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Abstract: We studied different face velocity and carbon dioxide (CO2) initial concentration to examine
the adsorption behavior of calcium oxide (CaO) impregnated activated carbon (AC) filter and also to
discuss pseudo-first-order, pseudo-second-order and intra-particle diffusion three kinetic models.
The experimental results show that saturation time and saturation capacity were decreased and
increased with higher inlet concentration at the same face velocity, respectively. Simulation results
show that pseudo-second-order correlation coefficient (r2

2 = 0.921) is higher than pseudo-first-order
(r1

2 = 0.7815) and intra-particle diffusion (ri
2 = 0.905). Therefore, the adsorption process of CO2 onto

CaO impregnated AC filter media is appropriate for the pseudo-second-order kinetic model.

Keywords: activated carbon; adsorption dynamic model; carbon dioxide; air cleaner

1. Introduction

Generally, people spend more than 90% of their time in indoor environments and therefore,
there is concern regarding indoor pollutants [1]. Nowadays, buildings are being constructed with
significantly stricter leak tightness requirements, as demanded by Building Regulations. There is
increasing concern regarding emissions of CO2 and the impact on health and well-being [2–4] and
comfort [5,6] of occupants in air-tight housing. CO2 is the representative pollutant of indoor air quality
and its concentration is associated with human activity of about 650–700 ppm [7,8]. High concentrations
of CO2 are known to have various adverse effects such as headaches, drowsiness, and dizziness for
residents [9–11]. Ventilation is one of the easiest ways to reduce CO2 concentration, and the modern
practice of completely insulating buildings to retain or send back heat also brings on reductions of
IAQ (Indoor Air Quality).

Current and updated research on how to remove CO2 effectively and economically from indoor
air has become necessary. A few usual ways are being utilized to clean polluted air, including
compromising adsorption, absorption, membrane, and cryogenic gas cleaning manners [12–14].
Adsorption has been shown to be a technique for conducting low concentrations of CO2 [15–17]
because of its simplification, low energy demands, and cost effectiveness [18]. Impregnated activated
carbon as media for the sorption-type filter adsorption is another functional method for removal of CO2

in a building [19]. Song et al. [16] investigated CaO modified silica adsorbents to have basic locations

Sustainability 2017, 9, 1533; doi:10.3390/su9091533 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://dx.doi.org/10.3390/su9091533
http://www.mdpi.com/journal/sustainability


Sustainability 2017, 9, 1533 2 of 13

on their surfaces, and thus, have created a raised affinity for CO2 molecules. Jensen et al. [20] carried
out a comparable quantum chemical study of CO2 adsorption on MgO and CaO, CO2 adsorption
onto CaO as single dentate geometry on both sides and angle sites. Lahuri et al. [21] evaluated
CaO impregnated on iron (III) oxide bimetal adsorbent system as a possible source of base sites for
CO2 capture.

This study aims to examine the performance of CaO impregnated coconut shell AC
adsorbent-loaded nonwoven fabric filter by adsorption characteristics, as well as the breakthrough
curves and pressure drops under various testing conditions. Adsorption capacity and these
characteristics were decided as the functional of CO2 concentration and face velocities. We also
examined adsorption kinetics, utilizing the pseudo-first-order, pseudo-second-order and intraparticle
models and their kinetic constants, thus providing the basic data demanded for design and operation
of equipment for air handling units of the building.

2. Experimental Method

Chemically modified activated carbon adsorbents were prepared by impregnation. Impregnation
of CaO was performed as follows. Calcium acetate monohydrate (10 g) was mixed with 200 mL of
deionized water by agitation for 5 h. Through vacuum and filtration processes remove undissolved salt
to obtain saturated solution. One (1) g of support material was impregnated with this solution
by agitation at 25 ◦C for 12 h, followed by suction filtration and drying at 80 ◦C for 12 h and
then used vacuum drying at 120 ◦C for ~10 h. The impregnated support materials were finally
calcined at 700 ◦C for 2 h by blowing rate of 1 L/min nitrogen. Table 1 summarizes the impregnation
procedures employed.

Table 1. Procedures for preparation of impregnants.

Reagent and Amount Solution (wt %) DI Water (mL) AC (g)

10 g Ca(CH3CO2)2·H2O 4.80% 200 10

Calcium acetate monohydrate was converted into calcium oxide through the following pathways
during calcination.

Ca(CH3CO2)2·H2O→ Ca(CH3CO2)2 → CaCO3 → CaO

Surface area, pore size distribution, and pore width of the completed sample sorbents were
analyzed with an ASAP2020 (Micromeritics Instrument Corporation, GA, USA).

Figure 1 showed the schematic diagram of the experimental system. The CaO impregnated
granular activated carbon (GAC)-loaded on nonwoven fabric filter media (supplied by
AIRREX Co. Ltd., New Taipei City, Taiwan) was set in a designed 15 cm × 15 cm filter area.
Two differential pressure gauges were utilized to monitor pressure drop before and after the filter.
The testing rig was kept at 24 ± 1 ◦C temperature by air-conditioning environment control system
in a cleanroom. The main testing airflow is from here which controlled at 22 ± 1 ◦C temperature
and 40 ± 2% relative humidity. The face velocity of filter was measured and controlled from 0.3 m/s
to 0.5 m/s (related with 0.7 to 1.0 m/s face velocity of a full-scale chemical filter actually operated)
(the TSI 9535-A anemometer is ±3% of full-scale accuracy) with the invertor which connected to the
three-phase air blower and flow damper. The compressed dry air with −40 ◦C dew point temperature
passing through the impinger which produces the airflow with saturated contaminant (i.e., CO2)
then becomes the challenge gas entering the upstream air duct. The impinger, filled with 99.9%
grade CO2, is submerged in the brine water bath with adjustable water temperature from −15 ◦C to
25 ◦C. The upstream concentration in the testing rig is controlled by the flow rate passing thought the
impinger, which is adjusted via a mass flow controller (LINTEC MC-700). The upstream concentrations
were fixed at 800, 1000, and 1200 ppm with ±5% deviation. TES 1370 NDIR CO2 Meter.
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Figure 1. Schematic diagram of the test system [22]. 

The testing method followed ASHRAE Standard 145.2 [23] and is similar to the researcher works 
[24,25]. As shown in Figure 2, conditioned air pass through the adsorbent. The upstream 
concentrations and downstream concentrations are simultaneously measured to decide removal 
efficiency (η) [26]. Breakthrough time (tb) is defined as the time when the outlet concentration was 2% 
of the inlet concentration. Equilibrium time (tt) is defined as the time when the outlet concentration 
was 98% of the inlet concentration. 

 
Figure 2. Schematic of the test principle [25]. 

Figure 1. Schematic diagram of the test system [22].

The testing method followed ASHRAE Standard 145.2 [23] and is similar to the researcher
works [24,25]. As shown in Figure 2, conditioned air pass through the adsorbent. The upstream
concentrations and downstream concentrations are simultaneously measured to decide removal
efficiency (η) [26]. Breakthrough time (tb) is defined as the time when the outlet concentration was 2%
of the inlet concentration. Equilibrium time (tt) is defined as the time when the outlet concentration
was 98% of the inlet concentration.
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The removal efficiency (η) of CO2 decided and simultaneously monitored the upstream
concentrations and downstream concentrations of test rig [26]:

Q = C0V
∫

η(t)dt× 1
0.082

× 1
(273 + k)

×M× 10−6 (1)

where Q is adsorption capacity; C0 is the inlet concentration; V is the airflow rate; t is testing time; η is
removal efficiency (%); and M is testing gas molecular weight.

3. Results and Discussion

3.1. Adsorption Capacity

Figure 3 presents CO2 various adsorption capacity with various inlet concentrations and various
face velocities. As shown in Figure 3, if the inlet concentration of the adsorbate is increased, resulting
in increased diffusion velocity into the pores of the CaO impregnated AC filter, equilibrium adsorption
may reach faster; the equilibrium time decreased from 237 to 86 min, 175 to 57 min and 168 to 49 min
at 0.1, 0.2 and 0.3 m/s face velocities, respectively.
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3.2. Breakthrough

Its determination was performed by various inlet concentration of CO2 from 800 to 1200 ppmv at
the face velocity of 0.1 to 0.3 m/s (Figure 4). As shown in Figure 4, increased the inlet concentration
of the adsorbate, the breakthrough time was reduced. Furthermore, the face velocity was increased,
and the breakthrough time also became shorter.
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Nelson and Harder [27] developed the relationship between two different initial concentrations
of denoted VOC (Volatile Organic Compound) in terms of the breakthrough time:

tb,1

tb,2
= (

C0,1

C0,2
)

α

(2)

where α is the average value of slopes of breakthrough time versus different initial CO2 concentration
curve plotted on logarithmic scales. We used it to predict the performance of CaO impregnated AC filter
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under indoor conditions. The relationship curves of different face velocities are shown in Figure 5 and
Table 2. From the data of Figure 5 and Table 2, we can conclude that once the slope of one breakthrough
time–concentration relationship is known, the slope of the other breakthrough percentages can be
approximated. If the breakthrough time at one concentration is known, breakthrough time at other
concentrations can be calculated accordingly. Nevertheless, best results are obtained if each individual
slope for a given set of conditions is determined experimentally.
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Table 2. Effect of initial concentrations on the breakthrough time.

Face Velocity (m/s) Breakthrough Time vs. Initial Concentration

0.1 tbC0.4009
0 = 15, 060.037, R2 = 0.9982

0.2 tbC0.3602
0 = 29, 584.327, R2 = 0.9963

0.3 tbC0.3309
0 = 60, 596.96, R2 = 0.9909

3.3. Adsorption Kinetics

The kinetics of CO2 adsorption onto CaO impregnated AC filter was investigated by using
pseudo-first-order and pseudo-second-order models.

3.3.1. Pseudo-First-Order Model

The pseudo-first-order equation is given as [28]:

log(qe − qt) = log qe −
k1

2.303
t (3)

Figure 6 presents log(qe − qt) against t of the pseudo-first order equation plots at the adsorption of
CO2. The sorption capacity, qe,1, the first-order rate parameters, k1, and correlation coefficients, r1

2 are
showed in Table 3. The qe experimental values are also contained in Table 3 for comparison with those
predicted. The equilibrium adsorption capacity of the experiment increased from 2.77 to 4.54, 2.28
to 3.21 and 2.1 to 2.77 mg g−1 at face velocity 0.1, 0.2, and 0.3 m/s, respectively during CO2 initial
concentration increased from 800 to 1200 ppm, pointing out that CO2 removal is relying on initial
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concentration. The adsorption capacity of the equilibrium increased from 2.73 to 4.51, 2.24 to 3.16
and 2.1 to 2.75 mg g−1 at the initial concentration of CO2 800, 1000 and 1200 ppm, respectively when
face velocity increased from 0.1 to 0.3 m/s, showing that the CO2 removal is based on face velocity
too. Also, qe calculated values conform well with the experimental data. After all, k1 rate constant
values were discovered to increase from 0.0082 to 0.0217, 0.011 to 0.0324 and 0.0108 to 0.0337 min−1 at
face velocity 0.1, 0.2 and 0.3 m/s, respectively for an increase in the initial concentration from 800 to
1200 ppm. Since the adsorption kinetics follow pseudo-first-order, the rate constant k1 values should
increase linearly with increasing initial concentration [29,30].
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Table 3. Comparison of the pseudo-first- and second-order adsorption, and intraparticle diffusion rate constants.

Face Velocity Inlet Concentration
Pseudo-First Order Pseudo-Second Order Intra-Particle Diffusion

qe (exp, g) k1 (min−1) qe,1 (g) r1
2 k2 (g−1 min−1) qe,2 (g) r2

2 ki (g min−1/2) C ri
2

0.1 m/s
800 ppm 2.77 0.0082 2.73 0.7815 0.149 4.2 0.9519 0.3076 −0.4487 0.9935

1000 ppm 3.66 0.0119 3.64 0.866 0.2783 2.51 0.9844 0.2153 −0.0979 0.9958
1200 ppm 4.54 0.0217 4.51 0.7843 0.5714 1.24 0.9888 0.1397 −0.0266 0.9472

0.2 m/s
800 ppm 2.28 0.011 2.24 0.8213 0.0777 5.65 0.9504 0.5096 −1.0158 0.9811

1000 ppm 3.01 0.0132 2.99 0.7827 0.1214 3.77 0.921 0.3727 −0.6231 0.9771
1200 ppm 3.21 0.0324 3.16 0.8884 0.4141 1.58 0.9806 0.2182 −0.0286 0.9975

0.3 m/s
800 ppm 2.10 0.0108 2.10 0.7874 0.0496 6.96 0.9565 0.6473 −1.4821 0.9671

1000 ppm 2.42 0.0214 2.41 0.8874 0.253 2.36 0.9857 0.7353 −0.5122 0.905
1200 ppm 2.77 0.0337 2.75 0.9074 0.33 1.73 0.9847 0.2657 −0.1127 0.9888
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3.3.2. Pseudo-Second-Order Model

The pseudo-second-order model is showed as: [31]

t
qt

=
1

k2q2
e
+

1
qe

t (4)

Figure 7 presents plots of t/qt versus t of the pseudo-second order equation of CO2 adsorption.
The pseudo-second order rate parameters k2 and the correlation coefficients r2

2 are presented then
compared with r1

2, ri
2, k1, and ki values for the pseudo-first order reaction mechanism and intraparticle

model (Table 3). The adsorption capacity qe,2 of the equilibrium increased from 0.309 to 0.498, 0.329 to
0.785, and 0.715 to 0.721 mg g−1 at face velocity 0.1, 0.2, and 0.3 m/s, respectively. When CO2 initial
concentration increased from 800 to 1200 ppm, showed the initial concentration effect on CO2 removal.
The equilibrium adsorption capacity qe,2 decreased from 4.2 to 1.24, 5.65 to 1.58, and 6.96 to 1.73 mg g−1

at CO2 initial concentration 800, 1000 and 1200 ppm, respectively when face velocity increased from
0.1 to 0.3 m/s, pointing out that the CO2 removal is relying on face velocity too. k2 rate constant values
were discovered to increase from 0.149 to 0.5714, 0.0777 to 0.4141 and 0.0496 to 0.33 g mg−1 min−1

for an increase from the initial concentration 800 to 1200 ppm at face velocity 0.1, 0.2 and 0.3 m/s,
respectively. Also, qe calculated values conform well with the experimental data. The rate coefficient
k2 of the pseudo-second-order rate model is figured versus CO2 initial concentration and is shown,
the relation is not a simple function between k2 and C0 [29,30].
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3.3.3. Intraparticle Diffusion Model

It was also shown that the intraparticle diffusion model [32,33] rate processes are generally
presented in respect to square root of time. The following equation decided ki rate parameters of
intraparticle diffusion at various initial concentrations.

qt = kit1/2 (5)

As presented the intraparticle diffusion model at a face velocity of 0.1 m/s in Figure 8a, the external
surface adsorption (Stage 1) is out. Before 16 min, Stage 1 is finished and then intraparticle diffusion
control of Stage 2 is obtained and it goes on from 25 min to 196, 144 and 64 min at 800, 1000 and
1200 ppm inlet concentration, respectively. Lastly, Stage 3 equilibrium adsorption begins after 225,
169 and 100 min at the inlet concentration of 800, 1000 and 1200 ppm, respectively [34]. The CO2 is
slowly transferred with intraparticle diffusion into the particles and lastly stays in the micropores.
Generally, intraparticle diffusion rate constant ki is the slope of the line in Stage 2. Table 3 also listed
the rate parameter ki and its correlation coefficients. There was some control of boundary layer as it
can be seen from the value of C.
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4. Conclusions

The CaO impregnated AC filter system is suitable for reducing the CO2 indoor air concentration
in buildings with air condition system. In CO2 single vapor adsorption measurements, the adsorption
time decreased with inlet concentration of CO2 and face velocity increased. The adsorption capacity
increased with increased initial concentration and decreased face velocity, too. To increase the inlet
concentration of the adsorbate, the breakthrough time was reduced. Furthermore the face velocity
was increased, and the breakthrough time also became shorter. Once the slope of one breakthrough
time–concentration relationship is known, the slope of the other breakthrough percentages can be
approximated. The pseudo-first- and second-order kinetics, and intraparticle diffusion model also
performed kinetic analysis for the adsorption of CO2 onto CaO impregnated AC filter. The trend of
adsorption of CO2 onto CaO impregnated AC filter for various initial CO2 concentrations over the
complete range succeed the pseudo-second-order kinetic model of the test data fixed on the highest
correlation coefficient of determination, R2(0.921) values which signifies a monolayer adsorption
phenomenon exists between CaO impregnated AC filter and CO2. The CO2 is slowly transferred with
intraparticle diffusion into the particles and is lastly kept in micropores.
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Nomenclature

C intercept of intraparticle diffusion model, mg kg−1

Ce concentration of free formaldehyde in air, mg L−1

C0 the inlet concentration, ppm
k1 the pseudo-first-order rate coefficient, min−1

k2 the pseudo-second-order rate coefficient, g mg−1 min−1

ki the intraparticle diffusion rate constant, mg g−1 min−1/2

M testing gas molecular weight, g mole−1

Q adsorption capacity, mg g−1

qe the amount of adsorbed CO2, mg g−1

qt the amount of adsorbate adsorbed at time t, mg g−1

t testing time, min
V the airflow rate, L min−1
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