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Abstract: Product testing is a critical step in tablet PC manufacturing processes. Purchases of testing
equipment and on-site testing personnel increase overall manufacturing costs. In addition, to improve
manufacturing capabilities, manufacturers must also produce products with higher quality and at
a lower cost than their competitors if they are to attract consumers and gain a competitive edge in
their industry. The Mahalanobis–Taguchi System (MTS) is a novel technique proposed by Genichi
Taguchi for performing diagnoses and forecasting with multivariate data. The MTS can be used to
select important factors and has been applied in numerous engineering fields to improve product and
process quality. In the present study, the MTS, logistic regression, and a neural network were used
to improve the tablet PC product testing process. The results indicated that the MTS attained 98%
predictive power after insignificant test items were eliminated. The MTS performance was superior
to those of the conventional logistic regression and neural network, which attained 93.3% and 94.7%
predictive power, respectively. After the testing process was improved using the MTS, the number
of test items in the tablet PC product testing process was reduced from 56 to 14. This facilitated the
development of more stable test site configurations and effectively reduced the testing time, number
of testers required, and equipment costs.

Keywords: logistic regression; Mahalanobis–Taguchi System (MTS); neural networks; multiple
criteria decision making; sustainability; sustainability in manufacturing

1. Introduction

The rapid development of cloud technology and changes in the computer usage habits of
consumers and digital-oriented lifestyles have raised various discussions on the digital technology
industry. In 2010, Apple Inc. (CA, USA) released its first tablet PC: the iPad. This began a global
tablet boom that resulted in a gradual shrinking of the notebook market, which the tablet PC market is
soon predicted to surpass in size. Manufacturers have increased their production capacity in response
to this new market demand. An NPD (National Purchase Diary) DisplaySearch report stated that
256 million, 321 million and 350 million tablet PCs were shipped globally in 2014, 2015 and 2016,
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respectively [1]. The actual number of tablet PCs shipped in 2016 was more than the number of
notebooks [2], as illustrated in Figure 1. Numerous PC manufacturers are concerned that tablet PCs
are changing technology usage habits and what computer equipment consumers buy; furthermore,
tablet PCs are expected to replace notebooks in the future.
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equipment manufacturers (OEMs), with the brand companies instead focusing on marketing, which 
adds considerable value and is crucial for obtaining a competitive edge. This has substantially 
changed the methods with which OEMs conduct business. The demand of the global consumer 
market for tablet PCs is increasing daily, and the tablet PC industry is becoming increasingly 
sophisticated. Thus, this industry is becoming a perfectly competitive market. For the producers of 
standard PCs, the threshold to becoming a tablet PC OEM is low. Taiwan has advantages in this 
regard because of its PC production since the 1990s, and, consequently, most OEM work is performed 
locally [3]. Tablet PCs comprise aspects of traditional computers, notebooks, and mobile phones. 
They have distinct development processes and relatively short lifecycles with rapid product refresh 
rates [4]. Therefore, shortening product development times while maintaining quality standards is a 
critical concern in the technology industry. 
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their production capabilities and manufacture products with higher quality and at a lower cost than 
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[5–8]. After the rationality of the tablet PC product testing items was evaluated, those that made small 
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The desire to enter the competitive tablet PC market has motivated major technology companies,
such as Apple, Samsung, ASUS, ACER, HP, Dell and Amazon, to launch products that can derive a
competitive advantage. These international brands have established operations worldwide, through
which they can reach customers and satisfy their needs. Manufacturing, design, global logistics
management, purchasing and other low-margin processes have gradually shifted to original equipment
manufacturers (OEMs), with the brand companies instead focusing on marketing, which adds
considerable value and is crucial for obtaining a competitive edge. This has substantially changed
the methods with which OEMs conduct business. The demand of the global consumer market for
tablet PCs is increasing daily, and the tablet PC industry is becoming increasingly sophisticated. Thus,
this industry is becoming a perfectly competitive market. For the producers of standard PCs, the
threshold to becoming a tablet PC OEM is low. Taiwan has advantages in this regard because of its
PC production since the 1990s, and, consequently, most OEM work is performed locally [3]. Tablet
PCs comprise aspects of traditional computers, notebooks, and mobile phones. They have distinct
development processes and relatively short lifecycles with rapid product refresh rates [4]. Therefore,
shortening product development times while maintaining quality standards is a critical concern in the
technology industry.

Competition is intense in the tablet PC OEM industry. Manufacturers must continually improve
their production capabilities and manufacture products with higher quality and at a lower cost
than their competitors in order to attract consumers and derive a competitive advantage. Reducing
production costs is thus a critical priority.

Product testing is an extremely crucial step in the tablet PC manufacturing process, but the
procurement of testing equipment and the number of on-site testing personnel increase the overall
manufacturing cost. In this study, the Mahalanobis–Taguchi System (MTS) was employed to improve
tablet PC product-testing processes. Data were collected and analyzed, and scientific verification
methods were employed to elucidate the product characteristics and construct meaningful models [5–8].
After the rationality of the tablet PC product testing items was evaluated, those that made small
contributions were removed to facilitate accurate and rapid product testing. Thus, the number of
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test sites and testers was reduced, which decreased the testing costs, shortened the testing times, and
enabled products to be release to the market more quickly. This strengthened company competitiveness
within the industry as a whole. In addition, logistic regression and neural networks were used to
improve the tablet PC product testing process. The differences among these three methods were
subsequently compared and discussed.

2. Literature Review

2.1. Tablet PC Testing Process

The required test items are entirely different for each stage of the testing process. Tablet PC
production test process includes PT1 (Pre-Test station 1)→ PT2→ PT3→ PT4→ RIT (Run-in Test)→
FT (Final Test)→ QA (Quality Assurance) Check (Figure 2). At the production testing stage, tablet
PCs are tested through production verification, functional testing, run-in, and volume production
testing. Functional testing in particular accounts for a substantial portion of the overall production
time. Therefore, functional testing was primarily investigated and improved in this study.
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Currently, functional testing is extremely complex and certain content is repeated during both
early and final testing. In addition, when faults occur during functional testing, the few devices
analyzed and repaired during early testing are re-identified as faulty during the final testing. The MTS,
logistic regression, and neural networks were employed in this study to identify more reasonable test
items. High-quality engineering practices and professional engineering background knowledge were
used to identify suitable test items while ensuring identical production quality [9,10].

2.2. MTS

The MTS is a classification technology devised by Dr. Genichi Taguchi for conducting diagnoses
and forecasting with multivariate data [11,12]. It combines quality engineering principles and
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utilizes the Mahalanobis distance for the structured induction of data, serving as a basis for
decision-making [13].

Mahalanobis space is established using k characteristic variables (X1, X2, . . . , Xk) derived from n
normal products. It is used to distinguish normal products and abnormal products. The Mahalanobis
distance calculated using a normal sample population has a mean approaching 1 and forms
Mahalanobis space, which is also called base space. Mahalanobis space can be considered a database
that includes characteristic variable means, standard deviations, and correlation coefficient inverse
matrices for the normal population. Generally, the Mahalanobis distances of normal samples are less
than 2.5, with values over 4 being extremely rare [14]. The Mahalanobis distance of a product from an
abnormal sample that is calculated using the means, standard deviations, and correlation coefficient
inverse matrices of base space is extremely high. Additionally, thresholds can be determined using the
smallest type-I error (normal products misjudged as abnormal products) and type-II errors (abnormal
products misjudged as normal products) that occur [15,16].

In robust design, targets in orthogonal arrays are used to minimize the number of tests.
This minimal test number is used to obtain reliable factor effect estimates. In the MTS, orthogonal
arrays verify useful variables using the minimal number of tests [17,18]. Within an orthogonal array,
each characteristic variable or factor is placed in a different row. Each row is a combination of different
variables or factor levels representing a test combination. By using orthogonal arrays, the influence of
each characteristic variable on system output can be investigated [19,20]. A multivariate system was
assumed to have k characteristic variables, and each characteristic variable was set to one of two levels:

Level 1 = used characteristic variable; and
Level 2 = unused characteristic variable.

The case analyzed in this study had 56 characteristic variables (X1–X56) that were used for
analysis. Therefore, an L64(263) orthogonal array with an experimental configuration. Subsequently,
the Mahalanobis space established by all of the characteristic variables in the normal sample was used
to calculate the Mahalanobis distance of d abnormal samples (Equations (1)–(3)). This Mahalanobis
distance was then used to obtain the signal-to-noise (SN) ratio [21,22].

Standardized equation:

Zij =
Xij −mi

σi
(1)

where
mi =

1
n
(Xi1 + Xi2 + · · ·+ Xin)

σ =

√
1

n− 1
[(Xi1 −mi)

2 + . . . + (Xi1 −mi)]

Correlation matrix:

rst =
1

n− 1

n

∑
l=1

zsl ·ztl =
1

n− 1
(zs1·zt1 + zs2·zt2 + · · ·+ zsn·ztn) (2)

R =


1 r12 · · · r1k

r21 1 · · · r2k
...

...
. . .

...
rk1 rk2 · · · 1


Inverse correlation matrix:
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a11 a12 · · · a1k
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...

...
. . .

...
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Mahalanobis distance:

MDt =
1
k

k

∑
j=1

k

∑
i=1

aij·zit·zjt (t = 1, 2, . . . , n) (3)

After constructing the Mahalanobis space based on the characteristic variable combinations in the
orthogonal array, the SN ratio were used to select important variables. In quality engineering, the SN
ratio is used as an evaluation tool with decibels as a unit. The SN ratio is used to evaluate performance
using the ratio of useful information to harmful information. In multivariate analysis, confirming that
a combination of variables can fully detect abnormal levels is critical.

In this study, the level of abnormality in faulty tablet PCs was tested to serve as a basis for
screening test items. The larger-the-better SN ratio was used in expectation that greater Mahalanobis
distances within the abnormal sample observations in relation to those of the normal sample were
favorable (Equation (4)).

η = −10 log10

[
1
d

(
1

MD1
+

1
MD2

+ · · ·+ 1
MDd

)]
(4)

Assuming that greater increases in Mahalanobis distances (average SN ratio of level 1 minus
average SN ratio of level 2) were favorable, the importance of the characteristic variables to the
classification and diagnostic system was determined to select optimal conditions (Equation (5)).

Gaini = SN+
i − SN−i (5)

Additionally, the selected optimal variables were used to construct reduced models [23–25].
These reduced models were used to calculate the Mahalanobis distances of the abnormal samples and
obtain a single SN ratio. A greater SN ratio for the reduced model in comparison with that for the full
model indicates that the system improved after performing MTS analysis. Therefore, the increases
in SN ratio before and after analysis can be analyzed to assess improvements in system functioning.
Finally, validation group data were used for testing to confirm whether the reduced model exhibited
sufficient classification and diagnostic capabilities [26–30].

2.3. Logistic Regression

Logistic regression model was introduced by Berkson [31]. This model is used to resolve test
result data with the possibility of only success or failure. The purpose of the model is to predict the
relationship between a dependent variable and a set of independent variables accurately. The model
also establishes a set of classification rules. Single samples can be entered to obtain a predicted
probability of success. This probability is used to determine the properties of the sample. Logistic
regression is used primarily in classification problems and is a statistical analysis method involving
the use of class variables. The final predicted value for the dependent variable is a probability value
between 0 and 1. Logistic regression is often used to establish binary classification as an alternative to
linear discriminant analysis. This obviates the unreasonable assumption that covariance matrices used
for binary classification are identical [32]. Logistic regression is considered one of the most appropriate
methods for predicting binary output [33]. Logistic regression is currently more widely used with
discrete binary data, particularly medical statistics and biostatistics. Scholars have also applied it to
the fields of marketing and finance. Both logistic regression and discriminant analysis can resolve
variable classification problems. However, logistic regression is not restricted by normal distribution
assumptions. The basic form of logistic regression is identical to that of conventional linear regression.
Dependent variable Y does not follow a normal distribution as the continuous variables required for
linear regression do. Instead, it is a binary or dichotomous variable, such as success and failure or
whether an event occurs. Thus, dependent variable estimates will always fall between 0 and 1.
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Logistic regression uses a set of historical data with known attribution categories to derive
a classification prediction model. This model is used to create classification criteria for new data.
The primary goal of this model is to determine the relationships between the dependent and
independent variables of the class types. The model can be used as a standard model for resolving
the problem of dependent variables being binary data class variables, and can also be used to display
function characteristics clearly. It is typically used within dependent variables to set the incident
occurrence value to 1 (Y = 1) and the incident nonoccurrence value to 0 (Y = 0).

2.4. Neural Networks

The neural network algorithm uses mathematical language to describe the operating model
of the human brain. These operating models are called neural networks. Neural networks are
capable of learning. Users are not required to design complex programs to resolve problems. Neural
networks have been applied widely to industrial control and business decisions, stock and exchange
rate forecasting, voice recognition systems, and fault-tolerant systems. Kong [34] applied neural
networks to reduce the number of thin-film-transistor liquid-crystal display product test items during
the manufacturing process, thereby reducing testing time and equipment investment. The results
indicated that the application of neural networks reduced the original 102 test items to 32 items while
maintaining high product testing accuracy. This demonstrates the effectiveness of neural networks,
which are superior to conventional statistical regression methods [35]. Hsieh [36] applied neural
networks to planning-based production in the paper industry. Hsieh used the superiority of neural
networks in predicting demand. The networks learned the relationships among existing data to
establish a demand forecasting model, which served as a basis for production planning for decision
makers. Wang, Lin, Lai and Chen [37] applied data mining techniques to increase the consistency of
emergency triage. The study cooperated with the emergency department of a medical center in Taiwan
to perform process construction, parameter selection, and sampling to construct a triage prediction
model. This model generated 2000 pieces of necessary patient information. After conducting data
mining using three classification techniques (multigroup discriminant analysis, multigroup logistic
regression, and back-propagation neural networks), the study observed that back-propagation neural
networks were able to distinguish patient criticality with 95.1% accuracy.

The original concept of neural networks was derived from biological nervous systems. Biological
thinking is emulated using computers. Learning and thinking by using data generate answers for
specific problems. A number of models have been presented for the development of neural networks.
The most influential of these models is multilayer perceptron (MLP) [38–41]. MLP typically includes a
number of layers, which are classified as input, hidden, or output layers. Each neuron in the input
layer corresponds to a predictor variable, and the number of neurons is equal to the number of
predictor variables. The number of neurons in the output layer is identical to the number of response
variables [42,43]. Figure 3 shows that one or multiple hidden layers are possible.
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The discussed studies revealed that the MTS, logistic regression and neural networks all
demonstrated excellent discrimination when solving binary classification problems with multivariate
data. The characteristic variable selections and classification prediction results obtained using the
MTS are comparatively robust under identical data conditions. Therefore, the MTS architecture was
analyzed, and logistic regression models and neural networks were used to improve the tablet PC
product testing process. The differences among these three methods were subsequently compared
and discussed.

3. Analysis Results and Discussion

3.1. MTS Analysis

The 56 test item variables were assigned codes X1–X56. Next, 450 pieces of data (i.e., 450 tablet
PCs) were randomly selected from the production line, of which 300 were used as the training group.
Within this group, 268 were normal and 32 were abnormal data samples. The other 150 pieces of data
were used as the validation group to validate the model. Table 1 details the collected sample data (see
the Appendix A).

Table 1. Sample data.

Normal Samples Abnormal Samples Total

Training Group 268 32 300
Validation Group 138 12 150

The 268 normal samples from the training group data were used as a basis for constructing
the Mahalanobis space, which contained the mean, standard deviation, and correlation coefficient
inverse matrix of the data group. After the Mahalanobis space (or base space) was constructed, the
Mahalanobis distances of the normal and abnormal samples in the training and validation groups were
calculated and plotted on graphs. Figures 4 and 5 illustrate the Mahalanobis distance distributions
of the training and validation groups, respectively. When the threshold was 2.0, the accuracy of the
training group and validation group was 99.3% (Table 2). Therefore, the measurement scale of the
model constructed using the 56 variables was reliable and effective at this stage. Next, the possibility
of achieving acceptable production testing accuracy after reducing the number of variables and using
fewer test items was investigated.
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Table 2. Accuracy of the results for the training and validation groups using MTS analysis (Full Model).

Training Group
Normal (R) Abnormal (R) Accuracy

Normal 266 2
99.3%Abnormal 0 32

Validation Group
Normal (R) Abnormal (R) Accuracy

Normal 137 1
99.3%Abnormal 12

The most critical variables affecting tablet PC production testing were identified, and unnecessary
variables were removed. Orthogonal arrays were used to investigate which test items affected the
tablet PC production testing results. First, each variable was assigned to Level 1 (for used variables) or
Level 2 (for unused variables). Next, these variables were distributed to the appropriate orthogonal
arrays. In this study, 56 variables were used. Therefore, L64(263) orthogonal arrays were employed.
The 32 abnormal samples in the training group were used to calculate 32 corresponding Mahalanobis
distances. The larger-the-better SN ratio was also used, based on the principle that a high SN ratio
and a high increment in variable effect were favorable. Figure 6 illustrates the effect increments for
each variable.
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The variables were screened on the basis of their effect increments (>0, >0.1, >0.2, >0.3 and >0.4),
which reduced the 56 original test items to 45, 24, 14, 8 and 4, respectively. Reduced models were
then established after the corresponding variables were removed. When the effect increment was
greater than 0.2, the training group and validation group accuracy was 98%. The final characteristic
variables selected were X14, X16, X24, X26, X36, X38, X44, X45, X49, X50, X51, X52, X54 and X56, a total
of 14 characteristic variables. The normal sample data from the training group and 14 critical test
item variables were used after screening to reconstruct the Mahalanobis space. An abnormal sample
was used to confirm the measurements of the reduced model. Figures 7 and 8 present the frequency
distributions derived from these data.

Type-I and type-II error minimization were used as a basis for determining the threshold of 2.2,
which resulted in an accuracy of 98%. Next, the sample data from the validation group were used to
confirm that the accuracy was also 98% when the variables were reduced to 14 items and the threshold
was set to 2.2 (Table 3). Therefore, the number of test items used in the tablet PC product testing process
was reduced from the original 56 items to 14 items by using the MTS analysis method. Validation
results for the different groups still indicated high accuracy after this reduction. The MTS is thus a
feasible method for screening test item variables.
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Table 3. Accuracy of the results for the training and validation groups using MTS analysis (Reduce Model).

Training Group
Normal (R) Abnormal (R) Accuracy

Normal 265 3
98%Abnormal 3 29

Validation Group
Normal (R) Abnormal (R) Accuracy

Normal 136 2
98%Abnormal 1 11

3.2. Logistic Regression Analysis

The logistic regression analysis data were identical to those used in the MTS analysis in the
previous section. The 450 pieces of data were divided into 300 pieces of training data and 150 pieces of
validation data. Next, logistic regression analysis was used to construct a model. A binary variable
(0 = normal sample, 1 = abnormal sample) was the dependent variable and the 56 test variables were
the independent variables.

The results of the coefficient test of the binary logistic regression analysis variables from SPSS
software were used to determine the number of variables that were insignificant. This would indicate
only the characteristic variables that had a substantial effect on tablet PC product testing abnormalities.
These crucial key factors were then reconsidered to establish a logistic regression model.

Forward stepwise regression was used to screen the 56 original characteristic variables, yielding
15 crucial factors. These 15 characteristic variables were used to construct an optimal model
configuration by using logistic regression. A register value of 0.05 and a removal value of 0.1 were
adopted as testing standards for determining the stepwise variable probability. The reduced equation
based on the stepwise regression analysis results is expressed as follows:

P =
e−0.46X1−5.73X13−4.22X18 ... −0.47X48−0.15X49−0.09X51−0.61X55−245.77

1 + e−0.46X1−5.73X13−4.22X18 ... −0.47X48−0.15X49−0.09X51−0.61X55−245.77

The selected variables were X1, X13, X18, X20, X24, X25, X38, X41, X43, X45, X47, X48, X49, X51 and
X55. The area under the logistic regression receiver operating characteristic (ROC) curve (Figure 9)
was 0.946.
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The 300 pieces of training data (268 normal samples and 32 abnormal samples) were entered into
the reduced equation. Type-I and type-II error minimization were used as a basis for determining the
threshold. The accuracy was 97.3% when the separated value was set to 0.4. The results presented in
Table 4 revealed that the testing accuracy for the validation group was 93.3% when the separated value
was 0.4. Therefore, conventional logistic regression is a feasible method for test item variable screening.

Table 4. Accuracy of the results for the training and validation groups using logistic regression analysis.

Training Group
Normal (R) Abnormal (R) Accuracy

Normal 265 3
97.3%Abnormal 5 27

Validation Group
Normal (R) Abnormal (R) Accuracy

Normal 131 7
93.3%Abnormal 3 9

3.3. Neural Network Analysis

A neural network was used to construct a prediction model for determining accuracy in tablet PC
product testing. A random sample of 450 pieces of data was divided into training (300 pieces of data)
and retention (validation) groups (150 pieces of data). MLP program for neural networks included
in SPSS was used to generate the prediction model. The input layer nodes were the 56 characteristic
variables used for testing. The model had one hidden layer, with the hyperbolic tangent function as
the start function. The output layer contained two nodes: normal product and abnormal product.

The accuracy of the testing of the 300 pieces of data (268 normal and 32 abnormal samples)
in the training group, calculated using the neural network, was 99.7%, which indicated excellent
training. Table 5 lists the importance of each of the test variables. An importance value greater than
0.21 and a normalized importance greater than 30% were used as the screening criteria. Sixteen critical
characteristic variables were obtained for constructing the reduced neural network model.

Table 5. Independent variable importance.

Variable Importance Normalized Importance (Cumulative Percentage)

X56 0.068 100.0%
X49 0.055 81.3%
X1 0.049 72.0%
X48 0.044 65.6%
X45 0.044 64.5%
X24 0.040 58.4%
X52 0.039 57.5%
X38 0.034 51.0%
X55 0.031 45.6%
X26 0.029 42.6%
X47 0.029 42.3%
X44 0.028 41.4%
X16 0.028 41.2%
X20 0.027 40.3%
X13 0.024 35.0%
X51 0.021 30.3%

..
.

..
.

..
.

X27 0.005 8.1%
X10 0.005 7.8%
X33 0.005 7.5%

The possibility of achieving satisfactory production testing accuracy after using neural network
analysis to reduce the number of test items was subsequently investigated. After performing
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calculations using the neural network, the testing accuracy of the 300 pieces of training data and
150 pieces of retention (validation) data was 99.3% and 94.7%, respectively (Table 6). The area under
the neural network ROC curve was 1.0 (Figure 10). Therefore, the neural network is also effective for
predicting tablet PC product yield.

Table 6. Neural network analysis predictions.

Training Group
Normal (R) Abnormal (R) Accuracy

Normal 268 0
99.3%Abnormal 2 30

Validation Group
Normal (R) Abnormal (R) Accuracy

Normal 133 5
94.7%Abnormal 3 9
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3.4. Comparison of Results and Efficiency Improvement

Table 7 presents a comparison of accuracy based on the MTS, logistic regression, and neural
network analysis results. The accuracy was 98% for both the training and validation groups in the
reduced model of the tablet PC product testing process constructed using the MTS. In the reduced
model comprising crucial variables identified using logistic regression, testing of the training and
validation groups demonstrated accuracies of 97.3% and 93.3%, respectively. When the neural network
analysis was performed, testing of the training and validation groups exhibited accuracies of 99.3%
and 94.7%, respectively. These results indicated that all three methods produced strong class prediction
accuracy and the MTS was not inferior to conventional logistic regression analysis or neural network
analysis. The MTS produced a higher accuracy when determining product yield using a reduced
model established using the training group data than the other two methods. Nevertheless, the MTS
method features high stability and an accuracy rate higher than 98%. Thus, the MTS, which involves
using data mining and classification methods to reduce attribute variables for building prediction
models, demonstrates high discrimination ability in practice [16].
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Table 7. Comparison of accuracy among the analysis methods.

Analysis Method Training Group Validation Group

MTS 98% 98%
Logistic Regression 97.3% 93.3%
Neural Networks 99.3% 94.7%

The type-I errors (i.e., the analysis methods showed that tablet PCs were abnormal products when
in fact they were normal products), and type-II errors (i.e., the tablets PCs were abnormal products that
failing to judge as normal products) were identified for each method. Generally, the cost of type-I errors
is incurred through the need for product retesting. However, the cost of type-II errors is more severe
and includes costs incurred through return material authorizations, customer complaints, or recalls.
Therefore, reduced models for product testing are used to avoid type-II errors. The MTS analysis
method resulted in the fewest type-II errors, whereas the logistic regression analysis demonstrated the
least favorable performance (Table 8).

Table 8. Comparison of type-I and type-II errors among the analysis methods.

Analysis Method Training Group Validation Group

MTS
Type-I Errors 1.1% 1.4%
Type-II Errors 9.4% 8.3%

Logistic Regression Analysis Type-I Errors 1.1% 5.1%
Type-II Errors 15.6% 25%

Neural Networks
Type-I Errors 0% 3.6%
Type-II Errors 6.3% 25%

The three analysis methods were used to screen the characteristic variables. The MTS reduced the
56 original test items to 14, logistic regression reduced them to 15, and neural networks reduced them
to 16. Table 9 reveals that X24, X38, X45, X49 and X51 were selected by all three analysis methods.

Table 9. Key characteristic variables for each analysis method.

Analysis Method Key Characteristic Variables Number of Variables

MTS X14, X16, X24 **, X26, X36, X38 **, X44, X45 **,
X49 **, X50, X51 **, X52, X54, X56

14

Logistic Regression X1, X13, X18, X20, X24 **, X25, X38 **, X41,
X43, X45 **, X47, X48, X49 **, X51 **, X55

15

Neural Networks X1, X13, X16, X20, X24 **, X26, X38 **, X44,
X45 **, X47, X48, X49 **, X51 **, X52, X55, X56

16

** Indicates that this test item appears in the reduced models of all three analysis methods.

In summary, the product testing accuracy of the MTS after the elimination of insignificant test
items was superior to that of conventional logistic regression analysis and neural network analysis.
The reduction in variables saved time during the product testing process, which indicates the method’s
cost effectiveness. Additionally, the reduction in the number of test items enabled the five testing
stations used in the original manufacturing process to be reduced to three. The time typically required
for the manufacturing process was reduced from 2460 to 1200 s, and the original 10 testers was reduced
to 5. Overall, production efficiency approximately doubled. The required number of test machines was
also reduced. In addition to saving on machine installation costs, the use of this method also reduced
machine maintenance and related personnel costs.
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4. Conclusions

The MTS is a suitable method for solving classification problems because it detects the severity of
abnormal samples and uses orthogonal arrays and SN ratios to verify whether the selected variables
are appropriate. The crucial screened characteristic variables can be used to construct reduced class
prediction models with high total accuracy while maintaining the model’s ability to identify each
class [44,45]. Therefore, the MTS is appropriate for class prediction applications in various fields.
In addition, the robustness of the MTS regarding characteristic variable selection and class prediction
will enable engineering staff to understand product characteristics and evaluate the suitability of tablet
PC product test items. Through the removal of test items that offer little contribution, accurate and
rapid product detection can be achieved. This reduces the number of testing stations and testers,
thereby decreasing testing costs and enhancing industrial competitiveness.

MTS theory was employed to analyze tablet PC product test items for Technology Company A.
The Mahalanobis distance critical values were used to differentiate between defective and nondefective
products. Orthogonal arrays and SN ratios were used to screen crucial test items. Finally, validation
group sample data were used to determine the accuracy of the reduced model. These results were
compared with those obtaining using logistic regression and neural network analysis methods.
The results indicated that the predictive power of the MTS after reducing the number of test items was
98%, superior to that of conventional logistic regression and neural networks, which had predictive
powers of 93.3% and 94.7%, respectively. After reduction, the MTS model contained 14 test items,
which was fewer than the number in the logistic regression (15 items) and neural network (16 items)
models. Optimization of the testing process using the MTS analysis method provided suitable test
items and a reduced model for product testing. This facilitated formulating a more efficient test station
configuration and also effectively reduced investment costs for testers and equipment. In addition to
improvements in production efficiency on the production line and acceleration of a company’s possible
reaction to market demand, reductions in equipment and related expenses ensure the competitiveness
of a company in the overall market.
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Appendix A

Table A1. Test items of Tablet PC.

Variable Test Item Note Variable Test Item Note

X1 Piezo PT1-Buzzer X29 GSM PhaseErrRMS PT3-GSM
X2 USB Port PT1-USB X30 GSM BER PT3-GSM
X3 SD Card PT1-SDCard X31 GSM BLER PT3-GSM
X4 Battery Voltage(AD) PT2-Adapter X32 EDGE TxPower PT3-EDGE
X5 B-to-B Amp(AD) PT2-Adapter X33 EDGE FreqErr PT3-EDGE
X6 Charge Voltage(AD) PT2-Adapter X34 EDGE PhaseErrPeak PT3-EDGE
X7 Charge Amp(AD) PT2-Adapter X35 EDGE PhaseErrRMS PT3-EDGE
X8 App Voltage(AD) PT2-Adapter X36 EDGE BER PT3-EDGE
X9 Battery Voltage PT2-Battery X37 EDGE BLER PT3-EDGE
X10 B-to-B Amp PT2-Battery X38 WCDMA TxPower PT3-WCDMA
X11 Charger Voltage PT2-Battery X39 WCDMA FreqErr PT3-WCDMA
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Table A1. Cont.

Variable Test Item Note Variable Test Item Note

X12 Charger Amp PT2-Battery X40 WCDMA PhaseErrPeak PT3-WCDMA
X13 App Voltage PT2-Battery X41 WCDMA PhaseErrRMS PT3-WCDMA
X14 Wi-Fi RSSI PT2-WLAN X42 WCDMA BER PT3-WCDMA
X15 Wi-Fi Throughput PT2-WLAN X43 WCDMA BLER PT3-WCDMA
X16 Audio Freq. PT2-Speaker X44 TP Calibrate PT4-LCD
X17 Output Level PT2-Speaker X45 Bright PT4-LCD
X18 Mute PT2-Speaker X46 Contrast PT4-LCD
X19 Stereo Phasing PT2-Speaker X47 Point Defected PT4-LCD
X20 Dynamic Range PT2-Speaker X48 LAN Port PT4-LAN
X21 Output Level PT2-EarJack X49 Zigbee TxPower FT-Zigbee
X22 Mute PT2-EarJack X50 Wi-Fi RSSI FT-WLAN
X23 Stereo Phasing PT2-EarJack X51 Wi-Fi Throughput FT-WLAN
X24 Dynamic Range PT2-EarJack X52 Touch Panel FT-LCD
X25 Amplitude PT2-EarJack X53 Voice Test FT-Voice
X26 GSM TXPower PT3-GSM X54 USB Port FT-USB
X27 GSM FreqErr PT3-GSM X55 SD Card FT-SDCard
X28 GSM PhaseErrPeak PT3-GSM X56 Piezo FT-Buzzer
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