixels, which was designed to
well cover the typical size of vehicles. To increase the variance of the positive examples, we generated
10 rotated duplications of each groundtruth patch at rotation angles from 9° to 90° in increments of
9°. This is called data augmentation. Then, for negative examples, we extracted background patches
randomly where the IoU between a candidate patch and any groundtruth was lower than 0.4. These
types of methods are commonly used. The authors in [14] used similar methods for data preparation.
Finally, all patches were resized to 48 by 48 pixels, which was the input size of our CNN.

Remote Sens. 2018, 10, 124 9 of 20

methods, and then conducted vehicle detection with those classifiers. An overview of the experiment
is shown in Figure 8.

Figure 8. Experiment overview.

We used sparse training data as explained in Sections 3.1 and 3.2. We conducted preliminary
experiments using the normal method and found that it still had room for improvement, because the
FAR in the result was high. We aimed to reduce false positives and improve the accuracy by using
the proposed method, which was the first motivation of this paper.

3.1. Training and Test Images

We downloaded aerial ortho images of New York from the U.S. Geological Survey (USGS), cut
out areas of harbors and malls, and used them for training and testing. The pixel size of all images
was 0.15 m. Table 1 shows the images and their attributes. The train_2 image was taken in the spring
of 2013, and the rest was taken in April–May of 2014. These were the only images used in this paper.

Table 1. Training and test images.

Training Images Test Images

Name train_1 train_2 test_1 test_2
City New York New York

Feature Harbor Mall Harbor Mall
Area 0.16 km2 0.08 km2 0.16 km2 0.12 km2

Vehicle 687 821 806 510

3.2. Data Preparation

We prepared groundtruth maps of all the images described in Section 3.1 by choosing a pixel in
the center of each vehicle by hand. Then we generated the training dataset by extracting patches from
the training images. For positive examples, we first extracted bounding boxes around the dots in the
groundtruth maps as groundtruth patches. The window size was 50 pixels, which was designed to
well cover the typical size of vehicles. To increase the variance of the positive examples, we generated
10 rotated duplications of each groundtruth patch at rotation angles from 9° to 90° in increments of
9°. This is called data augmentation. Then, for negative examples, we extracted background patches
randomly where the IoU between a candidate patch and any groundtruth was lower than 0.4. These
types of methods are commonly used. The authors in [14] used similar methods for data preparation.
Finally, all patches were resized to 48 by 48 pixels, which was the input size of our CNN.

Remote Sens. 2018, 10, 124 9 of 20

methods, and then conducted vehicle detection with those classifiers. An overview of the experiment
is shown in Figure 8.

Figure 8. Experiment overview.

We used sparse training data as explained in Sections 3.1 and 3.2. We conducted preliminary
experiments using the normal method and found that it still had room for improvement, because the
FAR in the result was high. We aimed to reduce false positives and improve the accuracy by using
the proposed method, which was the first motivation of this paper.

3.1. Training and Test Images

We downloaded aerial ortho images of New York from the U.S. Geological Survey (USGS), cut
out areas of harbors and malls, and used them for training and testing. The pixel size of all images
was 0.15 m. Table 1 shows the images and their attributes. The train_2 image was taken in the spring
of 2013, and the rest was taken in April–May of 2014. These were the only images used in this paper.

Table 1. Training and test images.

Training Images Test Images

Name train_1 train_2 test_1 test_2
City New York New York

Feature Harbor Mall Harbor Mall
Area 0.16 km2 0.08 km2 0.16 km2 0.12 km2

Vehicle 687 821 806 510

3.2. Data Preparation

We prepared groundtruth maps of all the images described in Section 3.1 by choosing a pixel in
the center of each vehicle by hand. Then we generated the training dataset by extracting patches from
the training images. For positive examples, we first extracted bounding boxes around the dots in the
groundtruth maps as groundtruth patches. The window size was 50 pixels, which was designed to
well cover the typical size of vehicles. To increase the variance of the positive examples, we generated
10 rotated duplications of each groundtruth patch at rotation angles from 9° to 90° in increments of
9°. This is called data augmentation. Then, for negative examples, we extracted background patches
randomly where the IoU between a candidate patch and any groundtruth was lower than 0.4. These
types of methods are commonly used. The authors in [14] used similar methods for data preparation.
Finally, all patches were resized to 48 by 48 pixels, which was the input size of our CNN.

Remote Sens. 2018, 10, 124 9 of 20

methods, and then conducted vehicle detection with those classifiers. An overview of the experiment
is shown in Figure 8.

Figure 8. Experiment overview.

We used sparse training data as explained in Sections 3.1 and 3.2. We conducted preliminary
experiments using the normal method and found that it still had room for improvement, because the
FAR in the result was high. We aimed to reduce false positives and improve the accuracy by using
the proposed method, which was the first motivation of this paper.

3.1. Training and Test Images

We downloaded aerial ortho images of New York from the U.S. Geological Survey (USGS), cut
out areas of harbors and malls, and used them for training and testing. The pixel size of all images
was 0.15 m. Table 1 shows the images and their attributes. The train_2 image was taken in the spring
of 2013, and the rest was taken in April–May of 2014. These were the only images used in this paper.

Table 1. Training and test images.

Training Images Test Images

Name train_1 train_2 test_1 test_2
City New York New York

Feature Harbor Mall Harbor Mall
Area 0.16 km2 0.08 km2 0.16 km2 0.12 km2

Vehicle 687 821 806 510

3.2. Data Preparation

We prepared groundtruth maps of all the images described in Section 3.1 by choosing a pixel in
the center of each vehicle by hand. Then we generated the training dataset by extracting patches from
the training images. For positive examples, we first extracted bounding boxes around the dots in the
groundtruth maps as groundtruth patches. The window size was 50 pixels, which was designed to
well cover the typical size of vehicles. To increase the variance of the positive examples, we generated
10 rotated duplications of each groundtruth patch at rotation angles from 9° to 90° in increments of
9°. This is called data augmentation. Then, for negative examples, we extracted background patches
randomly where the IoU between a candidate patch and any groundtruth was lower than 0.4. These
types of methods are commonly used. The authors in [14] used similar methods for data preparation.
Finally, all patches were resized to 48 by 48 pixels, which was the input size of our CNN.

Name train_1 train_2 test_1 test_2
City New York New York

Feature Harbor Mall Harbor Mall
Area 0.16 km2 0.08 km2 0.16 km2 0.12 km2

Vehicle 687 821 806 510

3.2. Data Preparation

We prepared groundtruth maps of all the images described in Section 3.1 by choosing a pixel in
the center of each vehicle by hand. Then we generated the training dataset by extracting patches from
the training images. For positive examples, we first extracted bounding boxes around the dots in the
groundtruth maps as groundtruth patches. The window size was 50 pixels, which was designed to
well cover the typical size of vehicles. To increase the variance of the positive examples, we generated
10 rotated duplications of each groundtruth patch at rotation angles from 9◦ to 90◦ in increments of
9◦. This is called data augmentation. Then, for negative examples, we extracted background patches
randomly where the IoU between a candidate patch and any groundtruth was lower than 0.4. These
types of methods are commonly used. The authors in [14] used similar methods for data preparation.
Finally, all patches were resized to 48 by 48 pixels, which was the input size of our CNN.

We generated five different training datasets. The groundtruth patches were always the same,
whereas the amounts of sampled background patches were different. The ratios of background
patches to groundtruth patches (without the augmented ones) were 100:1, 200:1, 300:1, 400:1, and 500:1
(hereinafter called ×100, ×200, ×300, ×400, and ×500), respectively. For instance, in the case of ×100,
the ratio of positive examples (including augmented ones) to negative examples was 11:100. We used
them, because the balance of positive and negative examples in the training data generally affects
the result, and we aimed to evaluate this effect. As the background area is generally larger than the
foreground area in an image, it is common to use more negative examples than positive examples
in the training data for better accuracy [1,7,8,11,14]. This is more conspicuous in the case of vehicle
detection, because vehicles are small objects. Taking these into account, we began the ratio of positive
to negative examples from 11:100.

In each training dataset, we randomly selected one-tenth of the dataset and used it as a fixed
hold-out validation dataset. During training, we calculated the loss and accuracy on this validation
dataset in every epoch, which was its only use.

3.3. Experiment

We trained classifiers with the normal method and our proposed method. In the proposed method,
we used two ncheck values of 500 and 1000 (hereinafter called HEM500 and HEM1000, respectively)
to evaluate the effect of this parameter. Due to our limited computing resources, we could test only
these cases. For each training method, we used the ×100, ×200, ×300, ×400, and ×500 datasets
as described in Section 3.2. After training, we conducted vehicle detection tests with these trained
classifiers. Table 2 shows all the experimental conditions, which are combinations of the training
method and the background patch amount.

Remote Sens. 2018, 10, 124 11 of 21

Table 2. Experimental conditions, which are combinations of the training method and the background
patch amount. Each pair in parentheses expresses one experimental condition.

Training Method

Normal HEM500 HEM1000

BG patch amount

×100 (×100, Normal) (×100, HEM500) (×100, HEM1000)
×200 (×200, Normal) (×200, HEM500) (×200, HEM1000)
×300 (×300, Normal) (×300, HEM500) (×300, HEM1000)
×400 (×400, Normal) (×400, HEM500) (×400, HEM1000)
×500 (×500, Normal) (×500, HEM500) (×500, HEM1000)

Since we trained the CNN classifiers from scratch and initialized the weight variables randomly,
the performances of the trained classifiers were slightly different. To mitigate these fluctuations,
we repeated all experiments under each condition 10 times and averaged the results. The standard
deviations and standard errors are shown in the result tables.

3.4. Training Results

We initialized the CNN weight variables at random. We used the Adam solver [28], and the
training iterations were equivalent to 100 epochs in the normal method. (e.g., 500 epochs when ncheck
was five times larger than nlearn). The batch size for learning (i.e., nlearn) was constantly 100. These
were decided empirically based on preliminary experiments. In every epoch during training, the mean
loss and mean accuracy were calculated for the training and validation datasets.

As the shapes of all of the graphs were similar for the different conditions, we present only one
example. Figure 9 shows the training curves where the background patch amount was ×200 (one of
the results of repeated experiments). In Figure 9, all methods seem to have sufficiently converged.
For training loss and accuracy, the fluctuations of the proposed method were larger than the normal
method. This seems natural because in every iteration, the CNN is updated and used to calculate
loss values and select training examples, which means that the criteria of selecting training examples
changed in every iteration. Figure 10 shows the moving average of Figure 9d, which aimed to show the
convergence trend more clearly. In Figure 10, we averaged about 6350 iterations, which corresponded
to two epochs of the normal method.

As Figure 10 shows, while the accuracy in the normal method still improved slightly toward the
last epochs, it improved much faster in the proposed method. This means that the proposed method
markedly accelerated convergence. In addition, the curve of HEM1000 seems to have converged
slightly earlier than that of HEM500. This indicates that the larger ncheck accelerated convergence more.

To evaluate the training results, we compared the final values of validation loss and validation
accuracy under different conditions. To mitigate fluctuations, we calculated the moving average
of iterations corresponding to 10 epochs of the normal method and then averaged the repeated
experiments. Table 3 shows the statistics, which include the standard deviations and standard errors.
While validation losses were not necessarily smaller in the proposed method than in the normal
method, validation accuracies were always higher in the proposed method than in the normal method,
which can be said explicitly according to the standard errors. Although the main purpose of this
validation was to check the overfitting occurrence, this result is evidence that the proposed method
yielded better generalization. When we compared the validation accuracies of HEM500 and HEM1000,
we could not see a significant difference. Note that this accuracy calculation included classifying the
background patches. The performance of our system in terms of vehicle detection is evaluated in
Section 3.5.

Remote Sens. 2018, 10, 124 12 of 21

Remote Sens. 2018, 10, 124 11 of 20

the convergence trend more clearly. In Figure 10, we averaged about 6350 iterations, which
corresponded to two epochs of the normal method.

(a) (b)

(c) (d)

Figure 9. Training curve example. The background patch amount was ×200 in this case. (a) Training
loss; (b) training Accuracy; (c) validation loss; and (d) validation accuracy.

Figure 10. Moving average of Figure 9d.

As Figure 10 shows, while the accuracy in the normal method still improved slightly toward the
last epochs, it improved much faster in the proposed method. This means that the proposed method
markedly accelerated convergence. In addition, the curve of HEM1000 seems to have converged
slightly earlier than that of HEM500. This indicates that the larger ncheck accelerated convergence
more.

To evaluate the training results, we compared the final values of validation loss and validation
accuracy under different conditions. To mitigate fluctuations, we calculated the moving average of
iterations corresponding to 10 epochs of the normal method and then averaged the repeated

Figure 9. Training curve example. The background patch amount was ×200 in this case. (a) Training
loss; (b) training Accuracy; (c) validation loss; and (d) validation accuracy.

Remote Sens. 2018, 10, 124 11 of 20

the convergence trend more clearly. In Figure 10, we averaged about 6350 iterations, which
corresponded to two epochs of the normal method.

(a) (b)

(c) (d)

Figure 9. Training curve example. The background patch amount was ×200 in this case. (a) Training
loss; (b) training Accuracy; (c) validation loss; and (d) validation accuracy.

Figure 10. Moving average of Figure 9d.

As Figure 10 shows, while the accuracy in the normal method still improved slightly toward the
last epochs, it improved much faster in the proposed method. This means that the proposed method
markedly accelerated convergence. In addition, the curve of HEM1000 seems to have converged
slightly earlier than that of HEM500. This indicates that the larger ncheck accelerated convergence
more.

To evaluate the training results, we compared the final values of validation loss and validation
accuracy under different conditions. To mitigate fluctuations, we calculated the moving average of
iterations corresponding to 10 epochs of the normal method and then averaged the repeated

Figure 10. Moving average of Figure 9d.

Remote Sens. 2018, 10, 124 13 of 21

Table 3. Statistics of the last values of validation loss and validation accuracy. We calculated the moving
average graphs and averaged the repeated experiments. Here we emphasized the best accuracy among
methods in bold font.

BG Patch Training
Method

Last Validation Loss Last Validation Accuracy

Average STDDEV STDERR Average STDDEV STDERR

×100
Normal 0.0031 0.0006 0.0002 99.932% 0.013% 0.004%
HEM500 0.0030 0.0005 0.0002 99.950% 0.005% 0.002%

HEM1000 0.0036 0.0008 0.0003 99.949% 0.014% 0.005%

×200
Normal 0.0016 0.0004 0.0001 99.957% 0.008% 0.003%
HEM500 0.0015 0.0005 0.0002 99.973% 0.006% 0.002%

HEM1000 0.0013 0.0002 0.0001 99.973% 0.002% 0.001%

×300
Normal 0.0019 0.0003 0.0001 99.963% 0.007% 0.002%
HEM500 0.0022 0.0005 0.0002 99.974% 0.006% 0.002%

HEM1000 0.0022 0.0004 0.0001 99.973% 0.003% 0.001%

×400
Normal 0.0016 0.0003 0.0001 99.969% 0.004% 0.001%
HEM500 0.0017 0.0002 0.0001 99.978% 0.003% 0.001%

HEM1000 0.0016 0.0003 0.0001 99.981% 0.003% 0.001%

×500
Normal 0.0011 0.0002 0.0001 99.978% 0.003% 0.001%
HEM500 0.0010 0.0002 0.0001 99.986% 0.003% 0.001%

HEM1000 0.0011 0.0002 0.0001 99.986% 0.002% 0.001%

3.5. Vehicle Detection Results

We conducted vehicle detection using the method described in Section 2.1.1 and the test images
described in Section 3.1. Results of repeated experiments were averaged.

Figure 11 shows the F1-measure results and Table 4 shows the statistics of all quantitative
measures, which include the standard deviations and standard errors.

Remote Sens. 2018, 10, 124 12 of 20

experiments. Table 3 shows the statistics, which include the standard deviations and standard errors.
While validation losses were not necessarily smaller in the proposed method than in the normal
method, validation accuracies were always higher in the proposed method than in the normal
method, which can be said explicitly according to the standard errors. Although the main purpose of
this validation was to check the overfitting occurrence, this result is evidence that the proposed
method yielded better generalization. When we compared the validation accuracies of HEM500 and
HEM1000, we could not see a significant difference. Note that this accuracy calculation included
classifying the background patches. The performance of our system in terms of vehicle detection is
evaluated in Section 3.5.

Table 3. Statistics of the last values of validation loss and validation accuracy. We calculated the
moving average graphs and averaged the repeated experiments. Here we emphasized the best
accuracy among methods in bold font.

BG Patch Training Method
Last Validation Loss Last Validation Accuracy

Average STDDEV STDERR Average STDDEV STDERR

×100
Normal 0.0031 0.0006 0.0002 99.932% 0.013% 0.004%
HEM500 0.0030 0.0005 0.0002 99.950% 0.005% 0.002%
HEM1000 0.0036 0.0008 0.0003 99.949% 0.014% 0.005%

×200
Normal 0.0016 0.0004 0.0001 99.957% 0.008% 0.003%
HEM500 0.0015 0.0005 0.0002 99.973% 0.006% 0.002%
HEM1000 0.0013 0.0002 0.0001 99.973% 0.002% 0.001%

×300
Normal 0.0019 0.0003 0.0001 99.963% 0.007% 0.002%
HEM500 0.0022 0.0005 0.0002 99.974% 0.006% 0.002%
HEM1000 0.0022 0.0004 0.0001 99.973% 0.003% 0.001%

×400
Normal 0.0016 0.0003 0.0001 99.969% 0.004% 0.001%
HEM500 0.0017 0.0002 0.0001 99.978% 0.003% 0.001%
HEM1000 0.0016 0.0003 0.0001 99.981% 0.003% 0.001%

×500
Normal 0.0011 0.0002 0.0001 99.978% 0.003% 0.001%
HEM500 0.0010 0.0002 0.0001 99.986% 0.003% 0.001%
HEM1000 0.0011 0.0002 0.0001 99.986% 0.002% 0.001%

3.5. Vehicle Detection Results

We conducted vehicle detection using the method described in Section 2.1.1 and the test images
described in Section 3.1. Results of repeated experiments were averaged.

Figure 11 shows the F1-measure results and Table 4 shows the statistics of all quantitative
measures, which include the standard deviations and standard errors.

Figure 11. F1 scores in each condition. Our proposed method improved the scores in all cases over
the normal method.

Figure 11. F1 scores in each condition. Our proposed method improved the scores in all cases over the
normal method.

In terms of F1 scores, while almost all of the standard errors were smaller than 0.01, the proposed
method improved the scores by over 0.02 when compared to the normal method in most cases, which
proved the effectiveness of our proposed method. Moreover, because the standard deviations of all
methods were not very different, we can say our proposed method worked stably.

Remote Sens. 2018, 10, 124 14 of 21

Table 4. Statistics of all quantitative measures. Here we emphasized the best accuracy among methods in bold font.

BG Patch Training
Method

FAR PR RR F1

Avr. STDDEV STDERR Avr. STDDEV STDERR Avr. STDDEV STDERR Avr. STDDEV STDERR

×100
Normal 0.584 0.109 0.036 0.511 0.041 0.014 0.887 0.033 0.011 0.647 0.028 0.009
HEM500 0.481 0.104 0.035 0.554 0.042 0.014 0.873 0.027 0.009 0.676 0.028 0.009
HEM1000 0.480 0.099 0.033 0.556 0.042 0.014 0.877 0.012 0.004 0.680 0.030 0.010

×200
Normal 0.526 0.073 0.024 0.527 0.031 0.010 0.879 0.030 0.010 0.658 0.019 0.006
HEM500 0.388 0.056 0.019 0.590 0.027 0.009 0.870 0.017 0.006 0.703 0.016 0.005
HEM1000 0.434 0.066 0.022 0.573 0.031 0.010 0.861 0.017 0.006 0.687 0.020 0.007

×300
Normal 0.452 0.091 0.030 0.555 0.031 0.010 0.868 0.014 0.005 0.676 0.021 0.007
HEM500 0.435 0.071 0.024 0.566 0.038 0.013 0.857 0.029 0.010 0.680 0.021 0.007
HEM1000 0.396 0.066 0.022 0.587 0.041 0.014 0.849 0.022 0.007 0.693 0.027 0.009

×400
Normal 0.490 0.127 0.042 0.547 0.050 0.017 0.873 0.018 0.006 0.671 0.036 0.012
HEM500 0.340 0.081 0.027 0.616 0.049 0.016 0.847 0.027 0.009 0.711 0.024 0.008
HEM1000 0.383 0.062 0.021 0.593 0.032 0.011 0.862 0.020 0.007 0.702 0.021 0.007

×500
Normal 0.446 0.063 0.021 0.566 0.030 0.010 0.861 0.025 0.008 0.683 0.024 0.008
HEM500 0.394 0.094 0.031 0.591 0.047 0.016 0.837 0.023 0.008 0.692 0.030 0.010
HEM1000 0.370 0.050 0.017 0.601 0.024 0.008 0.858 0.013 0.004 0.707 0.016 0.005

Remote Sens. 2018, 10, 124 15 of 21

When we compared the results in terms of the background patch amount, the F1 scores in the
normal method tended to be higher when the background patch amount was larger, and this seems to
also apply in the proposed method.

When we compared the F1 scores of HEM500 and HEM1000, from ×100 to ×500, HEM500 won in
two cases and HEM1000 won in the other three cases, which seems almost even. The score differences
were less than those between the normal method and the proposed method.

Figure 12 plots the FAR versus the RR. As can be seen, the proposed method greatly reduced
the FAR while retaining nearly the same RR. This mainly contributed to accuracy improvement,
because our training data were sparse and the FARs were relatively large throughout our experiments.
Note that the power of the proposed method was not restricted to FAR reduction, because the most
informative examples were automatically selected in every checkbatch.

Although the non-maximum-suppression (NMS) was properly applied, there were some
duplicated detections (redundant TPs) due to a limitation of NMS. However, this does not affect
accuracy assessment according to the definitions of PR and F1.

Figure 13 shows an example of good and bad results by HEM500 where the background patch
amount was ×400. We chose the classifiers that achieved the best F1 scores from repeated experiments.
While many FPs were reduced in the pair of images in Figure 13a, a few vehicles became undetected in
Figure 13b. There seems to have been a kind of trade-off, while overall accuracy was improved.

Remote Sens. 2018, 10, 124 14 of 20

In terms of F1 scores, while almost all of the standard errors were smaller than 0.01, the proposed
method improved the scores by over 0.02 when compared to the normal method in most cases, which
proved the effectiveness of our proposed method. Moreover, because the standard deviations of all
methods were not very different, we can say our proposed method worked stably.

When we compared the results in terms of the background patch amount, the F1 scores in the
normal method tended to be higher when the background patch amount was larger, and this seems
to also apply in the proposed method.

When we compared the F1 scores of HEM500 and HEM1000, from ×100 to ×500, HEM500 won
in two cases and HEM1000 won in the other three cases, which seems almost even. The score
differences were less than those between the normal method and the proposed method.

Figure 12 plots the FAR versus the RR. As can be seen, the proposed method greatly reduced the
FAR while retaining nearly the same RR. This mainly contributed to accuracy improvement, because
our training data were sparse and the FARs were relatively large throughout our experiments. Note
that the power of the proposed method was not restricted to FAR reduction, because the most
informative examples were automatically selected in every checkbatch.

Figure 12. FAR versus RR. Our method greatly reduced the FAR while keeping nearly the same RR.

Although the non-maximum-suppression (NMS) was properly applied, there were some
duplicated detections (redundant TPs) due to a limitation of NMS. However, this does not affect
accuracy assessment according to the definitions of PR and F1.

Figure 13 shows an example of good and bad results by HEM500 where the background patch
amount was ×400. We chose the classifiers that achieved the best F1 scores from repeated
experiments. While many FPs were reduced in the pair of images in Figure 13a, a few vehicles became
undetected in Figure 13b. There seems to have been a kind of trade-off, while overall accuracy was
improved.

(a) (b)

Figure 13. An example of good and bad cases in the tested images. In each pair of images, the left one
shows the result of the normal method and the right one shows the result of HEM500. (a) Good case.
On the right, FPs were much reduced; (b) bad case. On the right, some vehicles became undetected.

Figure 12. FAR versus RR. Our method greatly reduced the FAR while keeping nearly the same RR.

Remote Sens. 2018, 10, 124 14 of 20

In terms of F1 scores, while almost all of the standard errors were smaller than 0.01, the proposed
method improved the scores by over 0.02 when compared to the normal method in most cases, which
proved the effectiveness of our proposed method. Moreover, because the standard deviations of all
methods were not very different, we can say our proposed method worked stably.

When we compared the results in terms of the background patch amount, the F1 scores in the
normal method tended to be higher when the background patch amount was larger, and this seems
to also apply in the proposed method.

When we compared the F1 scores of HEM500 and HEM1000, from ×100 to ×500, HEM500 won
in two cases and HEM1000 won in the other three cases, which seems almost even. The score
differences were less than those between the normal method and the proposed method.

Figure 12 plots the FAR versus the RR. As can be seen, the proposed method greatly reduced the
FAR while retaining nearly the same RR. This mainly contributed to accuracy improvement, because
our training data were sparse and the FARs were relatively large throughout our experiments. Note
that the power of the proposed method was not restricted to FAR reduction, because the most
informative examples were automatically selected in every checkbatch.

Figure 12. FAR versus RR. Our method greatly reduced the FAR while keeping nearly the same RR.

Although the non-maximum-suppression (NMS) was properly applied, there were some
duplicated detections (redundant TPs) due to a limitation of NMS. However, this does not affect
accuracy assessment according to the definitions of PR and F1.

Figure 13 shows an example of good and bad results by HEM500 where the background patch
amount was ×400. We chose the classifiers that achieved the best F1 scores from repeated
experiments. While many FPs were reduced in the pair of images in Figure 13a, a few vehicles became
undetected in Figure 13b. There seems to have been a kind of trade-off, while overall accuracy was
improved.

(a) (b)

Figure 13. An example of good and bad cases in the tested images. In each pair of images, the left one
shows the result of the normal method and the right one shows the result of HEM500. (a) Good case.
On the right, FPs were much reduced; (b) bad case. On the right, some vehicles became undetected.

Figure 13. An example of good and bad cases in the tested images. In each pair of images, the left one
shows the result of the normal method and the right one shows the result of HEM500. (a) Good case.
On the right, FPs were much reduced; (b) bad case. On the right, some vehicles became undetected.

Remote Sens. 2018, 10, 124 16 of 21

4. Discussion

4.1. Improvement Extent

While we could see that our method improved accuracy, the improvement of F1 did not seem
very significant. We investigated the reasons. First, the improvement was different between test_1
image and test_2 image. Table 5 shows the F1 result of each test image in the case of ×400.

Table 5. Average F1 score and improvement of each test image in the case of ×400.

Image Method Improvement
Normal HEM500

test_1 0.83 0.82 −0.01
test_2 0.54 0.61 0.07
Both 0.67 0.71 0.04

As can be seen, although the result of test_2 image was much improved, the result of test_1 was
originally good, because test_1 image had very similar features to the train_1 image and did not much
improve (became slightly worse in this case) using our method. Thus, the improvement of both test
images became relatively small.

The second reason was redundant TP. While our method greatly reduced FPs, the improvement of
PR was relatively small. In Table 4, in the case of×400, while FAR reduction was about 0.13 on average,
PR improvement was about 0.06 on average. This was because not only FPs, but also redundant
TPs hurt PR. As we checked, the ratios of redundant TPs to detected vehicles in normal, HEM500,
and HEM1000 were about 0.31, 0.25, and 0.27, respectively. Our method also seems to have reduced
redundant TPs, which were because redundant TPs were relatively distant from the vehicles. For
example, in one experiment using the normal method with ×400, the average distances between
vehicles and TPs that detected vehicles, and between vehicles and redundant TPs, were 6.6 pixels and
11.5 pixels, respectively. As our training data only included positive examples that exactly matched the
locations of vehicles, such redundant TPs would have been reduced by HEM. However, the reduction
was smaller than that of FPs, because the redundant TPs overlap vehicles to some extent. This diluted
the improvement of FAR.

The third reason was RR decrease. In Table 4, in the case of×400, RR decreased by 0.02 on average.
As above-mentioned, our HEM method seems to have reduced TPs that were relatively distant from
vehicles, and a small part of them may have detected vehicles before applying HEM. This slightly hurt
the RR.

The second and third reasons came from the inaccuracy of sliding windows. By replacing
sliding windows with a more accurate method such as RPN, we can see the improvement by HEM
more explicitly.

The best average F1 score throughout our experiments was 0.71, which is actually not a
state-of-the-art result. For instance, [16] reported an F1 of 0.83, and [18] reported very high F1 of 0.94.
Although it is not a fair comparison, because the training data and test settings are totally different,
0.71 is not the best. The primary reason would be the insufficiency of our training data. The authors
in [16] used the Munich dataset [29], which has 9433 annotated vehicles, and [18] proposed and used
the COWC dataset, which has 32,716 annotated vehicles. Compared to those datasets, our training
data were sparse. Although our HEM could improve accuracy, sufficient training data were necessary
for high performance. Another reason would be the simplicity of our CNN architecture. When we
compared just the numbers of convolutional layers in each method, [16] had five and [18] had 50,
whereas our model only had three.

Remote Sens. 2018, 10, 124 17 of 21

We can combine our HEM method with adequate training data and rich CNN architecture for
higher accuracy. Moreover, as discussed above, the accuracy would further become better by improving
or replacing the sliding window method. Our HEM method can easily scale with those options.

4.2. Training Loss Values and Duration

Shrivastava et al. [22] reported that the loss values during training became smaller by using
their OHEM method because they conducted a fair comparison where all region proposals in an
image—not just the ones selected for a minibatch—were used to calculate the loss values in every
method. Meanwhile, the loss values of our method seemed to have been better than the normal
method; however, the difference was very small (Figure 9a). This was because those loss values were
calculated from examples that were actually used for training; those examples had relatively large loss
values, because we chose such examples for training. If we evaluated the loss values over a checkbatch,
the trend would be similar to [22].

Our method took more time to train for the same iterations than the normal method, because of
the overhead of calculating loss values in a checkbatch. For instance, training durations of normal,
HEM500, and HEM1000 were 2.5, 6, and 10 h, respectively, with Tesla K20X manufactured by NVIDIA
(Santa Clara, CA, USA) in Figure 9. In the original OHEM, it took approximately 1.7 times longer
in one iteration to select 64 out of around 4000 region proposals in an image. Our method is more
time-consuming than theirs, because our method requires extra forward propagation calculations as
described in Section 2.2, whereas the original OHEM can calculate the loss values of region proposals
with small additional costs due to RoI pooling.

However, our method strongly accelerates convergence. Therefore, the training could be stopped
much earlier in the proposed method, which would cancel out the demerit.

4.3. Source of Accuracy Improvement

In our experiment, more background patches tended to yield better F1 scores in the normal
method. This may be because more background patches contain more “negative” features to be
discriminated from vehicles, and it kept improving the accuracy in the range of our experiments.
FP reduction seems to have contributed more to the performance improvement, because the FAR was
relatively high in our experiments.

To confirm how accuracy improvement continued, we conducted additional experiments.
We gradually increased the amount of background patches to 1000 times the number of groundtruths.
Figure 14 shows all the F1 scores of vehicle detection tests by the normal method, including the
additional experiments. The standard deviations and standard errors of the additional experiments
had values similar to the previous experiments. As can be seen, the accuracy does not seem to have
improved after ×600, which indicates the best balance was around ×600. Although the best score was
at ×800, which was about 0.7, the difference from ×600 was smaller than the standard errors, and was
thus negligible.

When we compared these results with those of the proposed method, four out of 10 scores of
the proposed method surpassed the best scores of the normal method, which had the best balance
of positive and negative examples in the training data. This fact proves that our method improved
accuracy by learning finer features, and not only by balancing positive and negative examples.

Continuing to increase negative examples could lead to a worse result. Even in such cases,
our method is expected to find the optimal balance between positive and negative examples during
training, which we could not confirm explicitly in our experiments. This will be our future work.

Remote Sens. 2018, 10, 124 18 of 21

Remote Sens. 2018, 10, 124 16 of 20

4.2. Training Loss Values and Duration

Shrivastava et al. [22] reported that the loss values during training became smaller by using their
OHEM method because they conducted a fair comparison where all region proposals in an image—
not just the ones selected for a minibatch—were used to calculate the loss values in every method.
Meanwhile, the loss values of our method seemed to have been better than the normal method;
however, the difference was very small (Figure 9a). This was because those loss values were
calculated from examples that were actually used for training; those examples had relatively large
loss values, because we chose such examples for training. If we evaluated the loss values over a
checkbatch, the trend would be similar to [22].

Our method took more time to train for the same iterations than the normal method, because of
the overhead of calculating loss values in a checkbatch. For instance, training durations of normal,
HEM500, and HEM1000 were 2.5, 6, and 10 h, respectively, with Tesla K20X manufactured by
NVIDIA (Santa Clara, CA, USA) in Figure 9. In the original OHEM, it took approximately 1.7 times
longer in one iteration to select 64 out of around 4000 region proposals in an image. Our method is
more time-consuming than theirs, because our method requires extra forward propagation
calculations as described in Section 2.2, whereas the original OHEM can calculate the loss values of
region proposals with small additional costs due to RoI pooling.

However, our method strongly accelerates convergence. Therefore, the training could be
stopped much earlier in the proposed method, which would cancel out the demerit.

4.3. Source of Accuracy Improvement

In our experiment, more background patches tended to yield better F1 scores in the normal
method. This may be because more background patches contain more “negative” features to be
discriminated from vehicles, and it kept improving the accuracy in the range of our experiments. FP
reduction seems to have contributed more to the performance improvement, because the FAR was
relatively high in our experiments.

To confirm how accuracy improvement continued, we conducted additional experiments. We
gradually increased the amount of background patches to 1000 times the number of groundtruths.
Figure 14 shows all the F1 scores of vehicle detection tests by the normal method, including the
additional experiments. The standard deviations and standard errors of the additional experiments
had values similar to the previous experiments. As can be seen, the accuracy does not seem to have
improved after ×600, which indicates the best balance was around ×600. Although the best score was
at ×800, which was about 0.7, the difference from ×600 was smaller than the standard errors, and was
thus negligible.

Figure 14. All F1 scores by the normal method including the additional experiments. The score does
not seem to have improved after ×600.

When we compared these results with those of the proposed method, four out of 10 scores of the
proposed method surpassed the best scores of the normal method, which had the best balance of

Figure 14. All F1 scores by the normal method including the additional experiments. The score does
not seem to have improved after ×600.

4.4. HEM500 vs. HEM1000

The HEM500 and HEM1000 scores were almost even, and the score differences were less than
those between the normal and proposed methods. Considering that the validation accuracy results of
HEM500 and HEM1000 were not very different, and taking these results into account, we can suppose
that the performances of HEM500 and HEM1000 were similar, because an ncheck value of 500 was
large enough, and increasing it did not improve accuracy in the range of our experiments. However,
our experiments were not enough to prove this conjecture. Moreover, we could test only two values of
ncheck due to our limited computing resources. Further verification will be our future work.

4.5. Usabilty of Our Method

In our experiments, we used a sparse training dataset. However, our method does not depend
on model architecture or training data; therefore, it would be effective even when training data
are abundant.

In this paper, we used our CNN as a classifier. However, it could also be used as a feature
extractor by removing the last fully connected layer, and it could be combined with other classifiers.
For instance, Tang et al. [16] used a cascade of boosted classifiers that was fed features extracted by a
CNN. We would be able to further improve accuracy by combining our method with such a method.

5. Conclusions

We applied HEM to the SGD training of a CNN vehicle classifier, which successfully promoted
learning finer features and improved accuracy. It took more time to train for the same number of
iterations; however, this could be canceled out by breaking training earlier, which would be acceptable
as the proposed method markedly accelerates convergence. Although we used sparse data in our
experiments, our method would be effective even when training data are abundant. However, we
could not confirm the effect of balancing positive and negative examples in the training data explicitly,
and the effect of checkbatch size was not sufficiently determined. These issues will form the basis of
our future work.

Acknowledgments: This study was conducted as part of the Master’s program of Yohei Koga, which is supported
by the government of Japan. The authors would like to thank Xiaowei Shao and Zhiling Guo for useful discussions.

Author Contributions: Yohei Koga designed the experiment and prepared the manuscript. Hiroyuki Miyazaki
and Ryosuke Shibasaki supervised the research and provided conceptual advice. Hiroyuki Miyazaki helped in
the revision of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Remote Sens. 2018, 10, 124 19 of 21

Appendix

In this appendix, we present an example of HEM500 with ×400 to further investigate the result.

Effect of Clutters and Shadows

To evaluate how clutter and shadows impeded vehicle detection, we visualized undetected
vehicles. Figure A1 shows 100 out of 211 randomly selected undetected vehicle patches of test_1 and
all 31 undetected vehicle patches of test_2.Remote Sens. 2018, 10, 124 18 of 20

(a)

(b)

Figure A1. Visualization of undetected vehicle patches. (a) Undetected vehicles in test_1 image; (b)
undetected vehicles in test_2 image. The red rectangle patch is covered by a shadow.

As can be seen in Figure A1b, only one undetected vehicle was covered by any clutter or
shadows. Although we could not fairly evaluate the robustness of the performance of our sliding
window method, because our test images did not originally have many obstacles, there seems to have
been only a few vehicles that were not detected due to clutter and shadows.

Furthermore, to evaluate how clutter and shadows confused CNN, we visualized the FP patches.
Figure A2 shows all 18 FP patches of test_1 and 100 out of 231 randomly selected FP patches of test_2.

(a)

(b)

Figure A2. Visualizations of FP patches. (a) FP patches in test_1 image; (b) FP patches in test_2 image.

Figure A1. Visualization of undetected vehicle patches. (a) Undetected vehicles in test_1 image;
(b) undetected vehicles in test_2 image. The red rectangle patch is covered by a shadow.

As can be seen in Figure A1b, only one undetected vehicle was covered by any clutter or shadows.
Although we could not fairly evaluate the robustness of the performance of our sliding window
method, because our test images did not originally have many obstacles, there seems to have been
only a few vehicles that were not detected due to clutter and shadows.

Furthermore, to evaluate how clutter and shadows confused CNN, we visualized the FP patches.
Figure A2 shows all 18 FP patches of test_1 and 100 out of 231 randomly selected FP patches of test_2.

In Figure A2b, several patches with shadows were misclassified as vehicles. This was probably
because the shadows looked like straight edge features that are similar to vehicle features, thus
confusing CNN. This seems to have been caused by the insufficiency of the classification performance
of CNN rather than the inaccuracy of the sliding windows. These misclassifications would be further
reduced by using abundant training data.

Remote Sens. 2018, 10, 124 20 of 21

Remote Sens. 2018, 10, 124 18 of 20

(a)

(b)

Figure A1. Visualization of undetected vehicle patches. (a) Undetected vehicles in test_1 image; (b)
undetected vehicles in test_2 image. The red rectangle patch is covered by a shadow.

As can be seen in Figure A1b, only one undetected vehicle was covered by any clutter or
shadows. Although we could not fairly evaluate the robustness of the performance of our sliding
window method, because our test images did not originally have many obstacles, there seems to have
been only a few vehicles that were not detected due to clutter and shadows.

Furthermore, to evaluate how clutter and shadows confused CNN, we visualized the FP patches.
Figure A2 shows all 18 FP patches of test_1 and 100 out of 231 randomly selected FP patches of test_2.

(a)

(b)

Figure A2. Visualizations of FP patches. (a) FP patches in test_1 image; (b) FP patches in test_2 image. Figure A2. Visualizations of FP patches. (a) FP patches in test_1 image; (b) FP patches in test_2 image.

References

1. Digital Globe. Available online: https://www.digitalglobe.com/ (accessed on 30 November 2017).
2. Planet Labs. Available online: https://www.planet.com/ (accessed on 30 November 2017).
3. Black Sky. Available online: https://www.blacksky.com/ (accessed on 30 November 2017).
4. NTT Geospace. Available online: http://www.ntt-geospace.co.jp/ (accessed on 30 November 2017).
5. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and

Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’14), Columbus, OH, USA, 23–28 June 2014; pp. 580–587.

6. Uijlings, J.R.R.; Sande, K.E.A.v.d.; Gevers, T.; Smeulders, A.W.M. Selective Search for Object Recognition.
Int. J. Comput. Vis. 2013, 104, 154–171. [CrossRef]

7. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV’15), Santiago, Chile, 7–13 December 2015; pp. 1440–1448.

8. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual
Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]

9. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal
networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems
(NIPS’15), Montreal, QC, Canada, 7–12 December 2015; pp. 91–99.

10. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 27–30 June 2016. [CrossRef]

11. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox
Detector. In Lecture Notes in Computer Science, Proceedings of the ECCV 2016: Computer Vision—ECCV 2016,
Amsterdam, The Netherlands, 8–16 October 2016; Springer: Cham, Switzerland, 2016; Volume 9905, pp. 21–37.
[CrossRef]

12. Chen, X.; Xiang, S.; Liu, C.L.; Pan, C.H. Vehicle Detection in Satellite Images by Hybrid Deep Convolutional
Neural Networks. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1797–1801. [CrossRef]

13. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA,
20–25 June 2005; Volume 1, pp. 886–893. [CrossRef]

https://www.digitalglobe.com/
https://www.planet.com/
https://www.blacksky.com/
http://www.ntt-geospace.co.jp/
http://dx.doi.org/10.1007/s11263-013-0620-5
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://www.ncbi.nlm.nih.gov/pubmed/26353135
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1109/LGRS.2014.2309695
http://dx.doi.org/10.1109/CVPR.2005.177

Remote Sens. 2018, 10, 124 21 of 21

14. Qu, S.; Wang, Y.; Meng, G.; Pan, C. Vehicle Detection in Satellite Images by Incorporating Objectness and
Convolutional Neural Network. J. Ind. Intell. Inf. 2016, 4, 158–162. [CrossRef]

15. Cheng, M.M.; Zhang, Z.; Lin, W.Y.; Torr, P. BING: Binarized Normed Gradients for Objectness Estimation at
300fps. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),
Columbus, OH, USA, 23–28 June 2014; pp. 3286–3293. [CrossRef]

16. Tang, T.; Zhou, S.; Deng, Z.; Zou, H.; Lei, L. Vehicle Detection in Aerial Images Based on Region Convolutional
Neural Networks and Hard Negative Example Mining. Sensors 2017, 17, 336. [CrossRef] [PubMed]

17. Car Localization and Counting with Overhead Imagery, an Interactive Exploration. Available
online: https://medium.com/the-downlinq/car-localization-and-counting-with-overhead-imagery-an-
interactive-exploration-9d5a029a596b (accessed on 27 July 2017).

18. Mundhenk, T.N.; Konjevod, G.; Sakla, W.A.; Boakye, K. A Large Contextual Dataset for Classification,
Detection and Counting of Cars with Deep Learning. In Lecture Notes in Computer Science, Proceedings of the
ECCV 2016: Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 8–16 October 2016; Springer: Cham,
Switzerland, 2016; Volume 9907, pp. 785–800.

19. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [CrossRef]

20. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; pp. 770–778. [CrossRef]

21. Schapire, R.E.; Singer, Y. Improved Boosting Algorithms Using Confidence-rated Predictions. Mach. Learn.
1999, 37, 297–336. [CrossRef]

22. Shrivastava, A.; Gupta, A.; Girshick, R. Training Region-Based Object Detectors with Online Hard Example
Mining. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 27–30 June 2016; pp. 761–769. [CrossRef]

23. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning
(ICML’15), Lille, France, 6–11 July 2015; Volume 37, pp. 448–456.

24. CS231n: Convolutional Neural Networks for Visual Recognition. Available online: http://cs231n.github.io/
optimization-1/#gd (accessed on 27 July 2017).

25. UFLDL Tutorial. Available online: http://ufldl.stanford.edu/tutorial/supervised/
OptimizationStochasticGradientDescent/ (accessed on 27 July 2017).

26. Neural Networks and Deep Learning (CHAPTER 2). Available online: http://
neuralnetworksanddeeplearning.com/chap2.html (accessed on 27 July 2017).

27. Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object Detection with Discriminatively
Trained Part-Based Models. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1627–1645. [CrossRef] [PubMed]

28. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv, 2014.
29. Liu, K.; Mattyus, G. DLR 3k Munich Vehicle Aerial Image Dataset. Available online: http://pba-freesoftware.

eoc.dlr.de/3K_VehicleDetection_dataset.zip (accessed on 30 November 2017).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.18178/jiii.4.2.158-162
http://dx.doi.org/10.1109/CVPR.2014.414
http://dx.doi.org/10.3390/s17020336
http://www.ncbi.nlm.nih.gov/pubmed/28208587
https://medium.com/the-downlinq/car-localization-and-counting-with-overhead-imagery-an-interactive-exploration-9d5a029a596b
https://medium.com/the-downlinq/car-localization-and-counting-with-overhead-imagery-an-interactive-exploration-9d5a029a596b
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1023/A:1007614523901
http://dx.doi.org/10.1109/CVPR.2016.89
http://cs231n.github.io/optimization-1/#gd
http://cs231n.github.io/optimization-1/#gd
http://ufldl.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent/
http://ufldl.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent/
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://dx.doi.org/10.1109/TPAMI.2009.167
http://www.ncbi.nlm.nih.gov/pubmed/20634557
http://pba-freesoftware.eoc.dlr.de/3K_VehicleDetection_dataset.zip
http://pba-freesoftware.eoc.dlr.de/3K_VehicleDetection_dataset.zip
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Basic Methodology
	Vehicle Detection Methodology
	Stochastic Gradient Descent (SGD) and Room for Improvement

	Hard Example Mining (HEM) in SGD Training
	Accuracy Assesment
	Vehicle Detection Criteria
	Quantitative Measure

	Experiment and Results
	Training and Test Images
	Data Preparation
	Experiment
	Training Results
	Vehicle Detection Results

	Discussion
	Improvement Extent
	Training Loss Values and Duration
	Source of Accuracy Improvement
	HEM500 vs. HEM1000
	Usabilty of Our Method

	Conclusions
	
	References

