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Abstract: This study investigates how the eco-efficiency of government policy—continuously
implementing innovation-friendly policy based on both environmental and economic
considerations—affects the export performance of bioenergy technologies, using panel data from
16 countries during 1995–2012. Various heterogeneous panel framework tests are conducted. Our panel
unit root and co-integration tests, which allow for cross-sectional dependence in the panel, show that the
time series data on the eco-efficiency of public support, exports, and gross domestic product (GDP) are
integrated and co-integrated. We set up a panel vector error correction model (VECM) to empirically
test the casual relationship among the variables examined. The long-term parameters of the variables
were calculated using dynamic ordinary lease squares (DOLS). Panel difference generalized method
of moments (GMM) estimations were conducted to test the short-term relationship among the
variables. The results of this study therefore show that the eco-efficiency of government policy
positively influences export performance in the long run, but not in the short run. The presented
findings also indicate that efficiently implemented government policy plays a crucial role in
achieving environmentally sound and sustainable development, showing path dependence among
the eco-efficiency of government policy, exports, and GDP. We finally suggest policy implications
based on the results.

Keywords: bioenergy technologies; eco-efficiency of government policy; export performance;
dynamic panel approach

1. Introduction

Bioenergy technologies have been widely recognized as crucial for achieving environmentally
sound and sustainable development in that they may meet all three areas of energy demand, namely
heat, electricity, and transport fuels and chemicals [1]. This fact has forced governments to support
the bioenergy technology sector to achieve environmental and economic goals by helping stem
climate change and enhance exports in the growing international market. Despite such policy
support, however, many bioenergy technologies remain relatively immature in that there is significant
scope for further cost reductions through innovation. Hence, government policy that continuously
provides incentives for firms to innovate is the most important factor behind enhancing global
market performance.

The increased importance of government policy for the promotion of the renewable energy (RE)
technology sector globally has created two research fields: an experimental setting for discussions
about the efficiency of policy—the capacity of policy measures to induce continuous incentives for
innovation creation (e.g., [2–6])—and empirical research into the link between government policy and
exports (e.g., [7–12]). Although research on the measurement of the efficiency of government policy
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in the RE technology sector has improved our understanding of policy input and output factors by
performing comparison, estimation, and descriptive analyses. (Comparison analysis (see [2,3,5,13–16])
focuses on the analysis of the innovation effects of RE technologies. It builds a theoretical framework
for dynamic efficiency analysis and performs a comparative analysis of the dynamic efficiency of
each policy measure (support scheme) based on various dimensions such as cost reductions, R&D
investment, power capacity, electricity production, and power price. Estimation is used to calculate the
effectiveness of policy measures in promoting electricity from RE sources, delivering RE technologies
into the market, and encouraging efficient energy use [4,6,17]. Description analysis [18] uses surveys
to assess the effectiveness of various policies in terms of stimulating interest in investing in innovative
RE technologies.) An empirical gap remains in the current body of knowledge on this topic, which can
be bridged in two ways. First, the literature tends to measure the efficiency of government policy at
the conceptual level and thus does not provide quantitative indicators [19]. Second, studies fail to
consider policy outputs from the environmental perspective (e.g., the reduction of the environmental
burden) when evaluating the efficiency of government policy and tend to focus only on innovation
issues that affect economic performance, such as cost reductions, power price cutting, power capacity
enhancement, and electricity production.

Empirical studies that investigate how government policy influences biotechnology exports are
traditionally based on four approaches: multivariate cross-sectional regression [10], country-level
case study [20,21], descriptive analysis [9,22], and dynamic panel model [12]. (When considering
the several empirical studies that tackle other RE sectors, namely wind, solar, and aggregated RE
technologies [7,8,23–25], six approaches have emerged, including time series models and static and
dynamic panel models.) By using these methods, studies have demonstrated the direct and positive
role of government policy in export growth. However, they limit our ability to draw implications about
the role of the efficiency of government policy in export growth. According to Costantini et al. [26]
and Johnstone et al. [27], export growth is triggered by innovation spurred by policy support on both
the supply and the demand sides, which means that government policy (policy input) is a highly
resilient catalyst that forces firms to make major efforts to foster innovation (policy output) when the
government continuously provides incentives and creates favorable conditions for innovation in the
RE technology sector. This fact suggests that the effects of policy support on export performance need
to be examined by considering both policy support (policy input) and innovation triggered by policy
support at the same time.

Motivated by these matters often ignored in the literature, the current study investigates how the
efficiency of government policy affects the export of bioenergy technologies. In particular, considering
that RE technologies play an important role in green growth and that industrial activities and policy
support consider both environmental and economic issues, the efficiency of policy needs to be
measured by taking into account both environmental and economic aspects. Hence, we measure
efficiency by assessing the environmental and innovation outputs relative to policy inputs and
subsequently use the term “eco-efficiency of government policy” herein.

Previous researchers have proposed a relationship between efficiency and exports from three
viewpoints. First, the empirical evidence presented by Cohen and Leven [28], Cohen [29], Hall and
Oriani [30], and Duqi and Torluccio [31] demonstrates no systematic relationships between the amount
of policy inputted to support industrial activities (e.g., research and development (R&D) expenditure)
and policy performance (e.g., market performance). This fact suggests that the efficiency of government
policy is much more important than the amount of policy input in promoting industrial performance
and growth [32]. Second, efficiency is closely related to productivity [33,34]. While productivity
is simply the ratio of outputs produced to inputs, efficiency represents obtaining the maximum
output from a given set of inputs or injecting the minimum set of inputs for a given output [35].
The highest productivity is thus achieved when the maximum output is obtained for a particular input
level [34]. Hence, productivity growth encompasses changes in efficiency, and increasing efficiency
raises productivity [36]. Third, studies based on heterogeneous firms trade theory (e.g., [37–39]),
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which originates from a dynamic industry model with heterogeneous firms [40] that focuses on the
productivity premium derived from innovation in promoting export performance, states that export
performance is positively affected by firm innovation.

The remainder of this paper is organized as follows. Section 2 proposes the theoretical
background by reviewing the literature and contextualizing the relationship between the eco-efficiency
of government policy and export performance of the biotechnology sector, and presents the empirical
methodology for measuring the long- and short-run causal relationships between the two variables.
Section 3 introduces the data used and presents the empirical results. Finally, Section 4 concludes as
well as proposes policy implications and discusses the limitations of the study.

2. Theoretical Background and Research Methodology

The underpinnings of efficiency started with the studies of Debreu [41] and Koopmans [42],
who define “static efficiency” as minimizing inputs in physical terms (e.g., coal, and barrels of oil)
to produce a certain outcome at a certain point. Farrell [43] shows an empirical example of static
efficiency at the agricultural sector level and highlights its relevance for economic policymakers [35].
By contrast, “dynamic efficiency” is defined as the process that occurs over time and leads to progressive
improvements. For example, Diamond [44] shows that a competitive economy can reach a steady state
in which there is unambiguously too much capital and that such an economy consistently invests more
than it earns in profit when it is said to be dynamically inefficient. The economic concept of dynamic
efficiency was extended by Kirzner [45] and North [46]. From a dynamic standpoint, an individual,
company, institution, or entire economic system will be more efficient if it continuously fuels the
discovery and creation of new means and values [47]. Indeed, since efficiency that continuously
enhances the ability or incentive to innovate is regarded as dynamic [32], dynamic efficiency enables
industries or firms to improve their performance. In this context, it is directly affiliated with the concept
of entrepreneurship, which leads to breaking the status quo, creating market change, and developing
competitive advantage [47]. Entrepreneurship is thus regarded as a productive factor (economic
input and resources) in the sense that it provides a systemic coordinating function that facilitates the
deployment of resources to their most highly valued uses [48], leading to outcomes such as patents.

However, entrepreneurial outcomes depend primarily on the rules of the game, or public policies,
under which entrepreneurs operate [30]. Innovative stakeholders, including firms, are unable to
exploit their full innovation potential without public intervention and tend to pursue short-term
strategies, which is especially relevant for immature technologies such as RE technologies [49].
Hence, when public policy cannot consistently provide incentives and create favorable conditions for
innovation, this increases the risk perception of the market potential of the technology and decreases
the probability that RE technology manufacturers can access the funds necessary to finance their
investments [50]. This fact suggests that inefficiency in public policy may change the risk–return
relationship in the RE technology investment sector, consequently affecting investors’ behaviors [51].

Nonetheless, government policy can stimulate entrepreneurship development in a number of
ways [52]. For example, it can strengthen the linkages between stakeholders by implementing special
and innovative mechanisms that foster academia–research–industry partnerships and by facilitating
the mobility of experts from academia to industry and vice versa. It can also promote the spread
of scientific interest and understanding across society as well as emphasize risk sharing by the
government to significantly increase private sector investment in R&D and technology development.
Further, policy can provide a holistic approach to the complex innovation value chain by providing
science and technology interventions at all levels of research, technology and manufacturing, and
services in areas of socioeconomic importance.

In this context, eco-innovation, which is required to enhance economic performance while
protecting the environment [53], can be promoted through government policy. According to Costantini
et al. [26], both technology-push and demand-pull government support activities are drivers of
eco-innovation in the biofuels sector. Eco-innovation thus leads to progress in eco-efficiency [54].
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Hence, the eco-efficiency of government policy depends on simultaneously investing public resources
in both technology-push activities to support R&D and demand-pull activities to create a market for
the adoption and diffusion of new technology. These two policies that support such “upstream” and
“downstream” activities can facilitate the deployment and dissemination of innovations by creating
new products and processes as well as improving current ones [55,56]. RE technology innovation
involves the manufacture of novel systems, products, or both [57], in which RE technologies are
used both for technologies and for the products manufactured by them. Higher quality products
(components) and technologies can often enhance efficiency by eliminating unnecessary tasks,
automating certain tasks, and adjusting procedures and systems. In addition, innovation-friendly
policy, which is crucial to reducing manufacturing and environmental costs, can contribute to
improving a firm’s competitiveness [54]. For example, it can enhance operational advantage
thanks to greater resource efficiency, resulting in lower resource costs, commercialize innovations,
and improve image, marketing, and stakeholder relations. This all means that the government can
bolster the competitiveness of bioenergy technology enterprises in the global market by continuously
implementing innovation-friendly policy based on both environmental and economic considerations.
Hence, the eco-efficiency of government policy may directly and positively influence exports of
bioenergy technologies.

To explore how the eco-efficiency of government policy affects exports of bioenergy technologies,
the present study empirically measures changes in the efficiency of bioenergy technology policy
from two main aspects. First, it considers suggestions from studies that have used Malmquist
productivity growth index analysis [58], which is similar to the dynamic panel approach adopted
herein, to consider the two policy instruments (technology-push and demand-pull) as input
elements [2,53]. In addition, it calculates efficiency by considering economic and environmental
outcomes to understand undesirable factors in efficiency evaluation [59,60]. Indeed, we consider
eco-innovation by adding further sustainability attributes of innovations that allow bioenergy policies
to reduce the environmental burden in the evaluation [61,62]. Further, this study measures the
eco-efficiency of bioenergy technology policy based on Smith and Street’s [63] notion of dynamic
effects (i.e., path dependence), which means that contemporary inputs are, to some extent, invested
for future outputs. Second, the study sets up a model to test the relationship between eco-efficiency
and exports by considering the three driving factors that influence the direction and robustness of the
empirical results in the existing literature. In particular, we use export performance rather than other
export competitiveness indexes based on Costantini and Crespi [25], Jha [10], Sung and Song [23],
and Sung [12], which show that export performance is significantly affected by public policy. We also set
up dynamic models following Hirshleifer and coworkers’ [64] argument that it takes time for a firm’s
performance growth to become evident following the enhancement of eco-efficiency. In addition,
we adopt the view that path dependence processes (i.e., dynamic effects) include interactions among
export performance, eco-efficiency, and GDP based on Sung [23], implying that most panel data
are heterogeneous and non-stationary co-integrated. Finally, we include per-capita real GDP in the
model to control for any omitted variables that may influence the relationships tested in the study.
Per-capita real GDP represents the relationships between higher income [65] and the increased demand
preference for and demand for exports [7,24], increased sociopolitical pressure [66], and the increased
home market size of RE technologies [67].

To investigate the relationships between the eco-efficiency of government policy and export
performance of bioenergy technologies, the study uses the following panel vector autoregression (VAR)
model for each case, which is expressed as

EXit = α1j +
n

∑
p=1

βi1pEXit−p +
n

∑
p=1

βi2pECOEit−p +
n

∑
p=1

βi3pGDPit−p + ηit + εit (1)
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where i = 1, . . . , N denotes the country and t = 1, . . . , T denotes the time period. ηit is the
country-specific effect for the ith individual in the panel and εit is the disturbance term. EX is
the natural log of export performance. ECOE is the natural log of the eco-efficiency of government
policy. GDP is the natural log of per-capita real gross domestic product (GDP).

This study performs dynamic panel analysis to investigate the relationship between the
eco-efficiency of government policy and export performance in five steps. It first confirms whether
each individual time series has normality by performing the Jarque–Bera test. Next, it estimates
whether the panel has structural breaks by conducting the cumulative sum of recursive residuals
(CUSUM) and cumulative sum of recursive residuals of squares (CUSUMQ). Third, to detect the
presence of cross-sectional dependence, this study employs the Lagrange Multiplier (LM) tests of
Breusch and Pagan [68]. When T > N (as is the case in this study), the test enjoys highly desirable
statistical properties relative to other tests and can be used with balance and unbalanced panels
alike. Fourth, this study performs panel unit root and panel co-integration tests taking into account
the results of the structural break and cross-sectional dependence tests. Non-stationary panels have
attracted considerable attention over the past decade in both theoretical and empirical research and
a number of panel unit root tests have been proposed. Which test can be applied to test for the
stationarity of panel data depends on whether the panel tests allow for structural breaks and/or
cross-sectional dependence. Then, if the results of the panel unit root tests indicate that the series are
non-stationary, it can be confirmed that a long-term equilibrium relationship among the variables in
question is possible, by performing panel co-integration tests. In the last phase, the current study sets
up an empirical model based on the results of the panel unit root tests and panel co-integration tests,
whereupon panel causality tests are undertaken.

3. Data and Empirical Analysis

3.1. Data Measurement and Sources

EX is the export value and ECOE is eco-efficiency, namely the change in the efficiency of
government policy to support the bioenergy technology sector. Here, we use Malmquist productivity
growth index analysis [58] and data envelopment analysis (DEA), a nonparametric method, under
the assumption of variable returns to scale. DEA can easily handle multiple inputs and outputs
and does not require assumptions about the specific functional form of the production function [69].
To estimate eco-efficiency, we use two policy input factors, namely technology-push and demand-pull
activities [2,53], and two output factors, namely innovation outcomes [25,27,64] and the reduction
in greenhouse gas (GHG) emissions [61,62]. Moreover, R&D expenditure, the contribution of
bioenergy to total energy supply, and the number of patent applications are the respective proxies for
technology-push policy [12,23,25,70], demand-pull policy [12,23], and innovation outcomes [27,71,72].

The study uses the number of patent applications and contribution of bioenergy to total energy
supply measured in terms of flow. R&D expenditure is measure as stock. The R&D stock of country i
at time t (RADSit) is computed from public R&D expenditure by using the perpetual inventory model
RADSit = (1 − δ)RADSi,t−1 + RADi,t−x, where δ (the depreciation rate) is set at 10% and x (the time
lag) is set at five years [12]. Previous studies such as Bointner [72], Bosetti et al. [73], Jeon and Shin [74],
Kobos et al. [75], Popp et al. [76], and Söderholm and Klaassen [77] find an appropriate depreciation
rate of 2.5–20% with a 2–10-year R&D time lag for RE technologies. The current study assumes
a five-year time lag and a depreciation rate of 10% for the R&D stock estimation. The initial stock value
is calculated by dividing the average of the first four observations of R&D expenditure in bioenergy
technologies by the sum of the R&D depreciation rate (in this case 10%) and an estimate of the R&D
growth rate of each country during the period, from the year (when the R&D expenditure data are
available in each country) to 2012.

To calculate eco-efficiency, this study uses country i’s patents granted in year t, the contribution
of bioenergy to total energy supply in year t, and total carbon dioxide emissions excluding land use
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changes and forestry (divided by 1000 people) in year t. Country i’s R&D stock in fiscal year ending in
year t − 2 is used [27,64]. As the distributions of eco-efficiency measures (e.g., Malmquist productivity
growth index) are often zero, we use ECOE as the natural log of one plus this index in the model [64].
GDP is the natural log of per-capita real GDP divided by 1000 people.

The data are annual measures for 18 years during 1995–2012 for 16 Organization for Economic
Co-operation and Development (OECD) countries: Australia, Austria, Canada, Denmark, Finland,
France, Germany, Italy, Japan, the Netherlands, Norway, Spain, Sweden, Switzerland, the United
Kingdom, and the United States. The countries and periods were selected on the grounds of data
availability. Data on bioenergy technology exports for each country were obtained from the PC-TAS
database released by the International Trade Centre. R&D expenditure of bioenergy technologies
for each country was taken from the Energy Technology Research and Development database of the
International Energy Agency (IEA). The contribution of bioenergy to total energy supply for each
country was calculated based on data taken from the IEA’s Renewable and Waste Energy Supply
database and the US Energy Information Administration’s International Energy Statistics. Data on the
patent counts for each country were obtained from the OECD Patent Statistical Database. Only patent
applications deposited at the European Patent Office were included following Johnstone et al. [27].
Data on the carbon dioxide emissions for each country (i.e., divided by the real GDP of 100 million
US$) were obtained from the OECD Economic, Environmental and Social Database. The variables EX,
GDP, and RAD were calculated according to 2009 constant prices and the international PPP.

3.2. Panel Framework Tests

The results of the Jarque–Bera tests for normality demonstrate that virtually none of these of
these series deviates substantially from the normal distribution, showing that the null hypothesis of
normality cannot be rejected at the 10% significance level in each individual time series (for the results,
refer to Table A1 of Appendix A). The results of the CUSUM and CUSUMQ tests conducted to confirm
the stability of each individual series show that the null hypothesis of the absence of a structural break
cannot be rejected at the 5% significance level in most individual time series (exceptions include the
CUSUM test results of France, the Netherlands, and Switzerland and the CUSUMQ test results of
Austria and Spain in Equation (1)) (for the results, refer to Figure A1 of Appendix A). Hence, most
series are stable over time.

The results of Breusch and Pagan’s [68] LM test based on the fixed-effect model revealed that the
null hypothesis of cross-sectional independence is rejected at the 1% significance level (Breusch–Pagan
LM test of independence = 314.341, p = 0.000). The modified Wald test results demonstrated that the
null hypothesis of homoscedasticity within cross-sectional units is rejected at the 1% significance level,
showing that the modified Wald statistic for group-wise heteroscedasticity is 822.740 (p = 0.000).

Having established that the series cross-sectionally correlate, the study carries out panel unit root
tests that account for the presence of cross-sectional dependence proposed by Pesaran [78]. The results
of Pesaran’s [78] test that include an intercept as well as those with an intercept and a linear trend
for EX, ECOE, and GDP reported in Table 1 indicate that the level variables are non-stationary and
that the first difference of the three variables is stationary. The results of the panel unit root tests thus
suggest a long-run relationship among the variables. Hence, the current study implements the panel
co-integration tests proposed by Westerlund [79] that allow for cross-sectional dependence (see Table 2).
The results of Equation (1) indicate significance for all four test statistics (Gt, Ga, Pt, and Pa) in the
constant and for two cases (Gt and Pt) in the constant and the trend. Hence, the long-run relationship
is confirmed, as the null hypothesis of no co-integrating relationship is rejected in those instances.
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Table 1. Results of the panel unit root tests.

Variables EX ∆EX ECOE ∆ECOE GDP ∆GDP

Pesaran CADF test
(z[t-bar] statistic)

(A) 0.52 −3.63 *** 1.15 −4.21 *** 2.71 −6.25 ***
(B) −1.16 −4.31 *** 0.49 −6.73 *** 1.25 −7.29 ***

Notes: The individual intercept and time trend are included in (A), and the individual intercept in (B). The test of
the null hypothesis of non-stationarity is based on the mean of the individual Dickey–Fuller (DF) (or augmented
Dickey–Fuller [ADF]) t-statistics of each unit in the panel. To remove the cross-sectional dependence, the standard
DF (or ADF) regressions are augmented with the cross-sectional average of lagged levels and the first differences of
the individual series (covariate augmented Dickey–Fuller [CADF] statistics). The lag lengths for the panel unit root
tests are based on those employed in the univariate ADF test. The normalized z-test statistic is calculated by using
the t-bar statistics. *** denotes significance at the 1% level.

Table 2. Results of the panel co-integration tests.

Statistics
With Trend Without Trend

Value z-Value Robust p-Value Value z-Value Robust p-Value

Gt −3.633 −5.253 0.010 −3.667 −7.134 0.001
Ga −4.646 4.903 0.825 −7.681 0.961 0.050
Pt −10.917 −1.958 0.063 −11.955 −4.942 0.002
Pa −3.315 4.341 0.871 −6.100 −0.168 0.096

Notes: All these distributed statistics are standard-normal. The lag and lead length are set to 1 and 0, respectively.
Choosing too many lags and leads can result in the deterioration of the small-sample properties of the test. To control
for cross-sectional dependence, robust critical values are obtained through 5000 bootstrap replications.

3.3. Model Specification and Empirical Test

In the last phase, dynamic panel causality tests are conducted based on the results of the panel
co-integration tests. Evidence of co-integration implies that Engle and Granger’s [80] approach can be
used to estimate an error correction model. Hence, this study performs dynamic panel causality tests
based on the VECM to evaluate the short- and long-run causality between the variables in question.
The Granger causality model among the variables in question, based on the panel VECM, can be
expressed as follows: ∆EXit

∆ECOEit
∆GDPit

 =
p=1

∑
n−1

 β11p β12p β13p
β21p β22p β23p
β31p β32p β33p


 ∆EXit−p

∆ECOEit−p
∆GDPit−p

+

 γ1i
γ2i
γ3i

[ECTit−1] +

 ∆ε1it
∆ε2it
∆ε3it

 (2)

where ∆ is the first difference operator, EX is the log of exports, ECOE is the natural logs of one plus
the Malmquist productivity growth index that represents eco-efficiency, GDP is the log of per-capita
real GDP, ECTit−1 is the error correction term lagged one period that comes from the lagged residuals
derived from the long-run co-integrating relationship, βijs are the short-run adjustment coefficients,
and εits are the disturbance terms assumed to be uncorrelated with each other and to have mean zero.

Having established a co-integrating relationship, it is necessary to estimate the long-run
equilibrium relationship given by the error correction term. Various single estimators such as the fully
modified OLS procedures (FMOLS) proposed by Pedroni [81], DOLS estimator of Kao and Chiang [82],
and pooled mean group estimator (PMG) proposed by Pesaran et al. [83] can be used to estimate
the long-run equilibrium coefficients. Kao and Chiang [82] demonstrate that DOLS outperforms
the FMOLS estimator in terms of mean biases, while Banerjee [84] finds that despite the differences
between the two methods, the estimates from both FMOLS and DOLS are asymptotically equivalent
for more than 60 observations. Hence, the study performs Kao and Chiang’s [82] DOLS and Pesaran
and coworkers’ [83] PMG procedures. The DOLS method allows for consistent and efficient estimators
of the long-run relationship, which deals with the endogeneity of regressors and accounts for the
integration and co-integration properties of data. The PMG procedure is an intermediate estimator
that allows the short-term parameters to differ between groups while imposing the equality of the
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long-run coefficients between groups. We use both these techniques to obtain the parameter estimates
of the panel error correction model for the relationship between eco-efficiency, export performance,
and the control variables. In particular, we adopt DOLS to estimate the long-run parameters and PMG
to estimate the long- and short-run parameters. The DOLS results can be interpreted as the long-run
coefficients, expressed as the following equation (The numbers in parentheses are t-statistics, while the
numbers in brackets indicate the standard errors):

EX − 0.414ECOE − 0.863GDP = 0 (3)

(4.63)[5.32] (0.63)[8.59]

Equation (3) shows that all the estimated coefficients of ECOE and GDP are positive and
statistically significant at the 1% level. Since the variables are expressed in natural logarithms,
the coefficients can be interpreted as elasticities. The ECOE elasticity estimate is 0.414 and the GDP
elasticity estimate is 0.863 for export performance, suggesting that the eco-efficiency of government
policy and GDP have positive effects on export performance in these 16 OECD countries.

Given that the variables are co-integrated, the PMG estimator is used to perform Granger causality
tests. Table 3 reports the results of the short- and long-run Granger causality tests for the eco-efficiency
of government policy–export nexus.

Table 3. Panel causality tests.

Panel A: Arellano–Bond One-Step Difference GMM Estimation

Independent Variables
Dependent Variables

∆EXit ∆ECOEit ∆GDPit

∆EXit−1 0.476 (0.058) *** −0.005 (0.054) 0.008 (0.006)
∆ECOEit−1 0.006 (0.044) −0.050 (0.082) 0.020 (0.012) *
∆GDPit−1 0.963 (0.154) *** 0.149 (0.203) 0.922 (0.018) ***
ECTit−1 −0.101 (0.032) *** 0.213 (0.080) *** 0.033 (0.011) ***
Sargan test 131.76 [0.166] 110.33 [0.680] 173.39 [0.001]
Hansen test 14.81 [1.000] 13.15 [1.000] 15.87 [1.000]
m1 −2.14 [0.032] −2.86 [0.004] −3.46 [0.001]
m2 1.24 [0.215] 0.61 [0.545] 0.85 [0.395]

Panel B: Statistic Values for the Panel Causality Tests

Sources of Causation (Independent Variables)
Dependent Variables

∆EX ∆ECOE ∆GDP

Short run
∆EX 0.001 2.070
∆ECOE 0.020 2.710 *
∆GDP 38.780 *** 0.037

Long run ECT 9.600 *** 7.100 *** 8.520 ***

Strong (Joint)
∆EX ECT 5.100 ** 24.870 ***
∆ECOE ECT 2.740 * 0.430
∆GDP ECT 27.630 *** 3.170 *

Notes: Panel (A) The tests are based on one-step difference GMM estimates. *, **, and *** denote the 10%, 5%, and 1%
significance levels, respectively. GMM robust standard errors are in parentheses, and p-values are in square brackets.
The explanatory variables are assumed to be endogenous and are instrumented in GMM style [85]. Panel (B) Wald
F-statistics reported. *, **, and *** denote that the null hypothesis of no causation is rejected at the 10%, 5%, and 1%
significance levels, respectively.

In VECM structure 2, however, differencing introduces a simultaneity problem because the lagged
endogenous variables on the right-hand side correlate with the new differenced error term. In addition,
heteroscedasticity exists in the genuine errors across industries. The study deals with these problems by
using Arellano and Bond’s [86] difference GMM approach, where the lags in the explanatory variables at
different levels are used as instruments. For the instruments to be valid, no serial correlation must exist
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among the error terms. Panel A of Table 3 shows the estimates, the Sargan [87] and Hansen [88] test results,
and the m1 and m2 statistics. As the m1 and m2 statistics show, one lag is needed in VECM structure
2 to have no serial correlation in all the differenced residuals. A significant negative first-order serial
correlation is found in the first differenced residuals, whereas there is no evidence of any second-order
serial correlation. For the over-identifying restrictions, both Sargan’s [87] test and Hansen’s [88] J test
are conducted. However, inference is made mainly by analyzing the results of Hansen’s test because
the Sargan test is not robust when the number of instruments is more than the number of cross-sections
(as in this case), or when there is heteroscedasticity or autocorrelation. The results of Hansen’s test do not
reject the validity of the instruments, thus implying the validity of the instruments used in the estimation.
For VECM structure 2, the dynamic panel regression results presented in Panel A of Table 3 show no
bilateral short-run relationships between EX and ECOE, that GDP has a positive effect on EX, and that
ECOE has a negative effect on GDP. In Panel B of Table 3, the F-statistic values of the Wald test are the
same as the dynamic panel regression results. The coefficient of the error correction term (ECT) in the
equation, wherein export is the dependent variable, is negative and significant at the 1% level, indicating
that EX could be a key adjustment factor for closing the gap with regard to the long-run relationship.
Exports could deviate from the long-run equilibrium relationship because of particular shocks in the short
run. However, in the absence of shocks, they eventually converge to the equilibrium in the subsequent
period. In such a framework, long-run export dynamics are driven by both the changes in exports and the
stable nature of the long-run equilibrium. The adjustment factor shows the speed of adjustment towards
the equilibrium in cases that depict a deviation. The joint test results show that relationships among the
variables exist, by jointly interacting with ECT. First, from the tests of ECOE and ECT, the eco-efficiency
of government policy affects exports jointly interacting with ECT. Second, from the tests of GDP and
ECT, GDP influences exports and the eco-efficiency of government policy jointly interacting with ECT.
Finally, from tests of ECOE and ECT, the eco-efficiency of government policy influences exports and GDP
jointly interacting with ECT.

4. Discussion and Conclusions

This study examined the relationship between the eco-efficiency of government policy and export
performance in the bioenergy technology sector, using panel data for 16 OECD countries between 1995
and 2012. It carried out heterogeneous panel framework tests, which led us to set up a panel VECM
structure to empirically test the causal relationships among the variables examined. The long-term
parameters of the eco-efficiency of government policy on export performance were then calculated
by using DOLS. PMG estimators were also used to estimate the long- and short-run parameters by
conducting Granger causality tests. Panel difference GMM estimations were further conducted to avoid
correlation and endogeneity problems in the model. Then, based on the one-step difference GMM
estimation results, causality was determined by running Wald tests on the coefficients of the variables.

The main results and implications from this study are as follows. First, the DOLS result indicates
the existence of a positive long-run relationship between the eco-efficiency of government policy and
export performance in the bioenergy sector, showing that a 1% increase in eco-efficiency would increase
exports by 0.414%. This study also finds evidence that short-run ECOE could be a key adjustment factor
to close the gap to the long-run equilibrium between exports and the eco-efficiency of government
policy, showing that the coefficient of the error correction terms in VECM structure 2, especially when
exports are the dependent variable, is negative (−0.101) and significant (which means that exports
are adjusted by 10.1% of the past year’s deviation from the equilibrium). This finding suggests that
the eco-efficiency of government policy in the short run can play an important role in promoting
steady and stable export growth in the long run. Hence, governments should strive to continue
implementing short-run innovation-friendly policy that harmonizes with long-run industrial strategic
policy in order to create reliable and positive bioenergy technology policy with regard to exports in the
long term. In particular, the positive elasticity of the eco-efficiency of government policy to exports
represents the importance of considering both economic and environmental aspects when formulating
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bioenergy technology policy. By taking into account that eco-efficiency relies on a continuously
innovation-facilitating policy style and that eco-innovation leads to progress in eco-efficiency [54],
in the long run, policymakers should aim to implement public policy that addresses eco-innovation by
promoting economic performance, while protecting the environment at the same time.

Second, the joint Granger causality test (short- and long-run) in VECM structure 2, especially when
exports are the dependent variable, provides evidence that the eco-efficiency of government policy
positively Granger causes export growth, even though the short-run effect of eco-efficiency on exports is
insignificant. This result implies that the eco-efficiency of government policy involves increasing exports
jointly interacting with the error correction term. This suggests that it is possible for governments to
enhance export competitiveness, by promoting environmentally sound and sustainable development
in society, and increasing innovation at the same time. Hence, policy makers should, where possible,
formulate eco-innovation strategies that promote export activities and industrial expansion.

Third, this study finds no evidence of a short-run causal relationship from eco-efficiency to export
performance; however, there is a short-run causal relationship between the contemporaneous and
one-period lagged growth of exports. This finding implies the need to consider the path dependence
process of exports (i.e., learning-by-exporting effects) in the bioenergy technology sector when
implementing policy. Hence, policymakers should promote exports of bioenergy technologies while
creating reliable and positive short-term elasticity with regard to the eco-efficiency of government
policy. In particular, international trade in bioenergy technologies tends to be both demand- and
supply-driven in many countries [22], while the bioenergy technology sector is subject to influence from
policies of various domains, not only energy, industrial, environmental, and competition policies [89].
Therefore, governments should adopt demand- and supply-side policy measures to enhance exports
of bioenergy technologies. Furthermore, policymakers should recognize that demand for imports of
bioenergy technologies in foreign countries depend heavily on mandates for GHG emissions reductions
and changes in the sustainability of biofuels [22]. Hence, they must implement export promotion
policy measures to ensure that the policy process is integrated into foreign countries’ GHG reduction
and import and production strategies in the short and long run.

Fourth, this study found a short-run causal linear relationship from GDP to exports. In particular,
the results of the joint Granger causality tests (short- and long-run) in VECM structure 2 with exports
as the dependent variable showed a positively bidirectional Granger causal relation between GDP
and export growth. They also showed that GDP positively influences export growth in the long
run and that GDP Granger causes eco-efficiency, which has positive effects on export growth in
the long run. These findings suggest that a path dependence process among the eco-efficiency of
government policy, exports, and GDP exists. These relations suggest that efficiently implemented
government policy plays an important socioeconomic role in achieving environmentally sound and
sustainable development by increasing real GDP driven by export growth. This leads to governmental
budgetary slack, which allows policymakers to promote RE technologies [66] and/or increase demand
preferences, demand, and consumption for RE technologies [7,25,90], which can also lead to an increase
in home market size [67]. Therefore, policymakers should find effective policy responses to formulate
more effective strategies that address the various connotations of real GDP related to RE technologies.
In summary, a path dependence process (i.e., dynamic learning effects in exports) exists between the
contemporaneous and one-period lagged growth of exports in the bioenergy technology industry.
Moreover, the eco-efficiency elasticity to exports is positive. Therefore, government policy strategies
that exploit the various impacts of real GDP on bioenergy technologies would promote bioenergy
technologies from both the demand and the supply sides. In particular, to consider RE technologies
as drivers of sustainable economic growth as well as environmental solutions, governmental policies
should concentrate on domestic innovation and the diffusion of RE technologies to enhance foreign
trade competitiveness [91].

Although the findings of this study enhance our understanding of the importance of the
eco-efficiency of government policy in promoting exports of bioenergy technologies, future
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research could address relevant factors that are likely to affect export performance. For example,
industry-specific export promotion programs enhance firms’ export performance by increasing their
informational and experiential knowledge, stimulating managers’ positive attitudes and perceptions
towards exports, and increasing export commitment [92]. Hence, further research should control for the
effects of an industry-specific export promotion program in the relationship between the eco-efficiency
of government policy and exports of bioenergy technologies. Further, while additional factors influence
the RE technology sector, such as environmental regulations [8,25], other RE technology policies [27,91],
and economic and social factors [66,93,94], this study does not consider such factors. Therefore, further
research should control for these omitted variables.
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Appendix A

Table A1. Descriptive statistics.

Country Variable Mean SD MIN MAX Skewness Kurtosis Jarque–Bera

AU
EX 6.330 0.476 5.730 7.153 0.326 1.596 1.679
ECOE 0.468 0.422 0.000 1.134 0.092 1.522 1.571
GDP 13.327 0.367 12.735 13.849 −0.121 1.755 1.139

AUT
EX 5.990 0.903 4.362 7.020 −0.429 1.956 1.294
ECOE 0.420 0.457 0.000 1.350 0.520 2.002 1.472
GDP 12.489 0.241 12.124 12.878 0.554 1.792 1.041

CAN
EX 6.501 0.624 5.110 7.284 −0.775 2.828 1.727
ECOE 0.443 0.414 0.000 1.508 0.740 3.517 1.744
GDP 13.806 0.294 13.308 14.227 −0.200 1.799 1.135

DEN
EX 5.625 0.850 4.273 7.311 0.123 2.216 0.478
ECOE 0.777 0.163 0.554 1.250 1.340 5.520 6.682 **
GDP 12.050 0.257 11.624 12.433 −0.090 1.857 0.947

FIN
EX 4.832 0.604 4.078 5.862 0.470 1.632 1.953
ECOE 0.446 0.453 0.000 1.449 0.502 2.252 1.112
GDP 11.945 0.269 11.448 12.324 −0.277 2.011 0.910

FRA
EX 7.713 0.575 6.524 8.410 −0.476 2.294 0.995
ECOE 0.583 0.351 0.000 1.042 −0.891 2.316 2.581
GDP 14.379 0.241 13.992 14.732 −0.075 1.766 1.094

GER
EX 8.530 0.695 7.259 9.386 −0.595 2.230 1.423
ECOE 0.758 0.092 0.575 0.875 0.141 2.180 1.233
GDP 14.736 0.206 14.434 15.071 −0.358 1.765 2.135

ITA
EX 7.527 0.444 6.833 8.129 0.026 1.430 1.748
ECOE 0.624 0.377 0.000 1.390 −0.156 2.833 0.089
GDP 14.292 0.217 13.924 14.601 −0.184 1.851 1.030

JPN
EX 8.440 0.380 7.588 8.907 −0.863 2.958 2.115
DGE 0.511 0.357 0.000 0.943 −0.601 1.750 2.131
GDP 15.217 0.049 15.139 15.299 0.216 1.790 1.168

NED
EX 7.4682 1.055 4.909 8.176 −1.090 3.642 3.661
ECOE 0.681 0.431 0.000 1.499 −0.205 2.401 0.373
GDP 13.188 0.294 12.664 13.596 −0.270 1.950 0.973

NOR
EX 4.807 1.103 2.276 6.392 −0.914 3.177 2.392
ECOE 0.530 0.420 0.000 1.332 0.060 2.019 0.692
GDP 12.165 0.395 11.515 12.736 −0.205 1.788 1.159

ESP
EX 6.140 0.822 4.434 7.369 −0.243 2.347 0.469
ECOE 0.527 0.371 0.000 0.915 −0.648 1.612 2.556
GDP 14.838 0.369 13.222 14.272 −0.276 1.665 1.477
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Table A1. Cont.

Country Variable Mean SD MIN MAX Skewness Kurtosis Jarque–Bera

SUI
EX 5.993 0.650 4.529 6.797 −0.738 2.587 1.665
ECOE 0.732 0.464 0.000 1.822 0.499 3.225 0.742
GDP 12.573 0.253 12.180 12.964 0.031 1.829 0.973

SWI
EX 6.413 0.387 5.566 6.992 −0.878 3.323 2.261
ECOE 0.670 0.421 0.000 1.532 −0.307 2.350 0.473
GDP 12.560 0.247 12.220 12.977 −0.362 1.875 1.126

UK
EX 7.492 0.436 6.438 8.052 −1.126 3.808 4.062
ECOE 0.664 0.417 0.000 1.566 0.189 3.248 0.146
GDP 14.362 0.277 13.884 14.786 −0.144 1.910 0.899

USA
EX 8.529 0.642 7.354 9.497 −0.016 1.950 0.781
ECOE 0.744 0.126 0.511 1.005 −0.093 2.850 0.040
GDP 16.217 0.284 15.723 16.632 −0.236 1.865 1.069

Notes: The country codes AU, AUT, CAN, DEN, FIN, FRA, GER, ITA, JPN, NED, NOR, ESP, SUI, SWI, UK, and USA
denote Australia, Austria, Canada, Denmark, Finland, France, Germany, Italy, Japan, The Netherlands, Norway,
Spain, Sweden, Switzerland, the United Kingdom and the United States of America, respectively. ** denotes
significance at the 5% level. The null hypothesis is normality.
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