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Abstract: Italy’s kiwifruit growers are considered to be world-leading players of the past 20 years.
However, with this success come its challenges. In the last five years, a bacterial canker of kiwifruit
known as Pseudomonas syringae pv. actinidiae (Psa) has caused a dramatic reduction in the size of the
areas cultivated, leading to several experienced Piedmontese Actinidia deliciosa growers beginning
to cultivate the A. arguta. To better understand the potential for replacing the common kiwifruit in
Italy’s Piedmont region with plantations of A. arguta and to attain a systematic approach and support
for decision situations; we assessed the environmental impact of the two production chains (field and
storage) from a technical-operational perspective. The assessment was conducted through interviews
with producers, field and warehouse technicians and sales managers in order to reveal the strengths
and weaknesses of the two systems. The work presented below considers the application of the
Life Cycle Assessment (LCA) method for the field system (two different phases of the plantation)
and the SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis for the entire supply chain
(field and warehouse management). Finally, a TOWS analysis (Threats, Opportunities, Weakness,
Strengths) integrated the results of both LCA and SWOT analyses and permitted to highlight the
development strategies for A. arguta in Piedmont. The total orchard cycle for A. arguta presents an
impact of 0.14 kg CO2 eq (GWP) and for A. deliciosa an impact of 0.11 kg CO2 eq (GWP). Based on
the synthesis of results from our TOWS analysis, we identified the following development strategies
to help to shape the future A. arguta supply chain in Piedmont: Large-scale oriented; Berry fruits
oriented; Export and organic oriented and Niche oriented.
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1. Introduction

Actinidia is a genus of berry-bearing shrubs and vines native to East Asia. In the first half of
the twentieth century the cultivar ‘Hayward’ of Actinidia deliciosa (A. Chev.) Liang and Ferguson,
was developed in New Zealand and still accounts for more than 90% of the total international market
volume of kiwifruit. The global production of commercial kiwifruit now exceeds 2.4 million tonnes
a year. China produces about half of the total international production, but only 1% of its volume is
destined for export. Italy, New Zealand, Chile and Greece are jointly responsible for about 80% of all
kiwis produced outside of China with most of their fruit destined for export [1]. A small part of the
world production is made up of golden kiwifruit (A. chinensis Planch.). ‘Hort 16 A’ and ‘Jintao’ are the
yellow-fleshed cultivar currently present on the market. They are protected cultivars, meaning that
their cultivation is restricted to license holders. The marketing of the fruit is controlled by a consortia.
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Other yellow-fleshed selections are likely to become important. They differ from green-fleshed
A. deliciosa by having smooth skin, yellow-coloured flesh and lower storage stability. Other Actinidia
species are of minor economic importance, including the hardy kiwi A. arguta (Siebold and Zucc.)
Planch. ex Miq., also referred to as kiwi berry, baby kiwi or cocktail kiwi [2]. The hardy kiwifruit
is clearly smaller than A. deliciosa and A. chinensis fruit and grows only to the size of dessert grapes.
Its skin is thin and smooth and, depending on the variety, may be green, brown or purple. Hardy
kiwifruit can be eaten whole with the peel included. Its short shelf life limits the commercial potential,
but the plants have gained increasing popularity in the last five years. A major factor contributing to
the popularity of hardy kiwifruit is its aroma [3].

Another factor that contributes to the successful expansion of the cultivation of A. arguta is
that, following experiments, it has been included in the group of species (Leiocarpae-A. macrosperma.
A. valvata. A. polygama. A. melanandra) which have shown resistance to (or tolerance of) Pseudomonas
syringae pv. actinidiae (Psa) [4]. One of the most recent problems at the international level linked to the
cultivation of kiwifruit has been the spread of the PSA bacteria, which causes kiwigreen bacterial canker.
PSA first occurred in Japan in the 1980s [5] with subsequent isolated outbreaks in South Korea [6]
and Italy [7]. From 2008–2011 there was a rapid spread of the PSA bacterial canker [8,9] due to
dissemination between the plantations caused by bacterial exudates, formed by cankers during the
autumn-winter seasons and often carried by wind [10–12].

This situation has led to a drop in production and invested surface of the classic varieties,
particularly in the production of A. chinensis (Hort 16 A) in New Zealand, where it significantly
declined from 92,200 tonnes in 2010 to 37,500 tonnes in 2013. Bacteriosis also concerns other important
producer countries and has interrupted international production growth of kiwifruit. For example,
from 2008 to the present day, Italy reduced the invested surface and led to a decline in production
between 2010 and 2013 of about 15% [13]. The situation is slowly recovering today, with about
25,000 hectares of Actinidia cultivars cultivated in Italy. To mitigate PSA in Italy’s Piedmont region,
around 1,000 hectares of plantations have been cut down in the last five years. This action was declared
in the recent Regional Plan of Action, a decree passed in 2013 by the Italian Ministry of Agriculture [14].

At the moment, international research is exploring solutions that producers can implement in
the short term. On one hand, a series of products such as copper-based compounds, plant extracts
and biological control agents (BCAs) are being tested in vitro, in greenhouse and in the field [15,16].
As highlighted, it is hoped that a combined strategy can be found which will consider the treatment
and correct management of pruning (including the disinfection of tools and the protection of pruning
incisions), fertilization and irrigation [17].

Research is also being pursued in other directions such as photo-selective nets being tested in
Italy and plastic canopies on trial in New Zealand [18]. In New Zealand, particular attention is paid to
obtaining and cultivating new varieties as Gold 3 and Gold 9 [18].

Although no information on the differences in susceptibility of new cultivars of kiwi or other
species of kiwi has been released up to now, in all the research relating to the resistance/susceptibility
of the different species of Actinidia, A. arguta is discovered to be the least affected by bacterium
canker, both in Europe and in New Zealand [19]. This is why one of the alternative proposals to
Actinidia deliciosa in Italy could be the cultivation of A. arguta.

Today, two new commercial kiwi cultivars, ‘Hortgem Tahi®’ and ‘Hortgem Rua®’, are being
grown in Italy, France and Portugal. They have been sold in European retail stores under the Nergi®

brand since 2013. The challenge is to have similar plantations from an operational point of view but
with kiwis that are very different from the common species (A. deliciosa and A. chinensis), namely
A. arguta kiwis that are smaller (max. 15–20 g), bright green and smooth so that they can be eaten
whole, without peeling, a lot like berry fruits.

To better understand the potential for replacement of the common kiwifruit in Piedmont with
plantations of A. arguta and to attain a systematic approach and a support for decision making,
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we assessed the environmental impact of the two production chains (field and storage), also from a
technical-operational perspective.

The assessment was conducted through interviews with producers, field and warehouse
technicians and sales managers in order to reveal the strengths and weaknesses of the two systems.
The work presented here considers the application of the Life Cycle Assessment (LCA) method
for the field system (two different phases of the plantation: young plants and adult plants in full
production) and the SWOT analysis for the entire supply chain (field and warehouse management).
The combined interpretation of the results with the TOWS analysis, different arrangements of the
words Strengths, Weakness, Opportunities and Threats compared to SWOT analysis, permitted to
highlight the development strategies for A. arguta in Piedmont. The ability of SWOT is the matching
of specific internal (strengths and weaknesses) and external (threats, opportunities) factors, which
provides a strategic matrix (Weihrich 1982) [20]. It is essential to note that the internal factors are within
the control of the A. arguta system, such as filed operations, marketing, and other areas. On the other
hand, the external factors are out of the system’s control, such as the macroeconomic and political
factors, new technologies, and competition [21]. The interpretation of the TOWS matrix, permitted to
develop alternatives strategies on the basis of relationships between threats, opportunities, weaknesses
and strengths indicated from SWOT [22] including, between the internal factors the impacts obtained
by LCA analysis. Figure 1 shows the flowchart used in conceptual framework.
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2. Materials and Methods

It is necessary for all stakeholders, from primary producer to buyer, to be involved in the processes
related to strategic planning for the kiwifruit industry. This includes identifying current and potential
issues. To achieve this, it is important to identify appropriate tools. Thus, after defining the common
goal and scope among stakeholders, a performance assessment was conducted based on the parallel
application of the Life Cycle Assessment (LCA), SWOT and TOWS analyses with a common purpose
but applied independently. To achieve this aim, the study pursued two paths starting in 2015.

The first path developed a quantitative analysis evaluating the efficiency of the agricultural and
warehouse system in terms of environmental sustainability with the LCA approach. The second
step involved a qualitative analysis through semi-structured interviews. In total, 29 questionnaires
(administered to producers and other stakeholders) were filled out during face-to-face interviews and
on-site visits. The interviews included questions about field production, warehouse management and
sales management.

2.1. Geographical Context

Regarding production and dissemination of kiwifruits throughout Italy, Piedmont is the second
largest region after Lazio, with approximately 5300 hectares distributed throughout the provinces of
Cuneo and Turin, and accounting for over 20% of Italian production [13]. With 10,800 fruit farms,
Piedmont’s fruit production occupies an area of 51,273 hectares, representing 5% of the region’s total
agricultural land and weighing 15% in terms of production at basic prices (480 million euro estimated
in 2007) [23]. Piedmont is strongly specialized in exports, providing approximately 40% of all kiwifruit
production in Italy (the rest coming from the Lazio region and Southern Italy).

In terms of territorial characteristics, the climate is continental both in the plains and in the hills;
winters are cold (with temperatures falling to −10 ◦C) and long, while summers are hot (up to +35 ◦C)
and short. Rainfall is concentrated mainly in the spring and autumn (annual average 1114 mm) [24].

2.2. LCA Goal and Scope

The life cycle assessment (LCA) method was applied to this work and followed the guidelines of
the International Organization for Standardization (ISO)’s 14040:2006 (ISO 2006). The LCA method
has also been successfully applied in farming and agri-food systems [25–28].

The aim of this LCA was to assess the environmental impact of the production of 1 kg of A. arguta
(cv ‘Hortgem Tahi®’ and ‘Hortgem Rua®’) and the production of 1 kg of A. Deliciosa (cv Hayward),
in the field phase (I input, Figure 2) and in the field + warehouse phase (II input, Figure 2).
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The impacts of the entire field cycle were calculated for both crop species, taking into consideration
the young phase of the field and then added to the subsequent adult productive phase [29,30].

For both crop species, the young phase lasts 4 years and the productive phase lasts 20 years
(for a total cycle of 24 years). Regarding A. deliciosa, a production level of 10 t ha−1 in the young
phase and of 20 t ha−1 in the productive phase was considered. For A. arguta the production levels
considered were 7.5 t ha−1 in the young phase and 15 t ha−1 in the productive phase (grower’s data).

This approach is based on the principle that the fruit sold can come from both the young and
adult phases. This means that kiwifruits can come from a determined production phase of the field
proportionate to the yield accumulated during that phase [30].

The impact on the entire life cycle (calculated using the Orchard cycle impact, Equation (1)) was
obtained by weighing the various phases in relation to production (Yield contribution, Equation (2))
and was calculated as follows:

Orchard cycle impact j,k = ∑2
i=1 impactj,k,i x yield contribution k,i (1)

With the weighting factor “yield contribution”:

yield contribution k,i =
lifespank,i x yieldk,i

∑2
i=1 lifespank,i x yieldk,i

(2)

whereby:

• impactj,k,i = annual median impact per kg for orchard production phase i, impact category j and
production system k;

• yieldk,i = median yield obtained in orchard production phase i and production system k;
• lifespank,i = lifespan of orchard production phase i and production system k.

2.3. Life Cycle Inventory (LCI)

System Boundaries and Data Collection

The data used to carry out the field LCA were acquired through questionnaires filled out by
20 producers from 2015 to 2016. They all belonged to a producers’ organisation located in Piedmont
and produced both kiwifruit species. In addition to the interviews with producers, the field-books of
each farm were analysed to quantify the resources used in cultivation. This permitted the study to
obtain data from an average area of about 70 ha for both crops. In the case of A. arguta, this surface
represents the totality of hectares currently in production. Regarding the aspects linked to the nursery
phase, the figures were acquired from two plant nurseries which supply the plants to the farms.
The information relating to the post-harvest phase was supplied by technical staff (3 people) of the
fruit warehouse where the product is processed (Table 1).

Table 1. Principal inputs involved in the analysis of the field production and distribution chain for
A. arguta and A. deliciosa.

Phase Operation or Input
A. deliciosa A. arguta

Material or Machine Material or Machine

Nursery

Rooting Substratum 300 L ha−1 Substratum 300 L ha−1

Mulching Black PE 400 kg ha−1 Black PE 400 kg ha−1

Covering White PE 6.7 kg ha−1 White PE 6.7 kg ha−1

Covering Metal supports 7.5 kg ha−1 Metal supports 7.5 kg ha−1

Fertigation system PVC piping 46 kg ha−1 PVC piping 46 kg ha−1

Fertigation system PVC tubing 46 kg ha−1 PVC tubing 46 kg ha−1

Fertigation Compost mix 300 kg ha−1 Compost mix 300 kg ha−1

Fertigation Water 40 m3 ha−1 Water 40 m3 ha−1

Cold storage Electrical energy 35 kWh m3 Electrical energy 35 kWh m3
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Table 1. Cont.

Phase Operation or Input
A. deliciosa A. arguta

Material or Machine Material or Machine

Filel

Soil preparation Plough or cultivator 1 h ha−1 Plough or cultivator 1 h ha−1

Soil preparation Harrow 1 h ha−1 Harrow 1 h ha−1

Irrigation system PVC piping 379.1 kg ha−1 PVC piping 379.1 kg ha−1

Irrigation system PVC tubing 52.8 kg ha−1 PVC tubing 52.8 kg ha−1

Irrigation Water 1440 m3 ha−1 Water 1500 m3 ha−1

Base fertilization Manure 40 t ha−1 Manure 50 t ha−1

Fertilization N 60 kg ha−1 N 60 kg ha−1

Fertilization P 30 kg ha−1 P 30 kg ha−1

Fertilization K 110 kg ha−1 K 120 kg ha−1

Covering hail net 600 kg ha−1 hail net 600 kg ha−1

Covering Wood supports 700 kg ha−1 Wood supports 700 kg ha−1

Plant supports Metal supports 300 kg ha−1 Metal support 300 kg ha−1

Plant protection treatments p.a. 2.5 kg ha−1 p.a. 1.5 kg ha−1

Total processes Diesel consumption 400 kg ha−1 Diesel consumption 220 kg ha−1

Post-harvesting

Refrigeration/storage Electrical energy 0.33 kwh kg−1 Electrical energy 0.17 kwh kg−1

fruit calibration Electrical energy 0.006 kwh kg−1 Electrical energy 0.005 kwh kg−1

Packaging PE 0.02 kg kg−1 PE 0.019 kg kg−1

Packaging Cardboard 0.080 kg kg−1 PE bag 0.004 kg kg−2

All the processes necessary for crop management and the post-harvest phase were considered,
including the associated auxiliary processes, such as transportation of materials and the waste
generated in each phase. The consumption phase and transportation from the point of sale (market) to
the end consumer were not considered. However, the disposal of packaging materials was included in
the analysis.

The main differences between A. arguta and A. deliciosa are summarized in Figure 3. Both are
climbing lianas.
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between A. arguta and A. deliciosa.

Some of the major differences between both species are the weight, skin type and harvesting
seasons. In the case of A. deliciosa, the fruit has a hairy skin and an average weight of 100 g and has
hairy, inedible skin. Conversely, the weight of A. arguta varies between 15 and 20 g and has smooth,
edible skin. A. deliciosa is harvested in Piedmont in late October-early November. A. arguta is harvested
in the first ten days of September. Both are harvested by hand, but for A. arguta the operators have to
wear gloves to prevent damage to the fruit’s skin. The fruit of A. deliciosa are placed in plastic bins
with a volume of half a cubic meter (300 kg) before going to the processing warehouses (post-harvest)
where they are kept for an average of 4 months. Then the fruit is calibrated, divided by size, and
any imperfect fruit is discarded. The fruit of A. arguta is particularly delicate, so they are harvested
into plateaux containing an average of 10 kg of product. After harvesting, the product is sent to the
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warehouses, where they are calibrated and placed into PET punnets with lids (125 g) and kept for a
maximum of 2 months, without being further handled.

2.4. Life Cycle Impact Assessment (LCIA)

The environmental footprint of the products and relative International Life Cycle Data (ILCD)
develops through 16 categories of impact, as declared by Goossens et al. (2017) [30]. In our case,
we based our selection of impact categories on literature [26,31,32] and focused our analysis on global
warming potential (GWP) according to the Intergovernamental Panel on Climate Change (IPCC GWP
100a kg CO2 eq), and non-renewable energy (MJ primary). The choice of these impact categories was
related to the need of providing an impact evaluation of the examined production in relation to climate
change that can be readily communicated and understood by stakeholders. The non-renewable energy
source category was selected to provide a view of the impacts in relation to emissions and also to
consumption; the latter is considered as one of the most critical issues in the primary sector.

To analyse the data collected during the Life Cycle Inventory, we used SimaPro 7.3 software
and subsequent upgrades [33]. The software allowed the monitoring and analysis of the life cycles,
systematically and transparently, following the ISO standards of the 14040 (2006) [34]. A cut-off was
applied at the 2% mark and all of the data registering below this percentage were grouped together
in the “other” category. The databases used for the inventory are present in Ecoinvent 2.2 and LCA
alimentary DK [35].

2.5. SWOT and TOWS Analyses

Through recommendations made by international literature [36–40] we decided to use the SWOT
analysis as an important base to think strategically about developing the A. arguta production chain
in Piedmont. Analogously to Demont and Rutsaert (2017) [41] when elaborating the SWOT matrix,
the favourable and unfavourable aspects were established regarding the development of A. arguta in
the area, while distinguishing the internal (strengths, weaknesses) and external (opportunities threats)
variables. To overcome the objections raised in relation to the use of the SWOT analysis [42] in its
simplistic and subjective nature, primary data were collected by authors through field observations and
in-depth interviews with key stakeholders. The data include meetings and questionnaires filled in by
10 producers of A. arguta, 10 producers of A. deliciosa, 3 technicians, 3 sales department managers and
3 mass retail buyers. Moreover, following the suggestions of Lozano and Valles (2007) [38], secondary
data were collected from related publications and documents issued by the competent institutions
(National Institute of Statistics, Fruit Growers Associations, Agriculture Ministry, Regional government
of Piemonte). The official statistics on trends in production, market and consumption of kiwifruits,
berry fruits and other general fruits in Italy and the world was also included in the analysis [1,16,43].
Lastly, sections in the SWOT matrix have been distinguished by field, warehouse, distribution and
consumer, which represent the main steps of the Fresh Fruit Supply Chain [44].

After the creation of the SWOT matrix, the TOWS matrix was developed to provide alternative
strategies on the basis of relationships between threats, opportunities, weaknesses and strengths
indicated by SWOT [20]. The TOWS analysis can also be applied to the development of tactics necessary
to implement strategies and to find more specific actions that support these tactics. The analysis
examines threats and opportunities first, followed by weaknesses and strengths. According to Weihrich
(1982) [20], TOWS involves four possible types of strategy:

1. WT strategies employ the principle of minimising both threats and drawbacks (Min–Min),
reducing threats and overcoming shortcomings;

2. WO strategies use the principle of minimising drawbacks and maximising opportunities
(Min–Max), decreasing weaknesses and using opportunities;

3. ST strategies use the principle of maximising strengths and minimising threats (Max–Min),
strengthening advantages and averting risks;
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4. SO strategies use the principle of maximising both strengths and opportunities (Max–Max),
enhancing merits and taking advantage of opportunities.

3. Results and Discussion

3.1. LCIA Field Production System

Table 2 lists the annual average impacts per kilogram of A. arguta and A. deliciosa within each
orchard phase and the impact of the total field production cycle as represented by Goossens et al.
(2017) [30]. The full production phase has the highest yield contribution while the young trees have the
lowest yield contribution. Based on these yield contributions and on the annual average impact values,
it is evident that the two orchard phases have contributed to the orchard cycle impacts in different
ways. This affirms that the contribution of the young production phase to the orchard cycle impact is
higher than the full production phase. This occurs for both species (A. arguta and A. deliciosa) although
it is more evident in the case of A. arguta. The young production phase of A. arguta is 0.21 kg CO2 eq
(GWP) and the full phase is 0.13 kg CO2 eq (GWP). With regards to the total orchard cycle, A. arguta
presents an impact of 0.14 kg CO2 eq (GWP) and A. deliciosa presents an impact of 0.11 kg CO2 eq
(GWP), both lower than that highlighted by Nikkhah et al. (2016) [45] in a case study from the Guilan
province of Iran where npk fertilizer levels are higher. The greater impact of A. arguta also in terms of
IPCC is due to the higher input for the disease protection of the crop [18]. For NRE, the situation is
exactly the opposite because there is a higher impact for the cultivation of green-fleshed kiwifruits
(2.86 MeJ). This data item can be traced back to the higher number of agronomical practices and plant
treatments that have been carried out in the orchards to mitigate PSA bacterium [18]. It is worth noting
that the young phase value is always higher than the full phase, similarly in the case of apples [30].

Table 2. Annual average impacts per kg di A. arguta and A. deliciosa within each orchard phase (young
and adult) for the three impact categories under examination (global warming, non-renewable energy
and Intergovernamental Panel on Climate Change (IPCC) global warming potential (GWP) 100a).
The values between brackets for the young productive phases indicate how these phases perform
compared to the full productive phase: positive values refer to the lower productive phase having a
higher environmental impact than the full production phase, while negative values refer to a lower
environmental impact for the young productive phase. The last column lists the impacts associated
with a full orchard cycle.

A. arguta A. deliciosa

Impact Category Unit Young
Phase

Full
Phase

Total
Young
Phase

Full
Phase

Total
Orchard Orchard

Cycle Cycle

Global Warming kg CO2 eq 0.21 0.13 0.14 0.172 0.11 0.11
(+58%) (+59%)

Non-renewable energy MJ primary 3.58 2.17 2.3 4.74 2.67 2.86
(+65) (+78%)

Ipcc GWP 100a kg CO2 eq 0.23 0.15 0.16 0.19 0.12 0.13
(+54%) (+56%)

Figure 4 examines how the various crop inputs influenced the different impacts (A: non-renewable
energy, B: global warming potential, C: IPCC GWP 100a). The main input is nitrogen fertilisation
(15–20%) for both A. arguta and A. deliciosa, as already highlighted by Muller et al. (2015) [46] in
a study performed in New Zealand. Another input from our study that has a consistent impact is
water, accounting for about 20–25% for both species and for all impact categories. A study developed
in Greece by Michos et al. [47] analyses production coefficient in field in term of energy (MJ ha−1),
indicate irrigation as having the one with the greatest impact (47.3%) in organic kiwifruit orchards.
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From our system in Italy, the most consistent impact comes from the anti-hail system, consisting of
numerous wooden supports and an anti-hail net. This situation reflects the outcome of numerous
life cycle assessment (LCA) studies in fruit and vegetable species where the greenhouse structure
is considered [26,48]. This protection is essential for Actinidia in order to guarantee high-quality
production and to protect the plant against stress in case of hailstorms according to Muller et al.
(2015) [46] chain (field and warehouse systems).
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The results of the impact of the entire production phase (field + warehouse) are recorded in
Table 3. Based on all three categories of impact (non-renewable energy, global warming potential
(GWP), and IPCC GWC 100a), the A. deliciosa production chain shows higher values than A. arguta,
and in line with New Zealand supply chain [49]. Analysing Figure 5 relating to the single inputs, it is
interesting to note that in all the production chains and in every orchard cycle (young and full) the
field phase covers 20% to 50% of impact of the entire chain. 50% refers to the input field in the case of
the A. arguta young phase which, as already pointed out, presents very low yields. 20% refers to the
A. deliciosa full phase.
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Table 3. Annual average impacts per kg di A. arguta and A. deliciosa within each orchard phase (young
and adult) plus the warehouse for the three impact categories under examination (global warming,
non-renewable energy and IPCC GWP 100a). The values between brackets for the young productive
phases indicate how these phases perform compared to the full productive phase: positive values refer
to the lower productive phase having a higher environmental impact than the full production phase,
while negative values refer to a lower environmental impact for the young productive phase. The last
column lists the impacts associated with a full orchard cycle.

Impact Category Unit

A. arguta A. deliciosa

Young
Phase

Full
Phase

Total Orchard
+ Warehouse

Cycle

Young
Phase

Full
Phase

Total Orchard
+ Warehouse

Cycle

Global Warming kg CO2 eq 0.39 0.32 0.33 0.53 0.47 0.48
(+23%) (+13%)

Non-renewable energy MJ primary 7.05 5.70 5.82 11.20 9.21 9.39
(+24%) (+22%)

IPCC GWP 100◦ kg CO2 eq 0.42 0.34 0.35 0.56 0.50 0.50
(+22%) (+13%)
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According to studies developed for Zespri® International Ltd. in Tauranga, New Zealand,
energy use for pack-house and cooled store activities represents the highest input of about 45% for
A. deliciosa [50].

Figure 5 also analyses how both crop inputs influence the various impacts (non-renewable energy,
global warming potential, and IPCC GWC 100a). In the case of A. arguta, storage energy is a significant
input (35%) but still lower than the field input (40%). Our study did not consider transportation to
final markets because the assessment of the impacts is functional to the accomplishment of territorial
strategies for the expansion of the A. arguta chain. The impact of packaging is not particularly
high (20%) but could be further mitigated by replacing the materials used at present with bio-based
materials [50,51]. In this case, packaging could be fundamental for an eco-branding strategy [52].

3.2. SWOT and TOWS Analyses

The basic parameters of the following SWOT analysis, which are common for this kind of research,
are divided into the two general categories: internal and external [53].

The term strengths (internal factors) comprises of the subsidies and benefits that emerge in the
cultivation of cv Thai® (A. arguta) vs. cv Hayward (A. deliciosa) [54]. Similarly, the weaknesses (internal
factors) include the factors and elements that represent an obstacle for the development of a production
chain of A. arguta in Piedmont.

The opportunities (external factors) represent the benefits and what happens generally in the
Piedmontese kiwi production chain (A. chinensis, A. deliciosa, A. arguta). Lastly, the threats (external
factors) contain the problems that arise and the potential obstacles to avoid for Piedmontese kiwifruits.
This analysis generates a series of interesting issues which simplify the debate on future strategies.

In our case (Figure 6), the findings are analysed with separate consideration of the four Fresh
Fruit Supply Chain steps (from farm to fork). The strengths, weaknesses, opportunities and threats
are included in the point of the production chain where they have been reported by the stakeholders,
and often influence the other steps.

3.2.1. Internal Parameters

Strengths

It is significant to highlight that there have been no reports of PSA bacterium and kiwi decline in
A. arguta, unlike in A. deliciosa [4,10,55]. The answers from the stakeholders also show constant yields
per hectare with A. arguta compared to consistent fluctuations in the production of A. deliciosa over
the past 10 years. The sales turnover per hectare is much higher (+450%) for producers. Additionally,
in the case of A. arguta, the cv. ‘Hortgem Tahi®’ analysed in the present study is a patented variety.
Its production and sale are part of a European programme managed by the Nergi® Consortium,
which protects farmers from the risks of supply market excesses [56,57].

Regarding warehouse storage, A. arguta allows for economies of scale if processing and
conditioning take place using the technical equipment already used for other fruits in other seasons,
such as berry fruits [58]. Moreover, the environmental impact is calculated using the life cycle
assessment (LCA) method; the values in the overall production chain of A. arguta are lower than for
A. deliciosa (-30% GWP) with reference to the energy consumption during storage. Stakeholders have
also reported higher earnings due to easier placement within the European fruit market. A major
strength of the A. arguta species for both warehouse and distribution is the possibility to provide
quantities to market throughout the year. Additionally, the A. arguta supply chain has the possibility
to exploit the expertise already developed by berry fruit producers. Certainly one of A. arguta’s main
characteristic strengths is its ready-to-eat quality (small, smooth, ripe), which is considerably different
from A. deliciosa [2,54]. Stakeholders have also emphasised that A. arguta belongs rightfully to the
category of specialties, like berry fruits [36], giving it prioritised placement in the point of sale.
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Weaknesses

In the first stage (field), A. arguta retains lower unitary production volumes than A. deliciosa
(−20%). Harvesting costs (labour + accessory costs) are much higher (+500%). The calculation of the
A. arguta environmental impact with the LCA method are about 25% higher for GWP compared to
A. deliciosa. In the second stage (warehouse), the limits highlighted by the stakeholders interviewed are
twofold: short storage time and high predisposition to mechanical damage, which can make it harder
to handle. For distribution operators, the limitations of A. arguta are mainly represented by a short
sale period (2.5 months) and the difficulty in identifying the correct placement on the shelf [59]. At the
third stage (consumption), challenges are represented by the lack of knowledge about the product.
For example, customers tend to confuse A. arguta with other similar looking products such as olives.
Furthermore, as with most specialty products, A. arguta could be considered unsuitable for everyday
purchase due to its high price [60,61].

3.2.2. External Parameters

Opportunities

The characteristics of the kiwifruit production chain in Piedmont provide an easy opportunity for
implementation of sustainable fruit farming models, namely organic production [62,63].

There are additional opportunities in the years to come based on outcomes of national and
international breeding programmes that could lead to the cultivation of cultivar with different levels of
sensitivity to PSA and kiwi decline [4]. As the level of technological innovation continues to improve,
new post-harvesting technologies will be able to achieve improved storage times and overall quality
of the fruits [64]. During the distribution stage, the expertise developed over the years by Piedmontese
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distributors represents a positive aspect for further increase of exports in new markets like Russia,
Brazil and India [23].

In the final step of the Fresh Fruit Supply Chain, the constant development and advocacy for
“healthy products” represents a growth opportunity for the whole Piedmontese kiwifruit sector, as well
as a greater attention payed by consumers to the origin of bought products.

Threats

Despite reporting a reduction in PSA bacterium outbreaks, the problem relating to this pathology
and the kiwi decline is far from being solved by the replacement of Actinidia with other fruit species.
Compared to the non-PSA growing seasons of the Actinidia variety in Italy, there has been a need in
field management, to increase the use of pesticides to cope with increasingly critical situations with
the consequent reduction of the system’s environmental and economic sustainability [46].

The arrival of new selections and cultivars on the market with different coloured flesh (yellow
and red), as well as different soil and climatic requirements (new production areas), could lead to an
increase in competition. Although technological innovation in recent years has limited post-harvest
alterations during long-term storage, Botrytis and Phyalophora spp. still represent a threat and a real
possibility to increase waste.

During the distribution stage, stakeholders in Piedmont have expressed concern that Piedmontese
production can suffer due to competition of kiwifruits with lower production cost (e.g., Greek products).
Lastly, the biggest challenge comes from consumers who often become loyal to international brands
such as Chiquita® and Zespri® since Piedmontese products displayed in points of sale are often
unrecognisable [65]. The presence of these international brands at point-of-sale shelves every day of
the year limits opportunities for market growth of Piedmontese brands.

Results from the SWOT analysis can be used to develop the A. arguta system in Piedmontese
strategies using the TOWS matrix (Table 4). Deciding on a strategy is important, especially when it
comes to the marketing of products [66]. The TOWS matrix allows producers to use their strengths to
take advantage of opportunities and avoid any potential threats [67]. They can use the opportunities to
overcome weaknesses and develop a defence strategy to help minimize weaknesses and avoid threats.
As described earlier in more detail, the strategies can be divided into 4 groups i.e., SO, ST, WO and WT
(Table 4).

Table 4. Application of Threats, Opportunities, Weakness, Strengths (TOWS) matrix to the A. arguta
system. The first letter of the acronyms reported in TOWS matrix, as codified in Figure 6, refers to
one of the 4 tipologies of factors analysed in SWOT (Strengths, Weaknesses, Opportunities, Threats)
the second letter indicates one of the four steps of the Fresh Fruit supply chain (Field, Warehouse,
Distribution, Consumer).

SO Strategy (Max–Max) WO Strategy (Min–Max)

1. large scale oriented 3. export and organic oriented
SF1, SW1, SD1, SC1 WD2, WC1, WW1
OF1, OW, OC1, OC2 OF1, OC1, OC2, OF1, OD1

ST Strategy (Max–Min) WT Strategy (Min–Min)

2. berry-fruit market oriented 4. niche oriented
SF1, SF4, SW3, SC2, SW1 WF1, WW1, WD1, WD2, WC1, WC3

TF1, TW1, TD1, TC1 TF3, TW1, TD1, TC1

Regarding the SO strategy identified by investigators in Table 4, large-scale development of
A. arguta is made possible by the absence of PSA and by the practicality of consumption of the fruit
(ready to eat). It is also possible to exploit the positive trend of consumption linked to health and
environmental aspects. This strategy also makes it possible to exploit economies of scale.
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The ST strategy aims to characterise the fruit of A. arguta associating with berry fruit references
(i.e., baby kiwi). The similarity with this category of product is also linked to the practicality of
consumption through the small size of the fruits, as well as their aromatic qualities and taste.

The WO strategy envisages the development of an export oriented chain focusing on countries
with consumers who are environmentally conscious and who are willing to pay higher prices for
organically produced products.

Lastly, the WT strategy is linked to a differentiation guided by the placement on a niche market of
the Nergi® brand, with consequent considerable investments in marketing.

4. Conclusions

This study contributes to a more systematic understanding of the factors, that are important
drivers and constraints in the advancement of A. arguta and its possible acceptance as a new fruit
system in the Piedmont region. Our analysis serves as a vehicle to solicit the opinions of those involved
with the kiwifruit industry in Piedmont as a means to identify, clarify and offer potential solutions to
current enviro-socio-economic issues. Furthermore, our analysis aims to foster a more comprehensive
dialogue about the options available in terms of future species and varieties among local stakeholders.
The life cycle assessment (LCA) helped us to conclude that the potential replacement of A. deliciosa
with A. arguta would not change the current environmental impact of the cultivation of kiwifruits in
the area. From an economic point of view, this crop, despite being labour intensive, is considered
by the stakeholders involved as a good possibility due to its high and stable earnings. It should be
noted that there are converging opinions among those interviewed in the different groups of interest
(growers, technicians, distributors, mass retail buyers). This, in turn, demonstrates the ability for
kiwifruit industry stakeholders in Piedmont to work harmoniously and foreshadows a successful
management programme for A. arguta.

Based on synthesis of results from our TOWS analysis, we recommend the following development
strategies to help to shape the future A. arguta supply chain in Piedmont:

1. Large-scale oriented;
2. Berry fruits oriented;
3. Export and organic oriented;
4. Niche oriented.

Given the current crisis of the kiwifruit industry in Italy, we believe that we have provided
useful next steps in the strategic planning by identifying current and potential future issues, with
perspectives and options offered by the supply chain stakeholders. The methods used in the study
described here are subject to limitations. Nonetheless, we believe that the chosen methods are suitable
for identifying the relevant propensities with respect to the substitution of A. deliciosa with A. arguta
in the Piedmont region. We emphasise that the results of this study may not be applied to other
regions as most of the relevant circumstances (e.g., climatic conditions, socio-economic environment,
and entrepreneurial skill) significantly differ from the area in which our analysis is focused. It will
be necessary in the short term to carry out a detailed economic assessment, which can lead to the
definition of a cost-benefit analysis of the replacement. Lastly, this assessment can help investigate
matters with a more technical-agronomical perspective, or confirmation of the possible resistance of
A. arguta to PSA bacterium.
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