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Abstract: Exterior dynamic shading devices, installed on “kinetic façades”, generate shaded areas 
of various shapes on windows according to the shape of the shading elements and the direction of 
their movement. The calculation of the shaded area is vitally important because it is directly related 
to the solar heat gain calculation process in building energy assessments. This paper dis-cusses a 
dynamic calculation method for deriving shaded fractions in consideration of the irregular shapes 
and unique movements of the shading elements in kinetic façades. The planar-polygon method 
was adopted for calculating accurate shaded areas on a window generated by irregularly shaped 
shade elements. To account for movements of the shading elements, the range of movement 
directions (i.e., rotating, sliding, etc.) was divided into ߚ steps of equivalent intervals. Applying 
these two methods, a shaded area calculation tool for the kinetic façade was developed. Three 
movement directions of shading devices were chosen for calculating shaded area, and the values of 
shaded fractions for six kinetic façade types were derived for different façade orientations during 
the summer and winter solstices. Lastly, to simplify the detailed calculation method, estimation 
equations for two types of kinetic façade were derived from a trend analysis of the shaded fraction 
values. This study deals with both detailed and simplified methods (estimation equation) for 
deriving the shaded fraction. The detailed method can be a more accurate solution in deriving the 
shaded fractions generated by complex exterior movable shading devices. However, the simplified 
method can be adopted in the early design stages to review various shading devices within a brief 
duration of time. 
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1. Introduction 

In buildings, excessive solar radiation is allowed indoors through curtain walls and wide 
window areas, increasing the indoor cooling load during the cooling period. To avoid over-heating 
in buildings, installation of shading devices is important. Shaded areas generated by shading 
devices can reduce solar heat gain through building windows. Studies on shaded areas are mostly 
conducted in fields where the duration of sunshine and solar beams directly influence the energy 
efficiency of buildings, such as green buildings and solar photovoltaics (PV) [1,2]. 

Shading devices can be largely divided into fixed shading devices and movable shading 
devices. In general, fixed shading devices use vertical or horizontal shading elements. Studies on 
fixed shading devices mostly concern comparisons of the required energy amount between cases 
that use a shading device and cases that do not, or comparisons of performance for environmental 
factors for different orientations of the building envelope [3–8]. Through a numerical analysis, 
Palmero-Marrero et al. [3] compared the energy requirements according to the slat angles of fixed 
louvers, the altitude of the sun, the azimuth, and the height of the windows. Fixed shading devices 
dealt with in previous studies can be analyzed using various numerical analysis methods [4,8]. 
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With fixed shading devices, however, it is difficult to provide active control in response to external 
weather conditions. 

Movable shading devices have been studied to overcome the limitations of fixed shading 
devices in terms of energy and environmental performances, and to provide efficient solar radiation 
control methods. Studies that consider the shaded areas of movable shading devices have evaluated 
savings in energy consumption obtained by operating movable shading devices, using external 
venetian blinds and roll blinds as the most widely used examples [9–13]. Sun et al. incorporated the 
shaded ratio as a factor depending on the type of shading device and the type of material in 
considering solar radiation quantity, and analyzed the energy consumption by rotating the 
experimental apparatus [9]. Tzempelikos et al. [10] compared the cooling and lighting demands 
according to the on/off control methods of roller shades and electric lighting, and in their other 
study [11], shaded fractions were suggested for various rotating cases by considering factors related 
to the shape of venetian blinds such as slat dimensions. Corrado et al. [12] and Pongpattana et al. 
[13] calculated the shaded area by considering combinations of overhangs and fins. 

An increasing number of buildings have adopted the kinetic façade in consideration of both 
design and functional elements to actively adjust the amount of solar radiation received [14–17].  
A kinetic façade refers to a double skin façade structure in which an additional envelope comprising a 
shading device is installed on the outside of the curtain wall [18]. A kinetic façade has shading 
elements of various shapes and movement directions that respond to changes in the surrounding 
environment, such as solar radiation and air currents. The shaded areas generated on windows by 
the shading device serve as an important factor in calculating the solar heat gain through the 
windows. The various shapes and movement directions of the shading device on a kinetic façade 
incur real-time changes in the shaded areas of the windows, thus making it difficult to calculate the 
solar heat gain. Therefore, to calculate the solar heat gain in consideration of the operation of the 
kinetic façade, it is necessary to first calculate the shaded areas based on the shapes and movement 
changes of the shading device. 

The shaded area calculation methods used in existing studies include a method for calculating 
the shaded areas of shading elements having simple shapes based on the dimensional information 
of each shading element [19], as well as the “cell method” and “point method,” which require 
complicated calculation procedures using computer programs. The cell method divides a window 
into segments and calculates the sum of the applicable cell areas [20], whereas the point method 
uses the projection points of the actual geometrical figure [21–23].  

In the case of fixed shading devices, because the shading elements do not move, the shaded 
area can be estimated using equations that consider only the movement and orientation of the sun. 
However, to calculate a shaded area for a dynamic shading device such as a kinetic façade, not only 
the movement and orientation of the sun, but also the complex shapes and movements of the 
shading elements must be incorporated [10,24]. To calculate the solar heat gain in consideration of 
the irregular shapes and movements characteristic of a kinetic façade, the calculation of the accurate 
shaded areas must consider the geometric figures of the shading elements as well as changes that 
occur according to operating mode and time.  

This study proposes a shaded fraction calculation process that considers the “irregular shapes” 
and “movement changes” characteristics of a kinetic façade. To consider the “position of the sun”, 
the “shape of the shading elements”, and the “movements of the shading device” in calculating the 
shaded areas, a planar-polygon method is used, which is a method for calculating the shape of a 
figure’s projection onto a plane. The shaded fractions were calculated for each orientation of the 
envelope, with the movement directions of the kinetic façade classified into the longitudinal, 
rotational, and opening/closing directions according to operation mode. A shaded fraction 
estimation equation having a movement step (ߚ) as a variable was derived through an analysis of 
the shaded fraction values depending on the operation types of movable shading devices. The 
estimation equation was derived based on two selected movement directions (i.e., angle change and 
length change) of horizontal shading devices for an envelope facing southward located in Seoul, 
Korea, during the summer solstice.  
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The shaded fraction projected onto the window by an external movable shading device varies 
according to the type of shading device, façade orientation, and time. Therefore, to accurately 
evaluate the energy and environmental performance of a kinetic façade, the shaded fraction must 
be calculated using the detailed model information of the shading device and a complex calculation 
process. In addition, when reviewing and identifying the characteristics of the shaded areas 
provided by the various types of shading devices during the early design stages, a simpler method 
for estimating shaded area can be used.  

2. Calculation of the Shaded Area for External Movable Shading Devices 

2.1. Review of Shaded Area Calculation Methods 

A shaded area created by an external movable shading device can be calculated in two ways. 
The first is the cell method, which entails dividing a lit plane into a grid of cells. The number of cells 
that do not receive solar rays within a target area (i.e., the glazing) is added up. The second is the 
point method, which entails projecting the coordinates of a shading element onto a target area to 
obtain the coordinates of the shadow and then calculating the area of the geometric figure defined 
by the shadow’s coordinates. 

The cell method in turn can be divided into the grid method and the bar method. The grid 
method divides a lit plane into segments of a certain unit area, and calculates the shaded area by 
excluding the areas of segments that receive solar radiation from the total window area. The grid 
method provides the advantage of fast calculation speed, and an example of the grid method 
includes the ray-tracing method. This method has been used in Ecotect and Energy plus, which are 
types of daylight and energy analysis software [25]. Similar to the grid method, the bar method 
divides a lit window into segments of a certain unit area; however, the divided segments each have 
the shape of a bar. The shadows projected onto a lit plane thus are shaped as bars in accordance 
with the divided segments, and the shaded area is calculated by adding up the areas of the bars. 
This method was applied to DOE-2, and the error rate was shown to vary depending on the 
number of divided bars [26]. 

The point method adopts the polygon method. The polygon method entails calculating the 
area of a polygon by regarding it as a composite of lines. The three-dimensional coordinates of the 
solar rays and the shading elements form vectors, which are projected onto the target area. The 
projected coordinates, which form a geometrical figure, are the coordinates of the shaded area. The 
shaded area can thus be obtained by using the method of calculating polygonal areas according to 
the polygon method to calculate the areas defined by the shadow coordinates. Unlike the first 
method, the point method calculates the outline of the shadow actually projected by an object, thus 
its calculation speed is slower but its accuracy is higher [20–23]. Table 1 shows a comparison of the 
different shaded area calculation methods. 

Table 1. Calculation methods of shaded area. 

 Grid Method Bar Method Polygon Method

Type of calculation 
Counting the number of 

cells (square) 
Counting the number of 

cells (bar shaped) 
Calculating the area of 

connected points 
Level of difficulty Very low Low Very high 

Polygon shape Rough Slightly detailed Detailed 

Diagram 
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Although the grid method and the bar method, examples of the cell method, are used in many 
programs due to their fast speed and low error rate, the calculation error may increase as the shape 
of the target object becomes more complicated. In the case of existing fixed-type shading devices 
where the shading elements have simple shapes, the use of the cell method can be advantageous, 
but even in this case, the calculation of the shaded area can be limited when the cell size is larger.  

The shaded area is a major factor for shading devices and is needed in evaluating the solar heat 
gain, glare protection, illuminance satisfaction, or other thermal and visual environment 
performance of a kinetic facade. Evaluating the shading performance of kinetic facades and 
determine their proper control strategies must be preceded by an accurate calculation of the shaded 
area. Therefore, for incorporating the complex shapes and movements of a kinetic façade, it is more 
appropriate to use the point method, which allows a more accurate calculation of the shaded area. 

2.2. Shaded Area Calculation Using Planar-Polygon Method 

Because the planar-polygon method [21,23] can accurately draw complex shadow shapes, it is 
suitable for calculating the shaded area of a movable shading device. This method calculates the 
shaded area by accurately defining the shape of a geometric figure projected onto the target area. 
Because it calculates the area of a figure formed by connecting the projected coordinates with lines, 
it can also be used for a figure defined by curved lines. General polygon clipper (GPC) [22,27] was 
adopted to calculate intersection areas of two or more polygons. Sum of the overlapped areas is 
subtracted from sum of the shaded areas generated by multi-slats using GPC method. 

The shaded area calculation for a kinetic façade includes three processes, as shown in Figure 1.  
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Figure 1. Shaded area calculation process using the polygon method. 

2.2.1. Calculation of the Shade Coordinates of the Shading Elements 

To calculate the total shaded area (்ܣ) provided by a shading device, three-dimensional 
position coordinates must be obtained for the sun and the shading elements. The position of the sun 
can be calculated using the azimuth and altitude based on regional climate data, and its changes in 
position throughout the year can be represented in the coordinate system. The direction vector (ܣ) 
of the sun can be calculated from Equation (1) using the azimuth (߮) and solar altitude (ℎ). 
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ܣ = ൫ܽ௫, ܽ௬, ܽ௭൯ = (sin߮ × cos ℎ , cos߮ × cos ℎ , sin ℎ) (1)

The shaded area is formed as the shape of the shading elements is projected onto the glazing 
by solar rays. The solar rays pass through a point on the shading device and arrive at the window, 
and the coordinate where the solar rays arrive becomes a shade coordinate of the shading element. 
These shade coordinates form a geometric figure on the window. The figure thus formed becomes 
the shaded area provided by the shading device. The shade coordinates of the shading device can 
be obtained through Equation (2) [20]. ܮ = ܲ +  (2) ܣݐ

ݐ = ݊௫(ܾ௫ − (௫݌ + ݊௬൫ܾ௬ − ௬൯݌ + ݊௭(ܾ௭ − ௭)݊௫ܽ௫݌ + ݊௬ܽ௬ + ݊௭ܽ௭  (3) 

where L is a straight line passing through the sun’s direction vector (ܣ) and a point ܲ (= (݌௫,݌௬,  is a parameter. Parameter must be calculated to obtain the ݐ ௭)) on a shading element, and݌	
intersection of the line L and plane ܤ. Equation (3) is the equation for obtaining ݐ. In addition, ܰ 
(= 	(݊௫, ݊௬, ݊௭) ) is the normal vector of plane ܤ  (= 	(ܾ௫, 	ܾ௬, 	ܾ௭) ). Point ܵ , which is a shade 
coordinate for the shading device, is the coordinate where the line ܮ passes through point ܲ of a 
shading element and meets the plane ܤ. It can be obtained using Equations (2) and (3) (see Figure 
1). 

2.2.2. Calculation of Overlapping Shaded Areas for Exclusion 

If a shading device has several slats, the shaded areas of the slats may overlap one another. For 
example, in the case of a single shading element, where the shading device has a single plane that 
needs to be considered (i.e., a roll blind or an awning), the shaded area can be calculated using the 
coordinates obtained through the shade coordinate calculation. However, in the case of several slats 
(i.e., venetian blinds or vertical fins), the shaded areas created by the multiple slats can be 
superimposed one over another. To exclude the area of overlapping shadows, it is necessary to find 
the coordinates of new geometric figures formed by the shadow outlines of the respective slats and 
their intersections (see Figure 1, middle). This can be achieved using the GPC model [21–23], and a 
GPC code published in the University of Manchester GPC library [27] was adopted in the shaded 
area calculation algorithm. 

2.2.3. Calculation of the Shaded Area Drawn over a Window 

Solar heat gain is obtained through the windows. Therefore, if a shadow provided by a 
shading device is not drawn over the window, the corresponding area must be excluded from 
consideration. This can be done by comparing the coordinates of the shading device’s shadow and 
the coordinates of the window, and calculating the coordinates of their intersection. The final 
shaded area (்ܣ) can be calculated through inner and outer products of coordinate ܵ, as shown in 
Equation (4). To form a closed curve, ܵ௡ାଵ = ଵܵ. 

்ܣ = 12ܰ ∙෍( ௜ܵ × ௜ܵାଵ)௡
௜ୀଵ  (4)

2.3. Shaded Area Calculation According to Changes in Operation 

The shaded area of a fixed shading device changes over time. The shaded area of a movable 
shading device, however, changes over time and changes according to operation. Therefore, to 
incorporate the movement of a movable shading device, the two variables of time and operation 
must be considered together. As for time, because the position of the sun does not change 
dramatically, the shaded area is calculated in one-hour intervals. As for operation, there is no 
particular operation module that can be selected, because there is no definite control standard. To 
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consider continuous changes in operation, the operating range is finely divided such that the 
difference in shaded area is not excessively large. Therefore, the operating range of a kinetic façade 
is divided into ߚ steps, and the shaded area is calculated by representing the change in operation 
as an ߚ number of fixed shading elements. Accordingly, the shaded area can be calculated with the 
mode of operation incorporated as a variable that changes over time in a discontinuous manner. 
Figure 2 shows an example of incorporating changes in operation by representing the operation 
with ߚ movement steps according to the length variation type. 

 

Figure 2. Example of movement change of length variable. 

If the value of an operation variable is ߚ, the shaded area coordinate S୧,ఉ,ୢ can be obtained 
using Equation (5) and the position vector of the sun at a certain time (݀). The total shaded area 
 can (௝ߚ	 ,i.e., specific level (݆) of the movement step) for the value of the operation variable (ఉೕ,ௗ,்ܣ)
be calculated using ௜ܵ,ఉೕ,ௗ, as shown in Equation (6).  

௜ܵ,ఉೕ,ௗ = ఉܲೕ +  ௗ (5)ܣݐ

ఉೕ,ௗ,்ܣ = 12ܰ ∙෍ቀ ௜ܵ,ఉೕ,ௗ × ௜ܵାଵ,ఉೕ,ௗቁ௡
௜ୀଵ  (6) 

Since there are no specific control standards regarding how a kinetic façade should be operated, 
there is no definitive set of time-dependent operating procedure that can be applied. However, the 
position of the façade can be controlled to minimize cooling, heating, and lighting energy, or to 
minimize discomfort. To calculate the shaded area reflecting such control, the values and ranges of 
the operating variables representing the control must be established.  

2.4. Deriving a Tool for Calculating Shaded Area 

A calculation tool is implemented for calculating the shaded area provided by a kinetic façade. 
The calculation tool is composed using Visual Studio, and the changes in time and operation are 
reflected based on the planar-polygon method. Whenever a change in time or movement occurs, the 
shaded area corresponding to each change is calculated through repeated process calculations. In 
addition, to compare the performances of the shading device for different orientations, the 
orientation of the building envelope is considered. Figure 3 shows the algorithm used by the 
shaded area calculation tool. The position of the sun is calculated using the azimuth and altitude for 
the particular region and time. The shaded area is calculated using the information on the positions 
of the sun, the shading device, and the lit plane. 

The shaded area corresponding to a one-year period (i.e., 8760 h) is calculated based on the 
information of the sun, the shading device, and the lit plane inputted into the calculation tool. 
Using the shaded area calculation tool, the shaded areas according to changes in time and 
movement step of the shading device are calculated. 
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Figure 3. Shaded area calculation algorithm. 

3. Calculation of the Shaded Fraction According to the Type and Operation of the Shading Device 

3.1. Types of Shading Devices Applicable in a Kinetic Façade 

In order to calculate the shaded area provided by a kinetic façade, the factors affecting the 
shaded area must first be identified. A kinetic façade can be classified into various types according 
to the shape of the shading element and the type of movement [28,29]. The shapes of the shading 
element include horizontal, vertical, planar, and solid types. The details may vary in each different 
type. For example, in a horizontal type shading device, the details of the overhangs and louvers 
may vary. In a vertical type shading device, the details of the fins may vary, and in a planar type 
shading device, the details of the rollers and arrays may vary. Dynamic elements can include 
sliding, retracting, rotating, folding, rolling, aperture, and contracting elements.  

Table 2 shows different types of kinetic façade according to the shape and movement of the 
shading elements. It should be noted that an integrated type can have a combination of horizontal, 
vertical, and planar types, but this type is excluded from consideration because it is impossible to 
distinguish as a specific type. 

Table 2. Various shape types and movement directions of kinetic façade. 

Movement Direction Sli. Ret. Rot. Fol. Rol. Ape. Con.

Diagram 

   

Shape type 
Horiz. - O O O - - O 

Vertical - O O O - - O 
Plane O - - - O O - 

O: Available, Horiz.: horizontal, Sil.: sliding, Ret.: retracting, Rot.: rotating, Fol.: folding. Rol.: rolling, 
Ape.: aperture, Con.: contracting. 
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3.2. Types of Movement Applicable in a Movable Shading Device 

The calculation of the shaded area depends on the position of the sun, the position of the 
shading device, and the direction of the building envelope. Therefore, values representing the 
positions of all of these factors must be represented on the three-dimensional coordinate space to 
calculate the shaded area. When the shading device is classified according to the shape and 
movement of the shading elements, the shaded area may vary for planes of different orientation. 
Therefore, the XY, YZ, and XZ planes as shown in Figure 4 can be used. The movement direction 
can be classified into a length change (Δ), a rotation (angle) change (α), and an opening/closing 
change (aperture) (r). 

X

Y

Z

Kinetic facade

: Rotation (ߙ)

: Length (∆)

: Aperture (ߛ)

 
Figure 4. Façade orientation and movement directions on a kinetic façade. 

While kinetic façades can be implemented in various forms, they may be grouped into six 
conceptual types, A1, A2, A3, B1, B2, and C, according to the shape and movement of the shading 
elements, as shown in Table 3. The A types have shading elements that operate along the 
longitudinal direction (∆) and include sliding, retracting, rolling, and contracting types. The A types 
may be divided into A1, A2, and A3 according to the position of the shading element. The A1 type 
adjusts the length of the shading element along the horizontal direction like an awning. The A2 
type includes shading elements installed on the left and right sides of a lit plane like fins, where the 
lengths of the shading elements are adjustable. The A3 type vertically adjusts the length of the 
shading element like a roll blind. The B types operate in the rotational direction (ߙ), and includes 
rotating and folding types. The B types may be divided into the B1 and B2 types. The B1 type 
rotates the shading element up and down, and the B2 type rotates the shading element left or right. 
The C type operates a shading element in the opening/closing direction (ߛ) of an aperture. The 
opening and closing occur within a plane, where an aperture is opened or closed to adjust the 
amount of solar intake. 

In the case of shading devices that operate in the longitudinal or rotational direction, the size of 
the shading element does not change during operation, but in the case of a shading device 
operating in the opening/closing direction (i.e., A3, C), the size of the shading element does vary 
during operation. In other words, in the case of a C type device, which is a typical aperture type 
model, the area of the overall shading element is reduced by the open area of the shading element. 
However, because the polygon calculation method calculates the shaded area by extracting the 
coordinates of the outlines of geometric figures, an open area is also treated as a shading element. 
Therefore, in the case of a shading device operating in the opening/closing direction, the concept of 
a “hole” is used to distinguish between areas functioning as shading elements and areas that are 
openings in the shading element. A hole determines whether a geometric figure defined by a set of 
coordinates is a shading element (i.e., hole = 1) or an open area (i.e., hole = 0). 
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Table 3. Classification of kinetic facade according to movement directions. 

 Direction Horizontal Vertical Planar 
Type A Length (∆) A1 A2 A3 

  

Type B Rotation (ߙ) B2 B2  

  

 

 

Type C Aperture (ߛ)   C 

    

3.3. Calculation of Shaded Fraction for Each Type of Kinetic Façade 

To observe changes in the shaded area over time when the shading element moves, models 
were set up for the six shading device types shown in Table 3. The shaded fraction (ܨ௦) was 
calculated over time for the three types, i.e., longitudinal, rotational, and opening/closing direction 
types, using the shaded area calculation tool developed in this study. The shaded fraction refers to 
the fraction of the shaded area with respect to the area of the entire window. 

Table 4 shows a case summary for cases to which the proposed shaded area calculation 
method was applied. Seoul was selected as the location, and the summer and winter solstices were 
selected as the test dates to provide maximum contrast in terms of the effect of solar radiation. The 
operating hours of the building were 05:00 to 20:00 for the summer solstice, and 07:00 to 17:00 for 
the winter solstice. The movement directions of the movable shading devices for the six cases were 
set to be from a completely closed step to a completely open step.  

Table 4. Set values for shaded area calculation. 

Variable Set Value
Date Summer and winter solstices 
Time Day time (24 h) 

Location Seoul  
Latitude 37°56′70′′ N 

Window dimension 2000 mm × 2000 mm 
Maximum protrusion length 1500 mm 

Movement steps (ߚ) 10 steps 

Whereas typical movable shading devices operate in three to five movement steps, a kinetic 
façade can have more finely divided operating steps. Therefore, the operating steps of a kinetic 
façade for the simulation were set to eleven by dividing the operational displacement into ten equal 
parts to depict a continuous movement of the shading element. The model for each case was 
designed such that the horizontal type can have the shading element located at the top of the lit 
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plane, and the vertical type can have shading elements located on the left and right sides, as shown 
in Table 3. The size of the façade was set to 2000 × 2000 mm2 in consideration of the test standard 
model used for measuring the heat transmission coefficient, and the maximum protrusion length of 
the shading element was set to 1500 mm. The operating range of the shading element was set to 0–
1500 mm for the horizontal and vertical direction types, and 0–2000 mm for the planar types, in 
consideration of the maximum protrusion length of the shading element. 

Figures 5–7 show hourly ܨ௦ values according to the 11 movement steps for the six cases. The 
x-axis represents time, and the y-axis represents the shaded fraction. Each case is represented by the 
shaded fraction calculation results for each orientation for both the summer and winter solstices. 
The 11 lines represent the ܨ௦ values of the respective operating steps obtained by dividing the 
operating displacement into ten equal parts. In the case of a northward direction during winter 
solstice, the ܨ௦ values for all times were zero, and were thus omitted because there was no direct 
sunlight during the daytime.  

Figure 5 shows the shaded fractions according to changes in length for the A1, A2, and A3 
types. The length change types had almost symmetrical ܨ௦ values for the eastward and westward 
orientations, and the highest ܨ௦ values were obtained for the southward orientation. In the case of 
the northward orientation, the ܨ௦ values were symmetrical on both sides but with no values from 
10:00 to 14:00. In the case of the A1 type, the changes in ܨ௦ according to orientation showed similar 
trends during the summer and winter solstices, although the ܨ௦ values for the winter solstice were 
significantly lower. However, both the summer and winter solstices showed the highest ܨ௦ values 
in the daytime, with significant changes in ܨ௦ values over time. In the case of the A2 type, the ܨ௦ 
values were high in the morning and afternoon hours, but approached zero between 12:00 and 
13:00. Unlike the A1 type, the A2 type showed higher ܨ௦ values for the winter solstice. In the case 
of the A3 type, the ܨ௦ values were not affected by the summer or winter solstices, and showed 
values arranged in constant intervals according to the opening/closing rates. Unlike the A1 type, the ܨ௦ values according to the variation of operating variables remained constant regardless of time. 

Figure 6 shows the shaded fractions for the rotation-type shading devices. The horizontal type 
(B1) and the vertical type (B2) have a rotation range of 0°–180°. The horizontal type was designed to 
have one shading element at the top of the window, and the vertical type was designed to have two 
shading elements, one on the left side of the window and one on the right. For the vertical type, the 
movement direction was set from right to left (i.e., counterclockwise). In the case of a rotation-type 
shading device, the difference in ܨ௦  values was significant between the rotation angles, and 
significantly different ܨ௦ values were observed between the summer and winter solstices. The B1 
type showed similar trends to the A1 type, but the increments in ܨ௦ values according to the 
movement steps were somewhat larger. In the case of the B2 type, the ܨ௦ values showed different 
trends depending on each movement step. 

Figure 7 shows the shaded fractions according to the opening/closing changes. A typical 
opening/closing direction shading device includes a fixed portion, and, as such, the shading area 
cannot be completely opened. Therefore, the opened area for the completely open movement step 
(i.e., Step 11) was assumed to be half of the entire shaded area. The radius range of the aperture for 
the planar type (C) was set to 0–500 mm in consideration of modeling dimensions. The 
opening/closing change type showed the same ܨ௦ values for the summer and winter solstices, and 
no significant differences appeared for different orientations. In addition, constant ܨ௦  values 
appeared over time. In the case of the C type, the ܨ௦ values for the respective movement steps were 
proportional to the opened shading areas, so that a similar tendency to that of the A3 type was 
observed. 
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Figure 5. Shaded fraction of length (∆) variable. 
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Figure 6. Shaded fraction of rotating (ߙ) variable. 

 
Figure 7. Shaded fraction of aperture (ߛ) variable. 
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4. Average Shaded Fraction Characteristics According to the Movement Direction of the Movable 
Shading Devices 

Figure 8 shows the daily average values of ܨ௦ according to the movement direction of the 
movable shading devices described in Section 3. The four lines in the graphs represent the 
orientation. The x-axis represents the movement step, and the y-axis represents the shaded fraction. 
The summer and winter solstices showed similar ܨ௦ changes for each case. In particular, the A3 
and C types, both of which are planar types, showed the same ܨ௦ values for the summer and 
winter solstices. In addition, the ܨ௦ values of the northward orientation for the winter solstice were 
all zero. Comparing the trends of the ܨ௦ values for the various shading device types, the summer 
solstice showed similar ܨ௦  values for the eastward and westward orientations, whereas the 
southward and northward orientations showed significantly different ܨ௦  values between the 
different types, with the exception of the planar types. 

 
Figure 8. Average shaded fractions for each case. 
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Regarding the values for the summer solstice, the A1 and B1 horizontal-type shading devices 
showed high ܨ௦ values of approximately 0.8–0.9 for the southward orientation. The A2 and B2 
vertical-type devices showed ܨ௦ values of about 0.5 for the northward orientation, which was 
higher than any other orientation. The A3 and C planar-type devices did not show any differences 
between the orientations. For the winter solstice, the A1 and B1 horizontal-type devices showed 
similar ܨ௦  values for the eastward, westward, and southward orientations. The A2 and B2 
vertical-type devices, however, showed significantly different ܨ௦  values for the eastward and 
westward orientations. The planar-type devices did not show any differences according to 
orientation, similar to the cases for the summer solstice.  

Upon comparing the operations of the various types of shading devices, it is found that the ܨ௦ 
values follow similar trends according to the operation type. The longitudinal-direction shading 
devices show trends of a slow decrease followed by a steep decrease. On the contrary, the plots for 
the rotation-change-type devices show trends of a steep decrease followed by a slow decrease. For 
the B2 type, which use vertical shading elements in a rotated operation, U-shaped plots appear 
owing to the shading elements being installed on the left and right sides. The opening/closing 
direction shading devices show slowly decreasing tendencies. Because the opening/closing 
direction shading devices are capable of providing completely shaded areas, the minimum ܨ௦ 
value may vary accordingly. Except for the B2 type, smaller rotation angles, lengths, and openings 
led to higher ܨ௦ values. In the case of the B2 type, the lowest ܨ௦ value was observed with the 90° 
operation during the summer solstice, and the eastward and westward orientations showed largely 
symmetrical tendencies for the winter solstice.  

The calculation results of the shaded fraction showed that the shaded fraction may vary 
depending on the type of shading device, the orientation of the building on which the shading 
device is installed, and time. Changes in the shaded area on a window affect the thermal and visual 
environments of the occupant in terms of the cooling/heating load, glare, daylight performance, and 
view. Therefore, the shaded fraction (ܨ௦) for a shading device design proposal must be reviewed 
during the initial design stages of the building itself. 

5. Deriving Estimation Equations for the Kinetic Facade 

As described in Section 2.3, the shaded fraction (ܨ௦) can be accurately calculated using the 
positional relationships of the sun, shading device, and window. However, this method is only 
possible using complex computational algorithms that utilize a three-dimensional model of the 
shading device as the main input data. 

In this section, ܨ௦ value estimation equations are derived for shading devices of representative 
operating types. The equations are derived by obtaining an average of the daily ܨ௦ values for each 
movement step of the shading devices through an accurate calculation method, and formulating 
equations for ܨ௦ using movement step as a variable. Various types of shading devices can be 
applied to a kinetic façade. In this study, however, two representative shading device movement 
directions were selected, and estimation equations were derived for the southward facing envelope 
of a building located in Seoul, Korea, during the summer solstice (see Table 5). 

Horizontal-type shading devices were selected for testing, and their sizes were made identical 
to that of the window. Two movement directions were selected; TEST-1 for the angle change type 
and TEST-2 for the length change type. Even with shading devices that use the same operation type 
(movement direction) the shaded fractions can be different according to the width-to-height ratio of 
the window. Therefore, for each test set, five cases of varying width (W) and height (H) were tested, 
including the basic window size of 1000 × 1000. 
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Table 5. Description of tested exterior movable shading devices installed in a facade. 

 TEST-1 TEST-2 

Image 

Cases (W 
× H) 

Basic 1000 × 1000 1000 × 1000 

Width change 
2000 × 1000 (2W)  
4000 × 1000 (4W) 

2000 × 1000 (2W)  
4000 × 1000 (4W) 

Height change 
1000 × 2000 (2H)  
1000 × 4000 (4H) 

1000 × 2000 (2H)  
1000 × 4000 (4H) 

Shading 
devices 

movement direction Angle change (α) Length change (Δ) 
Number of Steps (ߚ) 1 to 11 (close to open) 1 to 11 (close to open) 

Value of Step 11 (open) 180 (°) 0 (mm) 
Value of Step 1 (closed) 0 (°) H (mm) 

Interval of each step Equivalent intervals of 18° Equivalent intervals of H × 1/10 

Figure 9 shows the ܨ௦ calculation results for TEST-1 and TEST-2. The test results show that 
even shading devices of the same type may produce different ܨ௦ values for each movement step 
depending on how the shading devices are operated. However, it is observed that the ܨ௦ values in 
each test set follow similar trends. In both test sets, the ܨ௦ values are higher if the window height is 
greater and lower if the window width is greater. It is noted that the sizes of the window and 
shading element are set to the same in each test case.  

(A) TEST-1 (Angle change) (B) TEST-2 (Length change)
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Figure 9. Test results of average shaded fractions (10:00 to 16:00) with various window sizes. 

The ܨ௦ graph for the angle change entails a logistic function (e.g., ݕ = ଷݔ− ݁⁄ ), and the ܨ௦ 
graph for the length change entails a log function (e.g., ݕ = logଵ଴(−ݔ)). To derive the ܨ௦ value 
estimation equations for the two types of shading devices, a logistic function and a log function 
were derived based on ܨ௦ values for a basic case (see Equations (7) and (8)). The coefficients of 
determination (R2) of the estimation equations were 0.90 for angle change (i.e., TEST-1) and 0.94 for 
length change (i.e., TEST-2), indicating that the ܨ௦ values estimated by the estimation equations are 
highly persuasive. The average ܨ௦ values at each movement step (ߚ௝) can be estimated using the 
derived equations.  

௦,஺௡௚௟௘ܨ = −൫ߚ௝ − 5.1൯ଷ݁(5.6)݌ݔ + 0.76, 1 ൑ ௝ߚ ൑ 11 (7)

௦,௅௘௡௚௧௛ܨ = ൫logଵ଴൫11.001 − ௝൯ߚ + 2.9൯5 , 1 ൑ ௝ߚ ൑ 11 (8)
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where ܨ௦,஺௡௚௟௘ and ܨ௦,௅௘௡௚௧௛ are the daily average shaded fraction. ߚ௝ is the movement step of the 
shading device expressed as an integer. The relation of the ܨ௦ value to the width-to-height ratio of 
the window has a comparatively similar trend to the ܨ௦ value of the basic case. Therefore, the ܨ௦ 
value within a certain error range can be roughly estimated by multiplying the ܨ௦ value for the 
basic window size by a certain proportion (i.e., 0.75 for 2H, 0.5 for 4H, 1.20 for 2W, and 1.29 for 4W). 
The design data (ܨ௦) obtained through the above calculation process allow the designer to roughly 
review the environmental performance of various shading devices during the early design stages. 

6. Discussion and Suggestion 

A kinetic façade requires a high level of technology and a significant amount of time during its 
design process, which may require considerations on the design of the external movable shading 
device, operating type of the shading devices, real-time control of the shading elements, review of 
the shading device construction, structural stability of the shading device, and energy performance. 
The external movable shading device is are installed on the outermost side of the building and is 
thus directly exposed to exterior conditions. Therefore, during the selection of the design 
alternatives for a kinetic façade, both the shading performance of the shading device and the 
aesthetics of the design are of great importance.  

To reduce the costs and time required during the design stage of a kinetic façade, the 
environmental and energy performances of various designs for the external movable shading 
devices must be reviewed from the initial design stages. In particular, the changes in shaded area 
provided by the shading device affect the thermal and visual environments of the occupant in terms 
of cooling/heating load, glare, daylight performance, and view. When an accurate energy 
performance evaluation is required for the selected shading device, the energy consumption and 
environmental performance can be evaluated based on an analysis of the detailed design using a 
dynamic simulation tool [30]. However, applying accurate energy and environmental performance 
evaluations for the detailed designs of various alternative shading devices during the selection 
process in the early design stages can incur considerable consulting cost and time.  

Existing literature [31] has proposed a reduction factor of the shading system (ܨ௖) for various 
types of shading devices (e.g., no shading = 1.0, internal venetian blind = 0.5, external awning blind 
= 0.4) as a means of reviewing the energy performance of the shading devices during the early 
design stages. This method can dramatically reduce the cost and time required for the building 
owner or designer to roughly review the energy and environmental performance of various 
shading devices during the early design stages. If the average shaded fraction (ܨ௦) estimation 
equations derived for external movable shading devices of representative movement directions 
based on the results of this study were to be used to provide ܨ௦ information for each type of 
shading device, for example in the form of index labels (see Figure 10), they may serve as useful 
design guides for the designer in reviewing the energy and environmental performance of the 
shading device according to design and movement direction during the early design stages.  

 
Figure 10. An example of Fs label for exterior movable shading devices. 
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7. Conclusions 

In this study, a polygon method was used to calculate the shaded area drawn by the complex 
shape and movement of a kinetic façade. To simulate the movement of the shading device, the 
movement of the movable shading device was divided into ߚ movement steps with the same 
operational intervals. The kinetic façade was classified into six types according to the shape (i.e., 
horizontal, vertical, and plane) and movement direction (i.e., length, rotation, and aperture) of the 
shading elements. The shaded fractions were calculated for the six classified types. The graphs of 
daily average shaded fractions showed differences according to the shapes, but it is found that the ܨ௦ values follow similar trends according to the movement direction. In Section 5, estimation 
equations for obtaining ܨ௦ values that uses the movement step (ߚ) as a variable were derived to 
simplify the complex calculation process. The derived equations can estimate the shaded fraction 
relatively accurately under limited conditions (i.e., in terms of location and orientation). 

The shaded fraction varies according to the type of shading device used, the orientation of the 
facade, and time. Therefore, to accurately evaluate the energy and environmental performance of a 
kinetic façade, the shaded fraction must be calculated using the detailed model information of the 
shading device and a complex calculation algorithm. However, during the early design stages, a 
simpler method of identifying the characteristics of the shading device is required, as described in 
Sections 5 and 6.  

In this study, a method of calculating the shaded fraction was derived. In whole-building 
simulation, the shaded fraction calculation tool allows architects (or engineers) to calculate the 
shaded area generated on the window at a specific time and the movement step for the shade 
elements of the kinetic facade. The derived calculation process can be performed prior to a 
whole-building simulation of a building utilizing a kinetic facade by applying hourly shaded areas 
to the simulation, including processes for calculating the direct solar heat gain or other 
environmental performance indicators such as glare and indoor illuminance. In addition, the shade 
control strategy can include improving thermal (i.e., solar heat gain) and lighting environment 
performance (i.e., daylight, glare, indoor illuminance, etc.) [32,33]. The frequency of activation may 
be considered as well. To evaluate these performances and determine the shade control strategy, an 
accurate calculation of the shaded area must first be achieved. 

Furthermore, equations for estimating the shaded fraction were derived. Possible future 
research may involve developing estimation equations based the results of this study for various 
regions, orientations, and shading device types, to serve as a useful design guide that enables 
designers to quickly review the performance of an external movable shading device. 
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