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Abstract: Sustainable facilities management (SFM) opens the door of opportunity for companies
to evaluate the quality of resources and environment management at their facilities. It enables
the principles of sustainable development. There is still inefficiency in quantitative research of
integrating environmental factors, particularly multi-source data, to monitor and control complicated
systems in buildings. The objective of this research is to develop an effective method to dynamically
optimize energy efficiency in SFM plans and strategies. The research question is: can the integrated
proactive method reduce energy consumption with dynamically adjustable controls? This paper
proposes a coordinated proactive control method using dynamic time-series prediction (PCM-DTSP)
for SFM, which optimizes system controls by integrating the prediction results and monitored
environmental-data. The results show that, after optimization, the temperature fluctuations are
reduced to 33.3%. The average temperature and maximum temperature are reduced by 8% and 13.1%,
respectively. The instantaneous power consumption was reduced by 0.17 KW per hour for each
cooling system unit. The PCM-DTSP method can significantly optimize energy efficiency, which paves
the way for long-term comprehensive energy management. The contribution of the research lies
in its optimized control of energy consumption, temperature stabilization, and improvement of
environmental comfort solutions, which can be generalized to various types of buildings.

Keywords: proactive control; system optimization; sustainable facilities management; dynamic
prediction

1. Introduction

The complexities of building and infrastructure projects are increasing worldwide, which are
reflected by the complication of corresponding tools, technologies, and operational controls [1,2].
This creates unprecedented challenges to facilities management (FM) [3,4]. The role of sustainable
facilities management (SFM) is critical to the planning, maintenance, and management of these
complex facilities [3,5,6]. SFM incorporates the people, place and business with optimized economic,
environmental and social benefits of sustainability [7,8]. In addition, SFM requires the integration of
multiple disciplines, including mechanical, electrical, plumbing, and fire protection (MEPFP), to ensure
the functionality of built environment [5,8]. The practice of SFM upsurges the complexity of MEPFP
systems which are critical in facilities management [8].

The management and control of MEPFP systems in a facility are very important in building
operation and maintenance of SFM [3,5,9]. Especially in complex projects, such as hospitals, science
labs, and technology parks, the total investment of MEPFP systems on average can even reach 50%
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of the total investment of such a project [3,5,10,11]. The traditional FM on MEPFP systems often
needs to follow certain routines [12,13]. The routines are pre-set programs which are static and low in
efficiency [13,14]. Therefore, it is of great significance to study dynamic operation and maintenance
methods for the management of MEPFP systems to improve system efficiency of SFM. There is
an urgent need to extensively investigate adaptive and optimized control models on the Heating,
Ventilating, and Air Conditioning (HVAC) systems for SFM [15]. Researchers and engineers consider
the energy consumption strategy of static low-temperature settings to be conservative, which causes
the cooling systems in buildings to be inefficient [16–26]. This research focuses on the optimization of
energy efficiency of the HVAC systems for SFM. The research objectives include the following items:
(1) to study the current energy management schemes in HVAC systems; and (2) to develop a proactive
control method to stabilize temperatures effectively. In this case, the research question is: can the
proactive control method reduce the energy consumption for SFM? The target is to reduce the energy
consumption that is wasted in regulating temperature fluctuations.

Currently, researchers, engineers and facility managers notice the urgency of learning and
adaptation of different actors at various systems. The understanding of how to control MEPFP
systems, together with the administration of facility utilization on various technical, economic, social
and geographic scales, has become a precondition for the emergence of sustainable development [27,28].
There are a variety of control schemes developed for thermal management in SFM with the purpose to
reduce energy costs [8,29]. For sustainable and smart management of HVAC systems, model-based
scheme is able to determine the control strategies and react quickly to the rapid changes of indoor
environment [8,29,30]. The Model Predictive Control (MPC) approach is a promising method for
analytical control on energy consumption [31]. There are three main MPC methods, including Linear
Regression Algorithm (LRA) [29,32], Time Series Prediction Algorithm (TSPA) [29,33], and Artificial
Neural Network Algorithm (ANNA) [29,34]. This research suggests integrating TSPA method with
multi-source data to develop an optimized on-demand control model for efficient and sustainable
energy management. Commercial buildings (e.g., office buildings, classrooms, theaters, and airports)
have relatively stable operation schedules. The temperature changes in these buildings follow
established patterns typically [12–14]. The operation schedule of HVAC systems in a commercial
building is usually predictable because the building is mainly for a certain type of business or service.
This feature is a necessary condition for the effective application of TSPA in this research.

The system designed in this research is a coordinated proactive control method using dynamic
time series prediction (PCM-DTSP) for SFM, which optimizes system controls by integrating the
prediction results and monitored environmental data. The aim of the development of this PCM-DTSP
system is to optimize energy efficiency, which paves the way for long-term comprehensive energy
management. The results of the research demonstrate the optimized control of energy consumption,
temperature stabilization, and improvement of environmental comfort. The research method and
the PCM-DTSP system can be generalized to SFM of various types of buildings. This research
has remarkable contribution to theoretical models and implementation of optimization method in
sustainable management of energy use. Compared to static settings, dynamic controls of complex
mechanical systems are able to recognize requirements or needs of existing building operation and
maintenance and understand the requirements to improve the quality of SFM [35]. The test data of
the research show that, after the fulfillment of the optimized method, energy consumption of the
samples was reduced. The energy saving would be noteworthy in the operation and management
of SFM. The practice helps to improve environmental awareness in policy makers, facility managers,
and system engineers.

This paper is organized as follows. In the Introduction Section, the paper discusses the importance
of energy management in SFM, explains the research question, and briefly describes the contributions
of solving the problem. The Literature Review Section presents different analytical models for energy
management and describes how the proposed methodology is different from the state-of-the-art.
The Methodology Section discusses the optimized method of cooling systems based on MPC. It includes
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the integration and optimization subsections. The Result Analysis Section analyzes the actual archived
data and compares it with experimental data. The last section concludes this study and elaborates the
research limitations.

2. Literature Review

One goal of sustainability in facility management (sustainability facilities management or SFM)
is to make sure that all the supporting services offered by FM shall improve the sustainability of the
facility customers [5,36]. For buildings, FM and energy management are closely related, because an
average 25% of complete operating costs are energy costs [37,38]. The majority of energy consumed in
buildings is for the Heating, Ventilating, and Air Conditioning (HVAC), particularly when there are
differences between indoor and outdoor temperatures. Energy consumption accounts for about 60% of
all delivered energy consumed in buildings [39]. There is an urgent need to extensively investigate
adaptive and optimized control models on the HVAC systems for SFM [15]. If buildings are able
to respond to energy management schemes through advance operation strategies and smart grid
infrastructure, it will help to avoid waste of electricity [38]. Consequently, the proposed strategy
focuses on managing HVAC systems, considering commercial buildings.

2.1. Optimization Approaches for System Efficiency in Sustainable Facilities Management

Model based predictive control (MPC) has been used widely in chemical plants, oil refineries and
other process industries since the 1980s. Presently, MPC is also used in power systems as balancing
models [40]. MPC is important to active operations of HVAC systems [41]. As the basis of MPC,
energy forecasting models need to have high fidelity and computationally efficiency in electrical
systems of buildings [42]. The energy forecasting models can crucially affect the energy consumptions
in HVAC systems [21,43]. To improve energy efficiency, it is critical to optimize system operations
in SFM [44]. There are two approaches to address the optimization of HVAC system efficiency in
buildings [17,18,20,22,23,25]. The two approaches include optimization of airflow organization and
enhancement of AC control. The first approach is to optimize the airflow organization of HVAC systems
for the purpose of improving system efficiency. For example, in the research project of Ham et al. [18],
the modular building used closed cold/hot channels to arrange airflow. Another example is the
natural-air cooling systems introduced by Ogawa et al. [22] to reduce energy consumption. Endo et al.
proposed a cooling control method based on the predictions of the thermal management requirements
at a modular building [19]. The method directly utilized fresh air to cool down temperatures following
calculated predictions. Endo et al. claimed that they were able to achieve a satisfactory balance
between the thermal requirements and energy savings. Nonetheless, the system depended excessively
on the air temperature of external environment. Overall, the first approach is limited on the energy
efficiency of HVAC systems.

The second approach is to enhance the control of heating/cooling systems by reducing redundant
heating/cooling supply. For example, Oxley et al. studied the improvement of computer room
air conditioners (CRAC) for heterogeneous high-performance systems under thermal and energy
constraints [23]. Ogawa et al. [22] and Durand-Estebe et al. [17] suggested to optimize the controls of
fan speeds for temperature control. Thota et al. studied how to forecast cooling loads for temperature
control [25]. Particularly, Huang et al. recommended to determine the set points of air conditioners
based on the utilization level of a building [20]. However, the approach failed to minimize the overall
energy consumption of the systems and fans. Zhou et al. studied the improvement of cooling efficiency
through localized and optimized cooling resources [26]. Zhou et al. suggested to use adaptive vent
tiles mounted on floor and control cooling provisions to reduce costs [26]. However, the suggestion
did not consider the power consumption of cooling fans. For dynamic service provision, researchers
studied the method of using workload predictions for buildings [45]. For example, Yin and Sinopoli
developed the approaches that coordinated service provision with thermal-load awareness in job
scheduling [45]. However, the coordinated method simply considered the control strategy in two
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stages. Stage 1 was to find the optimized capacities at different areas. Stage 1 was to use the capacities
as the load balancers to calculate the optimized quality-of-service cost. The coordinated method did
not integrate the nonlinear changes of loads. It had very limited consideration on the dynamic features
of cooling systems. Table 1 is a comparison of the two approaches. It lists the characteristics of the
different optimization methods of control schemes for energy management.

Table 1. Comparison of Control Schemes of Energy Management.

Type Example Feature Limitations

Optimize airflow
organization of
cooling systems

Ham et al. [18] Modular building; closed cold/hot
channels to arrange airflow. Low efficiency.

Ogawa et al. [22] Natural-air cooling systems to reduce
energy consumption Easily affected by exterior temperatures.

Hiroshi et al. [19]
Cooling control method based on the

predictions of the thermal management
requirements at a modular building.

Depended excessively on the air
temperature of external environment;

Low efficiency.

Reduction on
redundant cooling

supply

Oxley et al. [23]

Improvement of computer room air
conditioners (CRAC) for heterogeneous

high-performance systems under thermal
and energy constraints

Static method, especially when using
templates generated offline to assist the

online resource manager to make
thermal-aware decisions based on the

incoming workload and state of the HPC
facility. Not been tested by real-world data.

Ogawa et al. [22] and
Durand-Estebe et al. [17] Optimize the controls of fan speeds.

Only gives the optimized approximating
linear manifold in the configuration space

represented by the data.

Thota et al. [25]

Forecast cooling loads for temperature
control; Similar day selection, wavelet
decomposition, and neural networks;

Different sub-bands (frequency
components) and training a separate neural

network for each component;

Neural networks cannot be retrained. If
users add data later, it is almost impossible

to add to an existing network.

Huang et al. [20]

Determine the set points of CRAC based on
the utilization level of the building.

Applied a feedback-control approach on
fans to achieve a trade-off between leakage

power in circuit and fan power.

Failed to minimize the overall energy
consumption of the systems and fans.

Zhou et al. [26]
Localized and optimized cooling resources.
Adaptive vent tiles mounted on floor and
control cooling provisions to reduce costs.

Did not consider the power consumption
of fans.

Yin and Sinopoli [45] Coordinated service provision with
thermal-load awareness in job scheduling.

Very limited consideration on the dynamic
features of cooling systems.

2.2. Algorithms of Model Predictive Control

Currently, designers often implement steady-state algorithms in energy management models to
reduce redundant cooling supply in HVAC control systems, indicated as the second approach in the
previous discussion [46,47]. The purpose of the applications are to establish job schedules for HVAC
control systems with thermal-load awareness capacities [47,48]. Such methods are not applicable
under dynamic service provision, especially when the environmental temperatures change frequently
and unpredictably.

To gain the dynamic feature in the controls of HVAC systems, MPC uses model-based advanced
technology with analytical regulators. At present, the main MPC methods are Linear Regression
Algorithm (LRA) [32], Time Series Prediction Algorithm (TSPA) [33], and Artificial Neural Network
Algorithm (ANNA) [34]. Zhou et al. analyzed LRA and nonlinear regression energy models based
on performance counters and system utilization [32]. They proposed a regression energy model with
support vectors. Because the thermal distribution of was a slow process, the selected parameters in
the regression model would be too sensitive for thermal management [26]. Tarutani et al. proposed
a method to predict the temperatures of sensors and the outlet temperature of an air conditioner by
using regression models [33]. The prediction method contained TSPA. The predicted results were used
to change the parameter settings of the air conditioner. However, in the research of Tarutani et al.,
only the latest temperature was considered in the forecast. Moreover, only the maximum temperature
prediction was selected in the process [33]. The physical space relationship between air conditioners
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and sensors was not considered. An example of ANNA can be found in Ahn et al., who proposed a
comparative analysis of the controllers of heated air supply [34]. The analysis dealt with the amount
of mass and air temperatures by using ANNA. They aimed to control the mass and temperatures
of supply air per users’ demands. However, there was a lack of consideration of room temperature
distribution in the learning model [34].

The LRA, TSPA and ANNA all have advantages and disadvantages. In a LRA Model,
the selections of variables and parameters are very important. The selections of parameters directly
affect the accuracy of the prediction model. Nevertheless, many factors affect the thermal distribution.
Hence, it is difficult to select the variables or parameters accurately when using LRA. TSPA depends
on the continuous development of temperatures, using the statistical analysis of historical temperature
data to predict the development trend of current temperature. TSPA uses time series data. When great
changes take place in time series data, it affects the prediction results. Thus, TSPA is more suitable for
short-term forecasts than long-term ones. ANNA is capable of nonlinear mapping and self-learning.
However, the predictive ability of ANNA depends on the maturity of its training model. Because of
the slow convergence of the algorithm, it has the problem of lags in dynamic control of air conditioners.
When selecting an optimization control method for cooling systems, it is necessary to meet the
requirement of rapid optimization control of the cooling systems in short term, following the trend of
temperature changes.

3. Methodology

This paper proposes a proactive approach to reduce potential hot spots (i.e., areas with high
temperatures) in buildings. Figure 1 shows the research design. The first step is to use a dynamic
smoothing coefficient to optimize the exponential smoothing method when predicting the changing
temperatures of a building. The second step integrates the prediction results and the temperatures
detected by sensors to optimize the proportional-integral-derivative controller (PID controller) of air
conditioners. The last step is to implement the modified TSPA as an optimization control method for
building cooling systems. The proactive control method is able to stabilize building temperatures more
effectively than LRA. With a relatively stable temperature, the cooling system of a building would
need less energy compared the one with an ever-changing temperature, which helps reduce the energy
consumption of the building. This paper contributes to optimized control of indoor air temperature
by implementing a dynamic exponential smoothing algorithm. The model-based predictive control
in this research successfully combines dynamic smoothing coefficient with incremental PID control
algorithm in the control of the air conditioner.

3.1. Predicting Temperature Changes: Forecasting Model Using Exponential Smoothing Method

Exponential smoothing method (ESM) is an experimental technique for time series analysis and
prediction (TSPA) [49]. The ESM used in this research is to forecast the temperature at t + 1 moment
based on collected temperature data. This research uses triple exponential smoothing algorithm to
precisely catch the trend of temperature changes [49,50]. The following sections discuss single, double
and triple exponential smoothing algorithms.

3.1.1. Single ESM Algorithm and Temperature Prediction

Equation (1) shows the single or first-order exponential smoothing (ESM) algorithm, which is
the simplest scheme in ESM. It is suitable for the prediction of time series without trend patterns.
The result of Equation (1) is a single exponential smoothing (SES) value. The function displays data in
a horizontal pattern. Its use is limited to time series data with stationary characteristics.

S(1)t = αyt + (1− α)S(1)t−1 (1)
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S(1)t is the forecast temperature value of time period t. {y1, y2, . . . . . . yt} is the collected
temperature time series from real-world buildings. α is a smoothing coefficient, 0 < α < 1.
The superscript (1) means the first order in exponential smoothing algorithm. S(1)t−1 is the exponential

smoothing value of period t− 1. When t = 1, the initial value of S(1)0 is the average of the latest 3
temperature values observed before the period 0. yt is the instantaneous temperature value at period t,
which refers to the time interval of temperature collection. Usually the time interval is 5 min [49,50].
Based on Equation (1), Equation (2) shows the temperature prediction. The exponential smoothing
value ŷt+1 is used as the prediction value for t + 1 period.

ŷt+1 = S(1)t (2)

That is : ŷt+1 = αyt + (1 + α)ŷt
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3.1.2. Double ESM Algorithm and Temperature Prediction

Double ESM calculates the trend pattern of temperatures. It is suitable for the prediction of linear
time series. Equation (3) calculates the forecast temperature value of S(2)t at time t using double ESM.

S(2)t = αS(1)t + (1− α)S(2)t−1 (3)

where St
(1) is the value of single ESM calculated in Equation (1). Indoor temperature changes

frequently and in non-linear patterns. Because of this characteristic, double ESM can be used to predict
temperature in a relatively short time period. When the temperature time series {y1, y2, . . . . . . yt} with
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a straight line trend, similar to the trend of moving average method, can be represented by a linear
trend model as Equation (4),

ŷt+T = at + btT, T = 1, 2, . . . (4)

where at, bt are calculated as follows [49]:

at = 2S(1)t − S(2)t

bt =
α

(1− α) [S
(1)
t − S(2)t ]

3.1.3. Triple ESM Algorithm and Temperature Prediction

Equation (5) shows the function of triple ESM.

S(3)t = αS(2)t + (1− α)S(3)t−1 , (5)

In essence, triple ESM is a quadratic polynomial exponential smoothing function [51]. It is
transformed from a linear exponential smoothing method to a non-linear quadratic polynomial
exponential smoothing method [34]. It is ideal for describing the characteristics of nonlinear changes
of loads and temperatures. Using the same transformation process as for Equation (4), Equation (5)
can be rewritten as Equation (6).

ŷt+m = at + btm + ctm2 (6)

where m is the prediction period, m = 1, 2;

at = 3S(1)t − 3S(2)t + S(3)t

bt =
α

2(1− α)2 [(6− 5α)S(1)t − 2(5− 4α)S(2)t + (4− 3α)S(3)t ]

ct =
α2

2(1− α)2 [S
(1)
t − 2S(2)t + S(3)t ]

In Equations (1), (3) and (5), the smoothing coefficient α reflects the influence of the measured
data on the predicted values. The greater is the value of α, the larger is the effect. Meanwhile,
the smaller is the deviation between the measured value and the predicted value, the higher is the
accuracy of the prediction. Therefore, it is possible to obtain α by calculating the squared sum of the
deviations of multiple predicted values [51]. Equation (7) shows the formula for calculating the sum of
squared deviations.

f = min
N

∑
i=1

(ŷt − yt)
2, (7)

where N is the count of predicted temperatures; ŷt represents the temperature predicted at the moment
of t; and yt is the measured temperature at the moment of t.

3.2. Dynamic Exponential Smoothing Optimization Algorithm

Usually, the smoothing coefficient α of an ESM for forecasting is a static parameter based on
experience [51]. However, the temperatures in a building usually have changes. It is difficult to adapt
to temperature changes with empirical measured values and static parameters only. Based on practical
experience, if a time series has obvious tendency to change, the smoothing coefficient α should take
a large value [51]. According to empirical studies and lab experiments [52], usually the value range
is α ∈ [0.3, 0.5]. If the time series changes slowly, the smoothing coefficient α would be a small
value with the range of α ∈ [0.1, 0.4]. If the time series has irregular fluctuations and the long-term
trend is approximately a stable constant, the smoothing coefficient α is generally very small with the
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value range of α ∈ [0.02, 0.1]. To precisely predict dynamic temperature changes, this paper uses the
correlation analysis to determine the smoothness of time series data and dynamically selects smoothing
coefficient parameters, to optimize the temperature prediction method of exponential smoothing.

Each element yt in the series {y1, y2, . . . . . . yt} is a random variable. Its expectation can be
expressed as Equation (8):

E(yt) = µ, t = 1, 2, . . . (8)

Equation (9) calculates the variance to measure the discrepancy of the time series between collected
data and predicted values:

Var(yt) = σ2
x, t = 1, 2, . . . (9)

Equation (10) defines the covariance between the two time series yt and yt−k of the k-th period:

γt = Cov
(
yt, yt−k

)
= E

[
(yt − µ)

(
yt−k − µ

)]
, (10)

Therefore, Equation (11) defines the correlation function of time series:

ρk =
Cov

(
yt, yt−k

)√
Var(yt)

√
Var
(
yt−k

) , k = 1, 2, . . . (11)

Equation (12) calculates the variance of a stationary time series when it is a constant:

Var(yt) = Var
(
yt−k

)
= σ2

y (12)

Thus ρk =
Cov(yt,yt−k)

σ2
y

= γk
σ2

y
= γk

γ0
, when k = 0, ρ0 = 1.

The following steps show the determination method of the smoothness of a time series using the
correlation function.

1. For the values in the time series starting at a point of time q, calculate the correlation coefficient
of ρq+1, ρq+2, . . . ρq+M, where M =

√
n, and n is the size of the series {y1, y2, . . . . . . yn}.

The constant parameter M is the modified length of the time series for correlation calculation.
It is used to define the length of the time series. The calculation of M is based on empirical
experiments or observations [49,52].

2. Calculate the percentages of ρk ≤ k√
n

√
1 + 2 ∑t

i=1 ρi
2, (k = 1, 2, . . .) in the number of M.

3. Depending on whether the percentage of ρk falls within the confidence interval and ρk distribution
in the region [0, 1], determine the stability of temperature time series.

Figure 2 shows the pseudo code of prediction process using the dynamic ESM as the forecasting
algorithm (or Dynamic Time-Series Prediction, DTSP). For the purpose of statistical analysis,
the maximum value of n is set as 100, which will provide enough sample size for T-test. In Figure 2,
ρq+1, ρq+2, . . . ρq+M are used to calculate the dynamic values of α. Once the value of α is obtained,
the DTSP algorithm will calculate temperature predictions using Equations (5) and (6) accordingly.

In Figure 2, the function of “getCoefficientValue” is based on the minimum target of Squared Sum
Error (SSE) expressed in Equation (7). It is rewritten in Equation (13):

MinSSE =
M

∑
i=q

(yi − ŷi)
2 (13)

where yi is the collection value in the time series
{

yq+1, yq+2, . . . . . . yq+M

}
; and ŷi is the temperature

prediction value based on triple ESM. This research uses steepest descent method to solve the nonlinear
optimization model and sets ε (ε > 0) as the end control condition [53–56]. Since the precision of
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the temperature sensors used in the experiment is 0.5 ◦C, the end control condition is set as ε = 0.5.
This research takes ε = 0.5 based on empirical observation [53–56]. The calculation process is as follows:

1. Traverse each smoothing coefficientαi within a specific range (such as αi ∈ [0.1, 0.4]), to calculate
the SSE(αi). When a value of αi makes |SSE(αi)| ≤ ε, the value is selected and the iteration
calculation stops.

2. If |SSE(αi)| > ε for all the αi in the range, the algorithm finds a smoothing coefficient αi which
minimizes the |SSE(αi)| in the range. The corresponding αi is used as the target value.
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3.3. System Verification: Prediction Model Using Multi-Source Data

Let Si(Ak) represent the sensor in the effective control of the air conditioner Ak. Ti(Ak) is the
real-time temperature acquisition value of sensor Si(Ak). Using the triple ESM algorithm to predicate
the indication on the sensor Si(Ak), Tij(Ak) is the temperature prediction result of sensor Si(Ak)

in the jth (j = 1, 2 . . . , n) acquisition cycle. The time span of the predicted value determines the
weights ϕj of the predicted value at different cycles. ϕj (j = 1, 2 . . . , n), ϕj ∈ [0, 1], and ∑n

1 ϕj = 1.
The superposition of the prediction results of j-th (j = 1, 2 . . . , n) cycle indicates the prediction for each
sensor. Equation (14) shows how to calculate the prediction result using the temperatures of multiple
acquisition cycles for each sensor.

Ti(Ak) =
n

∑
1

∏
1≤j≤n

ϕjTij(Ak), i = 1, . . . , n; (14)

When predicting temperature, it is necessary to incorporate the prediction results of multiple
sensors and select different weights for each sensor. In this study, according to the physical space
relationship between air conditioners and sensors, different sensors would have different weights of
ωi(i = 1, 2 . . . , n), ωi ∈ [0, 1]. The shorter the direct distance between a sensor and an air conditioner,
the larger the weight value. The sensor which has the longest distance has the weight value of 1. After
the integration of the predicted results of all the sensors, Equation (15) obtains the prediction results of
the room temperatures. Figure 3 shows the integration process of temperature predictions. Particularly,
the temperature time series is regarded as stationary under the following conditions [49,52]: (1) when
k ≤ 3 and the correlation function ρk is in the confidence interval; or (2) when k > 3, ρk → 0 .
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Otherwise, the temperature time series is regarded as not stationary. The conditions are empirical
observations. In this paper, we use correlation analysis to determine whether the time series of
temperature data is stable.

Tr = ∑n
1 ∏1≤i≤nωiTi(Ak), k = 1, . . . , n; (15)
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3.4. Proactive Control Method

If people only depend on the sensors of cooling systems to adjust the PID control of a building,
its temperature distribution will be unbalanced. Unbalanced temperature distribution is one of the
main reasons causing server downtime, especially when the temperature at a hotspot exceeds a certain
limit. Figure 4 shows the principle of optimized control based on cooling predictions of the integrated
predictive model (IPM). In Figure 4, the load devices and the cooling devices are associated according
to their proximities in the physical space. The predicted temperature of the group of cooling devices
and the associated sensors would help the IPM to decide on and carry out the dynamic control on the
cooling systems. As shown in Figure 4, when |(Tr − Tc)/Tr| ≥ θ, the prediction results of temperatures
Tr will be linked to the cooling control logic. The following definitions are for the variables in Figure 4.
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Tr is the integration result of temperature predictions.
Tc is the temperature value monitored by the sensors on air conditioners.
Θ is the difference between the temperature setting and the actual temperature Θ ∈ [0, 1].
λ is the degree of influence of the air conditioner sensors on the PID calculation when performing

PID control calculations. λ ∈ [0, 1],ω+ λ = 1.
When |(Tr − Tc)/Tr| ≥ θ, the cooling control temperature is: c(t) = ωTr + λTc; otherwise,

c(t) = Tc. The PID control of the cooling system depends on the temperature prediction by the IPM.
It combines the given value r(t) with ratio (P), integral (I), and derivative (D) of the actual output
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value c(t). It also generates control volume through linear combination. Equation (16) shows the
differential equation of the cooling PID regulator.

u(t) = Kp[e(t) +
1
TI

∫ t

0
e(t)dt + TD

de(t)
dt

], (16)

where e(t) = r(t) − c(t) Thus, Equation (17) calculates the incremental PID algorithm based on
temperature control:

∆u(n) = a0e(n) + a1e(n− 1) + a2e(n− 2), (17)

where a0 = Kp

(
1 + T

TI
+ TD

T

)
, a1 = −Kp

(
1 + 2 TD

T

)
, and a2 = −Kp

TD
T . To improve the accuracy of

PID control on cooling systems, the input filter of the cooling control value is the deviation e(n). It is
not applied directly to the current time when calculating the differential. Instead, e(n) is the average
of cooling deviations of the samples in the past four cycles. Hence, the cooling control differentials
are formed by weighted summation. Equations (18) and (19) are for the optimization of cooling
control differential.

uD(n) =
KpTD

6T
[e(n) + 3e(n− 1)− 3e(n− 2)− e(n− 3)] (18)

∆uD(n) =
KpTD

6T
[e(n) + 2e(n− 1)− 6e(n− 2) + 2e(n− 3) + e(n− 4)] (19)

4. Experiment Design

To validate the PCM-DTSP system, this research selects a data center building as the experimental
data source. This is a small building located in in Shaanxi Province, China. The PCM-DTSP is
implemented in the experiment building to optimize the on-demand cooling supplies and acquire
actual data of the systems. The data observed on the systems are used to verify that the PCM-DTSP
system is able to achieve optimized control. The research also includes random generated data to
validate the temperature prediction, analyze the effectiveness of the system for temperature simulation,
and statistical testing. The sampling interval is 5 min. There are 100 observations in the experiment.
There are three steps in the experimental analysis.

1. Use MATLAB 2014a simulation software (MathWorks, Natick, MA, USA) to analyze the
effectiveness of temperature prediction algorithm.

2. Analyze the effectiveness of the PCM-DTSP system for temperature simulation.
3. Implement the controller program for air conditioners and use the optimized controller to test,

analyze, and verify the results.

The building has 11 servers and two industrial-type air conditioning (AC) cabinets. The layout of
the data center building is shown in Figure 5. The total cooling capacity (the capacity of cooling output
of AC units) is 20 KW. Each AC unit has the rated power (the power consumption of an AC unit in the
maximum load state) of 3.56 KW. In addition, there are one power distribution cabinet, six temperature
sensors, one smart meter, and three Power Distribution Units (PDUs). The energy efficiency of an AC
unit can be calculated using the above two measures by: Cooling Capacity/Rated Power = Energy
Efficiency . The total load of a building includes the power of AC units, servers, power distribution
equipment, etc. The total load of the experiment building is approximately 10.5 KW. Each unit of
cooling equipment provides cold air to different server groups. The integrated prediction model in this
research combines the predictions of the temperature sensors in the same server group and controls
the cooling systems based on the calculated optimization results for energy consumption efficiency.
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5. Result Analysis

5.1. Analysis of Temperature Prediction Algorithm

In the experiment of temperature prediction analysis, we used the static exponential smoothing
method and the dynamic exponential smoothing method to predict and analyze temperatures. We first
used the static smoothing coefficient to predict the temperature trend of the center. In the initial
characteristics analysis of the time series curves, we found that the experimental data had relatively
slow speed of changes in the whole data sequence. However, there were rapid and frequent changes in
local tendencies. Therefore, we selected the smoothing coefficient in the range of [0.1, 0.4]. Appendix A
has further explanation of how to choose the value of the smoothing coefficient. However, the static
triple exponential smoothing predictive method cannot achieve enough accuracy of prediction.
To verify the effectiveness of the proposed algorithm, we used the same set of test data. Figure 6 is
the result of using the dynamic smoothing coefficient to predict the building temperatures. It shows
that the whole prediction results are in agreement with the actual data. Moreover, the trend of the
temperature changes in the building is predicted synchronously as well.
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Figure 6. Forecasting results of dynamic exponential smoothing method.

In the process of prediction, the dynamic smoothing coefficient α is selected according to the
discussion in the Methodology section. The calculation of the range of smoothing coefficient is to
validate the selection of the dynamic exponential smoothness, as shown in Figure 6. Figure 7 shows
the dynamic changes of the smoothing coefficient. The figure indicates that, to choose the smoothing
coefficient α, the range should be α ∈ [0.24, 0.35]. Due to the fluctuations of the temperatures in the
time series, it is difficult to adapt the whole time series with one single static smoothing coefficient.
Its prediction accuracy would be greatly different from the actual monitoring results. The results of
the dynamic exponential smoothing method are in good agreement with the actual data samples.
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The prediction results are better than the static exponential smoothing method. Therefore, it is feasible
to predict temperatures by using the dynamic smoothing coefficient in the forecasting model.
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5.2. Integration of Predicted and Sensed Temperatures

In the experiment, according to the physical deployment distribution of the equipment and air
conditioners, the air conditioners are grouped with the servers and sensors. Figure 5 shows the layout
of the groups. In the group binding, some sensors can be shared by the two air-conditioning units
at the same time. Hence, they can be used as the basis of analysis for the two groups. The grouping
information of the experiment is shown in Table 2.

Table 2. Group Configuration for Analysis Temperature Integration.

Cooling Equipment Group A1 Group A2

Associated Sensor 〈A1 |S 1, S2, S3〉 〈A2 |S 2, S4, S5, S6〉

Sensor Weights
(

S1|0.28; S2|0.41;
S3|0.31

) (
S2|0.23; S4|0.18;
S5|0.31; S6|0.28

)
Associated Server

〈
A1

∣∣∣∣ SP1, SP2, SP3
SP4, SP6, SP7

〉 〈
A2

∣∣∣∣ SP5, SP6, SP7
SP8, SP9, SP10

〉

The analysis processes on Groups A1 and A2 are the same. Group A1 is used as experimental
object for optimized control analysis. Sensors S1, S2, and S3 provide the data series. The temperature
difference rate Θ = 0.35, ω = 0.45, and λ = 0.55. Based on the grouping information in Table 2,
Equations (10) and (11), the process method (Figure 2) of the PCM-DTSP model, and the multi-source
data, we selected part of temperature prediction data in Group A1 for integration analysis. Table 3
shows the analysis process and results. Using the analysis results, we obtained the temperature
prediction of each sensor in “Group A1”, and the integrated temperature prediction results of “Group
A1”. The prediction results of “Group A1” provide the foundation for the integration of multiple
sensors. Figure 8 shows the integration results of temperature data from multiple sensors. According
to the relationship between |(Tr − Tc)/Tr| and temperature difference rate Θ as shown in Figure 4,
the PCM-DTSP model determines whether Tc is involved in air conditioning coordination control. If Tc

participates in collaborative control of cooling systems, the temperature control of the air conditioner
is c(t) = ωTr + λTc; otherwise the system uses c(t) to control the air conditioner. In Figure 8, the curve
Tc is an integrated result calculated based on the weight information of the Sensors S1, S2, S3, and the
workflow in Figure 4.
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Table 3. Examples of the integration analysis of temperature prediction results.

Collection
Time

Sensor
The Predicted Value at Different Cycles Sensor Prediction

(from Equation (14))
Group A1 Prediction
(from Equation (15))Ti1(A1);ϕ1 Ti2(A1);ϕ2 Ti3(A1);ϕ3 Ti4(A1);ϕ4

12 March 2017
08:12:10

S1 23.5; 0.4 23.7; 0.3 23.8; 0.2 23.8; 0.1 23.65
23.58S2 24.1; 0.4 24.0; 0.3 23.9; 0.2 23.8; 0.1 24.0

S3 22.9; 0.4 23.0; 0.3 23.0; 0.2 23.1; 0.1 22.97

12 March 2017
08:17:21

S1 23.8; 0.4 23.8; 0.3 23.9; 0.2 24.0; 0.1 23.84
23.71S2 24.1; 0.4 24.0; 0.3 23.8; 0.2 23.8; 0.1 23.98

S3 23.2; 0.4 23.2; 0.3 23.3; 0.2 23.4; 0.1 23.24

12 March 2017
08:22:05

S1 23.8; 0.4 23.9; 0.3 23.9; 0.2 24.0; 0.1 23.87
23.70S2 23.9; 0.4 23.8; 0.3 23.8; 0.2 23.7; 0.1 23.83

S3 23.3; 0.4 23.4; 0.3 23.5; 0.2 23.6; 0.1 23.4Sustainability 2017, 9, 1597  14 of 21 
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5.3. Statistical Analysis of Cooling Optimization Based on MPC

To optimize the controller of a cooling system, the selection of the PID control algorithm and
the adjustment of the parameters can directly affect the result of temperature control of the building.
According to the characteristics of the temperature changes, we used the incremental PID control
algorithm in the control of the air conditioner of the selected building. The PID parameters of the
controller are shown in Table 4.

Table 4. Proportional-Integral-Derivative (PID) control parameters of the controller.

Parameter Value Parameter Value

Temperature setting 25 ◦C Scale coefficient 0.2
Integral coefficient 0.15 Differential coefficient 0.2

Integral upper offset 5 Integral lower offset −5
Integral separation 20 Sampling period 1000 ms

According to the observations on the PID control simulator, the effects of PID control before
and after optimization are significantly different. Figure 9 shows the PID control simulation before
optimization. The PID controllers usually have input data errors from sensor measurements. We used
the input data errors directly in the calculation of differential coefficients. When calculating the integral
values, we omitted the values if they were less than the precision. In Figure 9, there is no filtering value
for the differential before optimization. The PID adjustment process uses the differential coefficients,
resulting in the fluctuations of the PID output values with deviations. At the same time, in the integral
calculation, the convergence adjustment speed of PID is not sensitive enough because of the omission
of the integral terms that are less than the precision value.



Sustainability 2017, 9, 1597 15 of 22
Sustainability 2017, 9, 1597  15 of 21 

 

Figure 9. Simulation results of PID control before optimization. 

 

Figure 10. Simulation results of PID control after optimization. 

Figures 9 and 10 show that, in the same environment and with the same parameter settings, it 
takes 45 s to adjust the PID controller from the current temperature to the set value before 
optimization. After optimization, it takes only 20 s to reach the set temperature, which can greatly 
shorten the time spent by the PID control of an air conditioner. Meanwhile, the output control curve 
shows that, in the control process of the PID adjustment of an air conditioner, the optimized control 
output is more stable than that before optimization. The optimized control output can control an air 
conditioner effectively.  

Figure 9. Simulation results of PID control before optimization.

Figure 10 shows PID control simulation after optimization. When calculating the differential
optimization, the input filter of the cooling control value is the average of cooling deviations of the
samples in the past four cycles. The control differential values are formed by weighted summation
(as shown in Equation (19)). When an integral area is less than the output accuracy, the calculation of
the integral needs to accumulate many of them to get the integral value.

Sustainability 2017, 9, 1597  15 of 21 

 

Figure 9. Simulation results of PID control before optimization. 

 

Figure 10. Simulation results of PID control after optimization. 

Figures 9 and 10 show that, in the same environment and with the same parameter settings, it 
takes 45 s to adjust the PID controller from the current temperature to the set value before 
optimization. After optimization, it takes only 20 s to reach the set temperature, which can greatly 
shorten the time spent by the PID control of an air conditioner. Meanwhile, the output control curve 
shows that, in the control process of the PID adjustment of an air conditioner, the optimized control 
output is more stable than that before optimization. The optimized control output can control an air 
conditioner effectively.  

Figure 10. Simulation results of PID control after optimization.



Sustainability 2017, 9, 1597 16 of 22

Figures 9 and 10 show that, in the same environment and with the same parameter settings, it takes
45 s to adjust the PID controller from the current temperature to the set value before optimization.
After optimization, it takes only 20 s to reach the set temperature, which can greatly shorten the time
spent by the PID control of an air conditioner. Meanwhile, the output control curve shows that, in the
control process of the PID adjustment of an air conditioner, the optimized control output is more stable
than that before optimization. The optimized control output can control an air conditioner effectively.

In the experiment of control optimization on cooling systems, we compared the traditional PID
control model and the optimized PID control based on the dynamic predictive model. We carried out
the experimental analysis from the following two aspects of temperature control and achieved energy
efficiency optimization. Figure 11 shows the experimental results.
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Figure 11. Experimental Results of Temperature Based on Model Predictive Control (MPC).

The first aspect is the temperature control of the building. According to the trend of temperature
changes in Figure 11, although the traditional PID control can achieve the adaptive adjustment
of temperatures, it has inadequate control on the cooling system due to the sudden changes of
temperatures, which are caused by the load of the building. The temperature of the building is
not stable enough. There would be locally overheated or undercooled situations. When using the
optimization method of predictive model control, the temperature is more stable, temperature changes
are more gradual, and the temperature distribution is more uniform. Table 5 includes the statistics
of the temperatures of the building. It is up to 9.0 ◦C difference between the highest temperature
and lowest temperature before control optimization. The temperature difference is within 3.0 ◦C
after optimization.

Table 5. Statistics of Temperature Maximum Deviation.

Optimization Avg. Temp. (◦C) Max. Temp. (◦C) Min. Temp. (◦C)

Before 28.6 30.6 21.5
After 26.3 26.7 23.3

The second aspect of analysis is from the energy efficiency optimization. Figure 12 shows the
statistics of energy consumption of the cooling system in the same time period. After optimization,
the average energy consumption of the cooling system has also been reduced. Therefore, the predictive
control model has a significant effect on reducing energy consumption of cooling systems.
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In Table 6, before optimization, the cooling instantaneous power consumption is up to 3.48 KW;
while the optimized instantaneous energy consumption is decreased by 0.17 KW. The deviation of
the average energy consumption before and after optimization is 0.05 KW. Therefore, the predictive
control model has a substantial effect on the optimization of energy efficiency for the cooling system.
The total experiment time before and after optimization is 500 min each (5 min/sampling interval
× 100 observations). The energy consumption is within 8 h (500/60 = 8.33) after the optimization.
Each air conditioner can save nearly 9.4 KW of energy per day. The energy saving is up to 3416.4 KW
per year. Therefore, the predictive control method has a substantial effect on the optimization of energy
consumption for cooling systems.

Table 6. Statistics of Cooling Energy Consumption.

Optimization Rated Power (kw) Avg. Power(kw) Max. Power (kw) Min. Power (kw)

Before 3.56 3.43 3.48 3.39
After 3.56 3.26 3.31 2.85

6. Conclusions

This research presents a cooling control method based on MPC. The system is a coordinated
proactive control method using dynamic time series prediction (PCM-DTSP) for sustainable facilities
management (SFM). By integrating prediction results and monitored environmental data, the system
is able to predict temperature changes and optimize controls. The PCM-DTSP helps to automate the
functions of HVAC, particularly cooling systems, for improved energy efficiency. Specifically, the model
makes substantial difference in terms of improved accuracy and timeliness in predicting cooling loads.
If this system becomes widely used, it would considerably help buildings save energy and maintain
sustainability. The modified MPC method with dynamic ESM in this research innovatively facilitates
the study of dynamic service in control systems.

The experiment data show that the optimized cooling systems are more stable and consistent
with a building’s cooling needs than the non-optimized systems. In addition, experiment tests verify
that the optimized systems are able to reduce the power consumed by the cooling systems, stabilize
the temperatures of the selected building, and reduce the energy consumption of the building.

However, one limitation of the control method is that its verification was performed on one
building. The particular building was a closed-space modular building. The method developed in
this research has potential to be used in open-space buildings. However, the thermodynamics of such
a confined space should be used with caution when directly translated to other types of buildings.
In future research, this dynamic ESM could be employed with machine learning to make the control of
air conditioning systems more intelligent. Another possible future effort is to improve the prediction
model by integrating other data sources.



Sustainability 2017, 9, 1597 18 of 22

Acknowledgments: This research work was supported by the Education Department of Shaanxi Province
(17JZ047); the Special Foundation for Young Scientists of Xi’an University of Architecture and Technology
(6040516148); and the Talent Technology Foundation of Xi’an University of Architecture and Technology
(6040300613).

Author Contributions: Shunling Ruan and Haiyan Xie conceived and designed the experiments; Song Jiang
performed the experiments; Shunling Ruan and Haiyan Xie analyzed the data; Shunling Ruan contributed analysis
tools; and Shunling Ruan and Haiyan Xie wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1a–d shows the experimental results of using the triple exponential smoothing prediction
method to simulate and analyze temperature changes with the static smoothing coefficients taken
as α = 0.1, α = 0.2, α = 0.3 and α = 0.4, respectively. The following discussions compare the
observations of the prediction results.
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Figure A1. Forecasting results of static exponential smoothing method: (a) comparison of forecast
temperatures and actual data when α = 0.1; (b) comparison of forecast temperatures and actual
data when α = 0.2; (c) comparison of forecast temperatures and actual data when α = 0.3; and (d)
comparison of forecast temperatures and actual data when α = 0.4.

1. When the smoothing coefficient α = 0.1, as shown in Figure A1a, the static exponential smoothing
method can only predict the overall trend of the temperature changes. However, it cannot
accurately predict the occurrences of sudden changes in temperatures. The deviations between
the predicted results and the actual values are significant. Using the predicted results of this
parameter to control cooling systems would lead to serious shortage of refrigeration or excessive
cooling supply at a local area in a certain time range.

2. When the smoothing coefficientα = 0.2, as shown in Figure A1b, relative to the situation when the
smoothing coefficient α = 0.1, the accuracy of the forecast has greatly improved. The predicted
results can reflect local variations of the temperatures. However, it has obvious lags between the
predicted results and the actual data. It lacks sensitivity to temperature changes. Using this result
to control cooling systems would cause local temperatures to be overheated or undercooled.

3. When the smoothing coefficient α = 0.3, as shown in Figure A1c, the accuracy of the prediction
is greatly improved. The prediction results can reflect local temperature variations. However,
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it has lags as well. If we use this result to control the cooling systems, it would create uneven
cooling situations and waste energy consumption.

4. When the smoothing coefficient α = 0.4, as shown in Figure A1d, the prediction results have
strong jitters, where the peak values of the predicted results exceed the actual detections. If we
follow these prediction results, it would exacerbate the phenomenon that the temperature is
locally overheated or undercooled. It has a negative impact on the temperature stability. However,
the sensitivity of the prediction algorithm is improved compared to the previous parameters.

The above experimental and analytical results show that when the smoothing coefficient is 0.1
and 0.2, the sensitivity of the prediction algorithm is reduced. The algorithm cannot reflect short-term
changes of the temperatures. When the smoothing coefficient is 0.3 and 0.4, the sensitivity of the
prediction algorithm is greatly improved. When α = 0.3, the sensitivity of the prediction algorithm
have lags in the region with large temperature fluctuation. However, the short-term forecast is
improved. When α = 0.4, the hysteresis of the prediction algorithm is reduced. However, because
the sensitivity is very high, predictions of peak temperatures tend to be much higher than the actual
ones. Therefore, using the smoothing coefficient α ∈ [0.1, 0.4] to simulate and analyze temperatures
is appropriate. However, the smoothing coefficient should be between 0.3 and 0.4. In this research,
we took α = 0.35 as an example for experimental analysis. Figure A2 shows the results when the
smoothing coefficient value is 0.35. The peak value of the temperature prediction is raised, but some of
the predictions are still behind the original measured values.

Sustainability 2017, 9, 1597  19 of 21 

we took α = 0.35 as an example for experimental analysis. Figure A2 shows the results when the 
smoothing coefficient value is 0.35. The peak value of the temperature prediction is raised, but some 
of the predictions are still behind the original measured values. 

 
Figure A2. Forecasting results of static smoothing coefficient (α = 0.35). 

The above analysis reveals that the static triple exponential smoothing predictive method can 
perform the basic prediction of the temperature trend of the building. However, the accuracy of 
prediction is not enough. Thus, in the rest calculation of the PCM-DTSP method, we did not use the 
static method. 

References 

1. Gann, D.M.; Salter, A.J. Innovation in project-based, service-enhanced firms: The construction of complex 
products and systems. Res. Policy 2000, 29, 955–972. 

2. Barrett, P. Achieving strategic facilities management through strong relationships. Facilities 2000, 18, 421–
426. 

3. Roper, K.O.; Payant, R.P. The Facility Management Handbook; AMACOM Div American Mgmt Assn: New 
York, NY, USA, 2014. 

4. Stark, J. Product lifecycle management. In Product Lifecycle Management (Volume 1); Springer: Berlin, 
Germany, 2015; pp. 1–29. 

5. Atkin, B.; Brooks, A. Total Facility Management; John Wiley & Sons: Hoboken, NJ, USA, 2014. 
6. Smith, L.G. Impact Assessment and Sustainable Resource Management; Routledge: Abingdon, UK, 2014. 
7. Higman, S. The Sustainable Forestry Handbook: A Practical Guide for Tropical Forest Managers on Implementing 

New Standards; Earthscan: London, UK, 2013. 
8. Shaikh, P.H.; Nor, N.B.M.; Nallagownden, P.; Elamvazuthi, I.; Ibrahim, T. A review on optimized control 

systems for building energy and comfort management of smart sustainable buildings. Renew. Sustain. 
Energy Rev. 2014, 34, 409–429. 

9. Sherwin, D. A review of overall models for maintenance management. J. Qual. Maint. Eng. 2000, 6, 138–164. 
10. Riley, D.R.; Varadan, P.; James, J.S.; Thomas, H.R. Benefit-cost metrics for design coordination of 

mechanical, electrical, and plumbing systems in multistory buildings. J. Constr. Eng. Manag. 2005, 131, 877–
889. 

11. Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 
2008, 40, 394–398. 

12. Fantozzi, F.; Leccese, F.; Salvadori, G.; Rocca, M.; Garofalo, M. Led lighting for indoor sports facilities: Can 
its use be considered as sustainable solution from a techno-economic standpoint? Sustainability 2016, 8, 618. 

13. Dekker, R. Applications of maintenance optimization models: A review and analysis. Reliab. Eng. Syst. Saf. 
1996, 51, 229–240. 

14. Márquez, A.C.; León, P.; Fernández, J.; Márquez, C.P.; Campos, M.L. The maintenance management 
framework: A practical view to maintenance management. J. Qual. Maint. Eng. 2009, 15, 167–178. 

Figure A2. Forecasting results of static smoothing coefficient (α = 0.35).

The above analysis reveals that the static triple exponential smoothing predictive method can
perform the basic prediction of the temperature trend of the building. However, the accuracy of
prediction is not enough. Thus, in the rest calculation of the PCM-DTSP method, we did not use the
static method.

References

1. Gann, D.M.; Salter, A.J. Innovation in project-based, service-enhanced firms: The construction of complex
products and systems. Res. Policy 2000, 29, 955–972. [CrossRef]

2. Barrett, P. Achieving strategic facilities management through strong relationships. Facilities 2000, 18, 421–426.
[CrossRef]

3. Roper, K.O.; Payant, R.P. The Facility Management Handbook; AMACOM Div American Mgmt Assn: New York,
NY, USA, 2014.

4. Stark, J. Product lifecycle management. In Product Lifecycle Management (Volume 1); Springer: Berlin, Germany,
2015; pp. 1–29.

http://dx.doi.org/10.1016/S0048-7333(00)00114-1
http://dx.doi.org/10.1108/02632770010349655


Sustainability 2017, 9, 1597 20 of 22

5. Atkin, B.; Brooks, A. Total Facility Management; John Wiley & Sons: Hoboken, NJ, USA, 2014.
6. Smith, L.G. Impact Assessment and Sustainable Resource Management; Routledge: Abingdon, UK, 2014.
7. Higman, S. The Sustainable Forestry Handbook: A Practical Guide for Tropical Forest Managers on Implementing

New Standards; Earthscan: London, UK, 2013.
8. Shaikh, P.H.; Nor, N.B.M.; Nallagownden, P.; Elamvazuthi, I.; Ibrahim, T. A review on optimized control

systems for building energy and comfort management of smart sustainable buildings. Renew. Sustain.
Energy Rev. 2014, 34, 409–429. [CrossRef]

9. Sherwin, D. A review of overall models for maintenance management. J. Qual. Maint. Eng. 2000, 6, 138–164.
[CrossRef]

10. Riley, D.R.; Varadan, P.; James, J.S.; Thomas, H.R. Benefit-cost metrics for design coordination of mechanical,
electrical, and plumbing systems in multistory buildings. J. Constr. Eng. Manag. 2005, 131, 877–889.
[CrossRef]

11. Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build.
2008, 40, 394–398. [CrossRef]

12. Fantozzi, F.; Leccese, F.; Salvadori, G.; Rocca, M.; Garofalo, M. Led lighting for indoor sports facilities: Can
its use be considered as sustainable solution from a techno-economic standpoint? Sustainability 2016, 8, 618.
[CrossRef]

13. Dekker, R. Applications of maintenance optimization models: A review and analysis. Reliab. Eng. Syst. Saf.
1996, 51, 229–240. [CrossRef]

14. Márquez, A.C.; León, P.; Fernández, J.; Márquez, C.P.; Campos, M.L. The maintenance management
framework: A practical view to maintenance management. J. Qual. Maint. Eng. 2009, 15, 167–178. [CrossRef]

15. Avci, M.; Erkoc, M.; Rahmani, A.; Asfour, S. Model predictive hvac load control in buildings using real-time
electricity pricing. Energy Build. 2013, 60, 199–209. [CrossRef]

16. Ahuja, N.; Rego, C.; Ahuja, S.; Warner, M.; Docca, A. Data Center Efficiency with Higher Ambient
Temperatures and Optimized Cooling Control. In Proceedings of the 2011 27th Annual IEEE Semiconductor
Thermal Measurement and Management Symposium, Semiconductor Thermal Measurement and
Management Symposium (SEMI-THERM), San Jose, CA, USA, 20–24 March 2011; p. 105.

17. Durand-Estebe, B.; Le Bot, C.; Mancos, J.N.; Arquis, E. Simulation of a temperature adaptive control strategy
for an iwse economizer in a data center. Appl. Energy 2014, 134, 45–56. [CrossRef]

18. Ham, S.-W.; Park, J.-S.; Jeong, J.-W. Research paper: Optimum supply air temperature ranges of various
air-side economizers in a modular data center. Appl. Therm. Eng. 2015, 77, 163–179. [CrossRef]

19. Hiroshi, E.; Hiroyoshi, K.; Hiroyuki, F.; Toshio, S.; Takashi, H.; Masao, K. Cooperative control architecture of
fan-less servers and fresh-air cooling in container servers for low power operation. ACM Oper. Syst. Rev.
2014, 48, 34.

20. Huang, W.; Allen-Ware, M.; Carter, J.B.; Elnozahy, E.; Hamann, H.; Keller, T.; Lefurgy, C.; Li, J.; Rajamani, K.;
Rubio, J. Tapo: Thermal-aware power optimization techniques for servers and data centers. In Proceedings
of the 2011 International Green Computing Conference and Workshops Green Computing Conference and
Workshops (IGCC), Orlando, FL, USA, 25–28 July 2011; p. 1.

21. Nada, S.A.; Elfeky, K.E.; Attia, A.M.A. Experimental investigations of air conditioning solutions in high
power density data centers using a scaled physical model. Études expérimentales des solutions de
conditionnement d’air dans des centres de données à forte densité électrique en utilisant une maquette.
Int. J. Refrig. 2016, 63, 87–99.

22. Ogawa, M.; Endo, H.; Fukuda, H.; Kodama, H.; Sugimoto, T.; Horie, T.; Maruyama, T.; Kondo, M. Cooling
control based on model predictive control using temperature information of it equipment for modular data
center utilizing fresh-air. In Proceedings of the 2013 13th International Conference on Control, Automation
& Systems (ICCAS 2013), Gwangju, Korea, 20–23 October 2013; p. 1815.

23. Oxley, M.A. Online resource management in thermal and energy constrained heterogeneous high
performance computing. In Proceedings of the 2016 IEEE 14th International Conference on Dependable,
Autonomic and Secure Computing, 14th International Conference on Pervasive Intelligence and Computing,
2nd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), Auckland, New Zealand, 8–12 August 2016; Pasricha, S.,
Ed.; IEEE: Piscataway, NJ, USA, 2016; p. 604.

24. Smolaks, M. Research: Precision Cooling Expected to Boom in APAC; DatacenterDynamics: London, UK, 2017.

http://dx.doi.org/10.1016/j.rser.2014.03.027
http://dx.doi.org/10.1108/13552510010341171
http://dx.doi.org/10.1061/(ASCE)0733-9364(2005)131:8(877)
http://dx.doi.org/10.1016/j.enbuild.2007.03.007
http://dx.doi.org/10.3390/su8070618
http://dx.doi.org/10.1016/0951-8320(95)00076-3
http://dx.doi.org/10.1108/13552510910961110
http://dx.doi.org/10.1016/j.enbuild.2013.01.008
http://dx.doi.org/10.1016/j.apenergy.2014.07.072
http://dx.doi.org/10.1016/j.applthermaleng.2014.12.021


Sustainability 2017, 9, 1597 21 of 22

25. Thota, P.K.; Dani, A.P.; Luh, P.B.; Gupta, S. Cooling load forecasting for chiller plants using similar day
based wavelet neural networks. In Proceedings of the 2015 International Conference on Complex Systems
Engineering (ICCSE), Storrs, CT, USA, 9–11 November 2015; p. 1.

26. Zhou, R.; Bash, C.; Wang, Z.; McReynolds, A.; Christian, T.; Cader, T. Data center cooling efficiency
improvement through localized and optimized cooling resources delivery. In Proceedings of the ASME 2012
International Mechanical Engineering Congress & Expositio, Houston, TX, USA, 9–15 November 2012.

27. Geels, F.W. The multi-level perspective on sustainability transitions: Responses to seven criticisms. Environ.
Innov. Soc. Trans. 2011, 1, 24–40. [CrossRef]

28. Ioppolo, G.; Cucurachi, S.; Salomone, R.; Saija, G.; Shi, L. Sustainable local development and environmental
governance: A strategic planning experience. Sustainability 2016, 8, 180. [CrossRef]

29. Dounis, A.I.; Caraiscos, C. Advanced control systems engineering for energy and comfort management in a
building environment—A review. Renew. Sustain. Energy Rev. 2009, 13, 1246–1261. [CrossRef]

30. Wang, S.; Ma, Z. Supervisory and optimal control of building hvac systems: A review. HVAC&R Res. 2008,
14, 3–32.

31. Afram, A.; Janabi-Sharifi, F. Theory and applications of hvac control systems—A review of model predictive
control (MPC). Build. Environ. 2014, 72, 343–355. [CrossRef]

32. Zhou, Y.; Li, N.; Li, H.; Zhang, Y. Regression cloud models and their applications in energy consumption of
data center. J. Electr. Comput. Eng. 2015, 2015, 143071. [CrossRef]

33. Tarutani, Y.; Hashimoto, K.; Hasegawa, G.; Nakamura, Y.; Tamura, T.; Matsudax, K.; Matsuoka, M. Reducing
power consumption in data center by predicting temperature distribution and air conditioner efficiency with
machine learning. In Proceedings of the 2016 IEEE International Conference on Cloud Engineering (IC2E),
Berlin, Germany, 4–8 April 2016; p. 226.

34. Ahn, J.; Cho, S.; Chung, D.H. Analysis of energy and control efficiencies of fuzzy logic and artificial neural
network technologies in the heating energy supply system responding to the changes of user demands.
Appl. Energy 2017, 190, 222–231. [CrossRef]

35. Zeigler, B.P.; Praehofer, H.; Kim, T.G. Theory of Modeling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems; Academic Press: Cambridge, MA, USA, 2000.

36. Pelzeter, A. Sustainability in facility management. In Proceedings of the Implementing Sustainability-Barriers
and Chances, Book of Abstracts, sb13 Sustainable Building Conference, Munich, Germany, 24–16 April 2013;
pp. 24–26.

37. Doty, S.; Turner, W.C. Energy Management Handbook; CRC Press: Boca Raton, FL, USA, 2004.
38. Dodrill, K. Demand Dispatch—Intelligent Demand for a More Efficient Grid; U.S. Department of Energy, National

Energy Technology Laboratory Smart Grid Implementation Team: Morgantown, WV, USA, 2011.
39. Paris, B.; Eynard, J.; Grieu, S.; Talbert, T.; Polit, M. Heating control schemes for energy management in

buildings. Energy Build. 2010, 42, 1908–1917. [CrossRef]
40. Arnold, M.; Andersson, G. Model predictive control of energy storage including uncertain forecasts.

In Proceedings of the Power Systems Computation Conference (PSCC), Stockholm, Sweden, 22–26 August
2011; pp. 24–29.

41. Li, X.; Wen, J. Review of building energy modeling for control and operation. Renew. Sustain. Energy Rev.
2014, 37, 517–537. [CrossRef]

42. Li, X.; Wen, J.; Bai, E.-W. Developing a whole building cooling energy forecasting model for on-line operation
optimization using proactive system identification. Appl. Energy 2016, 164, 69–88. [CrossRef]

43. Ni, J.; Bai, X. A review of air conditioning energy performance in data centers. Renew. Sustain. Energy Rev.
2017, 67, 625–640. [CrossRef]

44. Bilal, K.; Malik, S.U.R.; Khan, S.U.; Zomaya, A.Y. Trends and challenges in cloud datacenters. IEEE Cloud
Comput. 2014, 1, 10–20. [CrossRef]

45. Yin, X.; Sinopoli, B. Adaptive robust optimization for coordinated capacity and load control in data centers.
In Proceedings of the 2014 IEEE 53rd Annual Conference on Decision and Control (CDC), Los Angeles, CA,
USA, 15–17 December 2014; pp. 5674–5679.

46. Clarke, D.W.; Mohtadi, C.; Tuffs, P. Generalized predictive control—Part I. The basic algorithm. Automatica
1987, 23, 137–148. [CrossRef]

47. Kassmann, D.E.; Badgwell, T.A.; Hawkins, R.B. Robust steady-state target calculation for model predictive
control. AIChE J. 2000, 46, 1007–1024. [CrossRef]

http://dx.doi.org/10.1016/j.eist.2011.02.002
http://dx.doi.org/10.3390/su8020180
http://dx.doi.org/10.1016/j.rser.2008.09.015
http://dx.doi.org/10.1016/j.buildenv.2013.11.016
http://dx.doi.org/10.1155/2015/143071
http://dx.doi.org/10.1016/j.apenergy.2016.12.155
http://dx.doi.org/10.1016/j.enbuild.2010.05.027
http://dx.doi.org/10.1016/j.rser.2014.05.056
http://dx.doi.org/10.1016/j.apenergy.2015.12.002
http://dx.doi.org/10.1016/j.rser.2016.09.050
http://dx.doi.org/10.1109/MCC.2014.26
http://dx.doi.org/10.1016/0005-1098(87)90087-2
http://dx.doi.org/10.1002/aic.690460513


Sustainability 2017, 9, 1597 22 of 22

48. Qin, S.J.; Badgwell, T.A. A survey of industrial model predictive control technology. Control Eng. Pract. 2003,
11, 733–764. [CrossRef]

49. Montgomery, D.C.; Jennings, C.L.; Kulahci, M. Introduction to Time Series Analysis and Forecasting; John Wiley
& Sons: Hoboken, NJ, USA, 2015.

50. Xu, Y.; Chen, B.; Hu, Z. Research for multi-sensor data fusion based on huffman tree clustering algorithm in
greenhouses. Int. J. Embed. Syst. 2016, 8, 34–38. [CrossRef]

51. Ledolter, J.; Abraham, B. Some comments on the initialization of exponential smoothing. J. Forecast. 1984, 3,
79–84. [CrossRef]

52. Yaffee, R.A.; McGee, M. An Introduction to Time Series Analysis and Forecasting: With Applications of Sas® and
Spss®; Academic Press: Cambridge, MA, USA, 2000.

53. Levinson, N. The wiener (root mean square) error criterion in filter design and prediction. Stud. Appl. Math.
1946, 25, 261–278. [CrossRef]

54. Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error
(RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [CrossRef]

55. Allen, D.M. Mean square error of prediction as a criterion for selecting variables. Technometrics 1971, 13,
469–475. [CrossRef]

56. Cochrane, D.; Orcutt, G.H. Application of least squares regression to relationships containing auto-correlated
error terms. J. Am. Stat. Assoc. 1949, 44, 32–61.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0967-0661(02)00186-7
http://dx.doi.org/10.1504/IJES.2016.073750
http://dx.doi.org/10.1002/for.3980030109
http://dx.doi.org/10.1002/sapm1946251261
http://dx.doi.org/10.3354/cr030079
http://dx.doi.org/10.1080/00401706.1971.10488811
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review 
	Optimization Approaches for System Efficiency in Sustainable Facilities Management 
	Algorithms of Model Predictive Control 

	Methodology 
	Predicting Temperature Changes: Forecasting Model Using Exponential Smoothing Method 
	Single ESM Algorithm and Temperature Prediction 
	Double ESM Algorithm and Temperature Prediction 
	Triple ESM Algorithm and Temperature Prediction 

	Dynamic Exponential Smoothing Optimization Algorithm 
	System Verification: Prediction Model Using Multi-Source Data 
	Proactive Control Method 

	Experiment Design 
	Result Analysis 
	Analysis of Temperature Prediction Algorithm 
	Integration of Predicted and Sensed Temperatures 
	Statistical Analysis of Cooling Optimization Based on MPC 

	Conclusions 
	

