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Abstract: In this paper, built-up land expansion patterns and the associated factors were characterized
in urban and non-urban areas across the Wen-Tai region of eastern China. Fractal dimension can
be used as a reliable indicator of the complexity of built-up land form, and the increasing trend
of fractal dimension indicated a more complex, dispersed pattern of built-up land in urban areas.
Spatial regression models were quantitatively implemented to identify the indicators influencing the
variation of fractal dimensions. Our findings suggested that the fractal dimension of built-up land
forms was positively correlated to the patch density and elevation when built-up land expansion was
more concentrated. Both landscape shape index and Gross Domestic Product (GDP) were positively
correlated with fractal dimension in urban areas, and total edge, edge density, and connective index
had impacts on fractal dimension in non-urban areas. Slope and agricultural population also showed
an influence on fractal dimension. This study provided a new way for urban studies in interpreting the
complex interactions between fractal dimension and related factors. The combined approach of fractal
dimension and spatial analysis can provide the government planners with valuable information that
can be efficiently used to realize the influences of land use policies in urban and non-urban areas.

Keywords: fractal measures; built-up land expansion; associated factors; urban and non-urban areas

1. Introduction

As a social phenomenon and a physical transformation of landscapes [1], urbanization has
an enormous impact on society and the environment on a local, regional and global scale and
can cause the degradation of ecosystem services, alteration of vegetation production, climate, and
air quality [2,3]. Anthropogenic impact on the environment is powerful, irreversible, and highly
visible [4–6], and it plays in interactions between city areas and global environmental change [7,8].
The rapid urbanization process in Zhejiang (one of the richest province in China), characterized by
large-scale rural–urban migration and rapid expansion of built-up land areas, has led to enormous
arable land loss and serious environmental problems at an unprecedented rate [9–11]. Former studies
in this area reported that cropland was the major land use types converted for urban expansion in recent
decades [12,13]. Nowadays, the urban-rural development in the eastern coastal area is entering a new
stage of transformation with metaphase industrialization and rapid urbanization [14]. Construction of
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transportation infrastructures and settlements were the primary driving forces of land-use conversion
in the eastern coastal area [14]. Meanwhile, land use underwent a fundamental transition from natural
landscape to human-made landscape. Consequently, identification and assessment of built-up land
expansion and associated factors in Zhejiang province has become a hot topic, and has recently drawn
the attention of many scholars [10,11].

Urban areas have replaced considerable amounts of undeveloped land. This phenomenon
is highly correlated with socio-economic development, and has also caused various ecological,
environmental and social problems [15]. In recent decades, many Chinese cities became more complex,
scattered, and disordered, with rapid urbanization, which has led to waste and unreasonable usage of
land resources [11]. Identifying built-up land expansion patterns and its related factors is fundamental
to realizing the urban-rural relationship and the influences of rapid urban sprawl on society, economics,
environments, ecology, and so on. In this process of urban-rural integrated development, the waste,
loss and degradation of arable land resulted in conflicts between conserving limited arable land and
increasing demand for the construction of human settlement. However, many urban geographic studies
focused on the urbanization and its geographical elements [16,17], while seldom considering the urban
sprawl from a morphological aspect. Regional urban development planning in this coastal area is
largely based on experience and lacks theoretical support. Using a systems analysis-based approach
to describe spatial patterns of city development and morphological measurement is important for
regional land use planning and policy making [11,18], and can provide significant evidence for the
relationship between built-up land expansion patterns and their associated factors.

Fractal geometry has proven to be a useful method for studying the spatial form of built-up land,
because the distribution of built-up land has a non-linear form, and fractal characteristics [16,17,19,20].
The change of scale is represented by the change of fractal dimension, and thus it is a powerful tool to
study scale issues [21]. Fractality implies that a city or a county possesses a similar structure at different
scales, and has the function to self-organize. Its existence is important since it indicates the presence
of some hidden process operating at different spatial scales [16,22]. However, the fractal approach
couldn’t give spatial context to the built-up land clustering, and does not indicate the variations [23].

In order to characterize the components of built-up land expansion from a morphological
perspective, the fractal dimension was employed to classify and quantify clustering in built-up land
distribution, and spatial regression was used to identify various factors influencing the distribution
patterns of built-up land. Our intention in this paper is to answer these three questions: What are
the spatial and temporal patterns of built-up land expansion in the Wen-Tai region? Which areas
of this coastal region are suffering due to unreasonable development patterns? How do different
associated factors influence built-up land expansion in urban areas and non-urban areas? In order
to answer these questions, this study was designed to quantify the transformations in built-up land
from 1994 to 2003 in Wen-Tai region (Zhejiang Province, China). The analysis was based on data of
residential distribution in Wen-Tai region. Specifically, the research focused on (1) whether different
spatial patterns of built-up land can have virtually the same fractal dimensions and urbanization
pattern; (2) identifying different factors of fractal dimension of built-up land expansion like landscape
metrics, social-economic and topography using regression models; and (3) whether fractal dimension
is a reliable measure of spatial distribution of built-up land.

2. Study Area and Data Description

2.1. Study Area

The Wen-Tai region during 1994 and 2003 was chosen because it represents some notable social
and environmental problems associated with development [24,25]. The Wen-Tai region is located
in eastern coastal China (Figure 1) with a spatial extent of 27◦03′–29◦08′ N and 119◦37′–121◦26′ E.
With a subtropical monsoon climate, it experiences moderate temperatures, abundant precipitation,
low humid atmosphere, visible monsoons, distinct seasons and variable climates. As one of the most
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developed regions in Zhejiang province, Wen-Tai witnessed rapid social-economic development in
recent decades. This development has resulted in degradation of the surrounding natural habitats
and environmental conditions. The distribution of residents in this region is the result of interfaces
between human activity and environmental change during these years. The Wen-Tai region gives us a
typical coastal case study to identify the fractal dimension of built-up land and the associated factors.

1 

 

 

Figure 1. Location of the Wen-Tai region, China.

2.2. Data Preparation and Accuracy Assessment

In this study, built-up land refers to settlements, public facilities, factories and tourist attractions
sites. The built-up land use data were generated from Landsat 5 Thematic Mapper (TM) images
(Path: 118, Row: 40/41) acquired on 12 May 1994 and 14 July 2003. These images, with a spatial
resolution of 30 m, were downloaded from the website of the USGS (United States Geological Survey)
Landsat Missions (http://landsat.usgs.gov/index.php). After geometric correction and atmospheric
correction, the image in 2003 was rectified to the image of 1994. The maximum likelihood classifier was
applied in image classification which only extracted built-up land from these two TM images. Because
bare soils and built-up land have similar spectral characteristics, artificial visual interpretation was
used to rectify the classification results from TM images. The working window was set at a 1:20,000
scale and then built-up boundaries were corrected [26]. Fifty sampling points for built-up land use
were randomly selected to assess the classification accuracy [27]. Google Earth was used to check
the accuracy of image interpretation in 1994 and 2003, and an overall Kappa of 0.82 was determined.
The classification results are displayed in Figure 2.

http://landsat.usgs.gov/index.php
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Figure 2. Built-up land map of the Wen-Tai region in 1994 (a) and 2003 (b). 
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Figure 2. Built-up land map of the Wen-Tai region in 1994 (a) and 2003 (b).

3. Methodology

3.1. Fractals

A fractal is defined by Mandelbrot & Wheeler [28] as a geometric shape that can be split into
parts, and each of the parts is a reduced-size copy of the whole. Fractal analysis provides tools for
measuring the geometric complexity of imaged objects. Due to the irregularity and complexity of
objects’ spatial distribution and the variation of environmental factors at the continuous scales, objects’
spatial patterns have spatial variation at different scales. Dimension is used to measure the size
of a dataset which is usually made up of images. Objects with one-dimension are line segments,
two-dimensional are squares, and three-dimensional are cubes [29].

3.1.1. Fractal Models

There are three kinds of fractal models. Figure 3 shows the Sierpinski carpet (a plane fractal) with
each square replaced by N = 5 squares, and the base length reduced by the factor r = 1/3. Figure 3a
calls the initiator with length L. It is then broken down into Nb = N1 = 5 smaller squares with base
length lb = 1/3 L (Figure 3b), and they are organized within the area of the initiator which is called a
generator. This procedure is repeated in a second step for each of the five squares and it is broken down
to Nc = N2 = 25 squares of size lc = (1/3)2 L (Figure 3c). A spatial hierarchy then emerges, consisting
of smaller and smaller clusters in the process of the iteration. We can see that for the generator in
the example, the elements are contiguous, so in all the iterations, the fractal consists of one cluster,
and this kind of fractal is called a Sierpinski carpet [28,30].
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Fournier dust is another kind of fractal. This fractal form has a hierarchically organized network
of non-occupied spaces [30]. Figure 4 shows the difference between Sierpinski carpets and Fournier
dust fractals [31]. A Sierpinski carpet (in the upper) looks different from a Fournier dust (in the below)
when the first iteration is processed. All the lanes separating the black squares in Sierpinski carpet
have the same width, but in Fournier dust, the lanes follow a well-defined hierarchy. We can see they
have different spatial hierarchies and different fractal dimensions. The Fournier dust has stronger
hierarchy with lower fractal dimension value than the Sierpinkski carpet (D = 1.50 for Fournier dust
and D = 1.89 for Sierpinski carpet).
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A teragon is another type of constructed fractal that is unlike the Sierpinski carpet and Fournier
dust. It is a curve with self-similar fractal that can be produced by replacing each line segment in
an initial figure with multiple connected segments [28]. For the urban study, the teragon was a form
where the inner black surface remained constant and the borders became more and more complex [30].

3.1.2. Fractal Measurement

Fractals have obvious particularities, and usual geometric measures are not able to describe these
structures [26,27]. Fractal measurements can be defined as:

N(r) = arD (1)

This leads to:

D =
ln N(r)

a
r

(2)

where r is a given side length in a square surrounding each built-up land patch. The number of patches
is counted within this square. N(r) denotes the mean number of built-up land patches lying within
such a square. The exponent D is the fractal dimension that the form-factor measures the general
features of the structure [28].

Two methods, the dilation and the correlation analyses [28], were employed to calculate the fractal
dimension values of urban and non-urban areas in our research. In the dilation method, the squares
surrounded each built-up land patch were gradually expanded so that they became close to each other,
and finally the black clusters appeared when they overlapped. N(r) denotes the number of squares
with size r that are able to cover the whole study surface. Preliminary experiments have presented
that dilation method was less dependent linear structures where the mass of the object was small [32].
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This method was employed to extract urban boundaries in this study. The surfaces of built-up are
spatially distributed according to the same type of rule that holds for constructed fractals, in which
case we could identify urban patterns as random fractals [28,30]. The software Fractalyse (downloaded
from http://fractalyse.org) is applied for studying the fractal dimension of built-up land.

3.1.3. Surfaces and Borders

The fractal dimension of built-up areas (surfaces), which is denoted DSurf, can be used as an
indicator of the complexity of urban form [33,34]. Generally, when a city has higher value of fractal
dimension, it would become more complex or disperse. This is the reason that the human settlements
patterns exhibit the clear nature of irregularity, scale-independence and self-similarity. The fractal
values of borders, which is denoted Dbord, show that it is possible to quantify how smooth they are [30].
Urban boundaries were extracted by means of the dilation technique (see details in Frankhauser
and Tannier, 2005 [30]; Keersmaecker et al., 2003 [32]). Figure 5 shows the process of boundary
extraction. We took the urban area of Wenzhou as an example, Figure 5a is the source image, Figure 5b
is the dilation image for five iterations, Figure 5c shows all the outlines of the whole county, and
Figure 5d shows the boundary of the urban area. The ratio of DBord and DSurf was used in this study.
This ratio represents the compactness of a structure [31]. Geometrical objects have smooth borders
with Dsurf = 2 and Dbord = 1, so the ratio is Dbord/Dsurf = 1/2 = 0.5, which is the minimum value of
the ratio. For Sierpinski carpets the ratio had a maximum value of 1 because Dsurf equalled the Dbord.
For the teragon, the ratio ranged between 0.5 and 1.0, because Dsurf = 2 and Dbord ranged between 1
and 2. However, this was reflective of the real-world patterns of built-up areas.
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Figure 5. The procedure of extracting the outlines of a county by dilation of the built-up land. (a) is the
source image; (b) is the dilation image; (c) shows all the outlines; and (d) shows the outline of the main
cluster (urban area).

3.2. The Selected Indices

Referring to previous studies, a set of 40 indices focusing on aspects of landscape, socio-economic
interactions, and nature were initially generated to identify the associated factors. We selected
indices by considering the integrity, simplicity, dynamic response, accuracy and availability of the
data [35]. Landscape indices are widely used in the study of spatial landscape patterns and landscape

http://fractalyse.org
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ecology [36]. Social-economic indices such as GDP [37,38] and population [39] have been proven
to be effective indicators of built-up land expansion. Natural factors such as elevation [40,41] and
slope [41–43] are other potential factors which have been reported in the previous studies. Subsequently,
a three-round Delphi Process and principal component analysis were used to eliminate the indices with
high correlation by rotating the multidimensional indices into a new group of mutually orthogonal
variables [44]. Finally, a total of 13 indices were generated (Table 1).

Table 1. The indices selected in this study.

Item Category Indices Abbreviation

Landscape metrics

Area Total Area TA

Density and size Patch Density PD
Largest Patch Index LPI

Edge Total Edge TE
Edge Density ED

Shape Landscape Shape Index LSI
Isolation Connective Index CI
Diversity Shannon’s Diversity Index SDI

Social-economics Social
Total Population TP

Non-agricultural Population NAP
Economic Gross Domestic Product GDP

Natural Topographic Elevation Ele
Slope Slp

3.3. Spatial Analysis

Moran’s I index was employed to characterize the spatial autocorrelation of the built-up land
expansion patterns. Moran’s I has values ranging from −1 to 1, and a zero value indicates a
random spatial pattern, which has no spatial autocorrelation. Positive values indicate spatially
clustered patterns in adjacent patches, and negative values suggest that samples have different
values from the neighbors [45]. Moreover, Local indicators of spatial association (LISA) was further
calculated by GeoDa 0.9.5-i (Beta) software to identify the location of clusters and their types of spatial
autocorrelation [46,47]. The significant spatial clusters of similar values can be identified by LISA. There
exist four categories of LISA: high-high (low-low) means high (low) sampling values are surrounded
by high (low) values; high-low indicates high values surrounded by low values; and low-high means a
low value has neighbors with high values [46].

Relationships between fractals and the associated factors were quantified by spatial regression.
Spatial regression extends the traditional ordinary least squares regression (OLS) by incorporating
spatial dependency in terms of error or lag. The dependent variables were the fractal dimension values
of each county in the Wen-Tai region for 1994 and 2003. Independent variables included landscape
structure, social-economic interactions, and natural factors. Specifically, independent variables
obtained from stepwise regression were introduced in order to resolve potential multicollinearity
between the variables [42]. Spatial lag regression and spatial error regression were respectively
described by Equations (3) and (4),

y = ρWy + Xβ + ε (3)

y = Xβ + ε, with ε = ρWε + µ (4)

where y denotes the dependent variable; X is the independent variable; µ denotes stochastic parameters;
β are coefficients for X, and ε are the error terms; ρ is the spatial autoregressive coefficient; Wε and Wy

are spatial matrices of the error term and dependent variable, respectively. All spatial regression was
performed using GeoDa 0.9.5-i (Beta) software [46].
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4. Results

4.1. Spatiotemporal Patterns of Fractals

Maps of LISA are shown in Figure 6 to describe the local autocorrelation of the built-up land
expansion in the Wen-Tai region. High-high clusters were mostly concentrated around the urban
center, indicating that urbanized areas were focused in the peri-urban areas, not the inner urban
areas. Figure 6 shows Taizhou had the largest high-high cluster, suggesting that Taizhou has the
most urbanizing intensity. Furthermore, Taizhou had the second largest low-low cluster which was
mainly distributed in the inner area, indicating that Taizhou has insignificant built-up land expansion
in its inner areas. Xianju had no high-high cluster, indicating that this county has very weak urban
sprawling both at outer and inner areas. On the other hand, Wencheng has low-low cluster, indicating
that this county has urban sprawling at both outer and inner spaces.
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Table 2 shows the fractal dimension value of surfaces and borders for built-up land. For non-urban
areas, most counties showed a trend of increasing values of fractal dimensions, while some counties
showed decreasing trend values of fractal dimension. This was especially true for Taizhou, which
displayed a significant decrease of fractal dimension value (1.10–0.67). The reason for this was that in
2003, the urban area became larger and the non-urban area became smaller with dispersion, so that the
distribution of built-up land became loose and the fractal dimension values decreased.
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Table 2. Fractal dimension value of surfaces and borders, and their ratios for built-up land in the
Wen-Tai region.

Study Area
Urban Non-Urban

DSurf DBord Ratio DSurf

1994 2003 1994 2003 1994 2003 1994 2003

Wenzhou 1.45 1.57 1.24 1.29 0.86 0.82 1.07 1.10
Yongjia 1.29 1.33 1.12 1.10 0.87 0.83 1.14 1.16

Pingyang 1.31 1.36 1.09 1.11 0.83 0.82 1.04 1.16
Cangnan 1.27 1.37 1.05 1.09 0.83 0.80 1.14 1.12

Wencheng 1.24 1.27 1.36 1.25 1.10 0.98 1.06 1.23
Taishun 1.22 1.26 1.1 1.09 0.90 0.87 1.04 1.18
Ruian 1.41 1.45 1.08 1.13 0.77 0.78 0.97 1.09
Leqing 1.37 1.42 1.1 1.14 0.80 0.80 0.91 0.92
Taizhou 1.44 1.47 1.25 1.12 0.87 0.76 1.10 0.67
Yuhuan 1.21 1.41 1.14 1.11 0.94 0.79 1.26 1.26
Sanmen 1.20 1.37 1.14 1.06 0.95 0.77 1.31 1.34
Tiantai 1.33 1.38 1.04 1.04 0.78 0.75 1.14 1.12
Xianju 1.27 1.33 1.06 1.11 0.83 0.83 1.08 1.10

Wenling 1.48 1.51 1.05 1.06 0.71 0.70 1.17 0.87
Linhai 1.40 1.44 1.19 1.08 0.85 0.75 1.18 1.24

Then, borders of the fractal dimension were calculated. The border of those geometrical objects,
called a Sierpinski carpet, became more complex, since an increasing number of smaller tentacles
appeared at each step. Cangnan, Tiantai and Wenling had DBord values of 1.0–1.1, which means
they are very smooth. Temporally, Wencheng (1.36–1.25), Taizhou (1.25–1.12), Sanmen (1.14–1.06)
and Linhai (1.19–1.08) changed greatly for fractal dimension values. This meant that during the ten
years, the trend of urban development became smooth, representing the control of the government.
Some counties (Wenzhou, Wencheng and Taizhou) showed highly dendritic borders (DBord > 1.2),
suggesting that no restrictions were imposed to smoothen the urban outline. For some counties
such as Cangnan, Tiantai and Wenling, the fractal dimension value of the borders was lower than
1.1, indicating that these urban areas were considerably smoother than those of other areas. On the
other hand, the planning policy in these counties generally tends to limit expansion on the scale of
the urban area. The results of fractal dimension values for surfaces and borders showed that for
the urban fractal dimension, the values of their surfaces were larger than those computed for their
borders. The ratio of borders and surfaces showed that most values for urban were lower than 1
(except Wencheng in 1994).

4.2. Fractal for Urban and Non-Urban Area

We classified the Wen-Tai region into two types (urban and non-urban) with different fractal
dimension values. The urban area was extracted through dilation fractal dimension method,
and Table 2 shows the range of fractal dimension value increase. The lowest value in 1994 existed
in Taishun (1.22), and the highest in Wenling (1.48), while in 2003 the lowest value existed still in
Taishun (1.26), and highest in Wenzhou (1.57). A ratio value with a range of 0.5–1.0 is considered
urban. The above analysis showed that when the ratio = 0.5 the form of urban was similar to a
teragon. The minimum ratio value in 1994 and 2003 both existed in Wenling, which shows the form
of this area is more similar to a teragon than other counties. Non-urban areas are the sites around
urban areas. Specifically, the non-urban area has much less fractal dimension values than urban areas.
The minimum value of the fractal dimension existed in Leqing in 1994 and Taizhou in 2003, both of
which were less than 1. The fractal dimension values for Yuhuan and Sanmen in 1994 were larger
in non-urban areas than they were in urban areas. This suggested that these two areas had more
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dispersed distribution of built-up land in non-urban areas in 1994, while urban developments of these
two areas showed more dispersed and complex distribution of built-up land in urban areas in 2003.

4.3. Impact of Built-Up Land Expansion on Fractal Dimension

Factors of fractal dimension in different years at both urban and non-urban areas are presented in
Table 3. The correlation between fractal dimension and the factors described with spatial regression
analysis suggested a close association between them in both 1994 and 2003 in Wen-Tai region. In
urban areas, the changes of fractal dimension were significant associated with LSI in both two years.
GDP is another significant indicator which presented significant impacts on fractal dimension in both
years indicating that the development of urbanization is largely dependent on the development of
economics. Moreover, PD and Ele_mean exerted significant impacts on the fractal dimension of urban
area in 2003 as both the factors showed a negative correlation with the fractal dimension. The results
implied that built-up land expansion mostly occurred in plain areas, and building on high-elevation
areas was not suitable. For PD, it meant that the value of fractal dimension increased, while the PD
decreased with built-up land expansion. Since NP increased, this means that the increasing rate of
patch area surpassed the rate of NP, which accordingly decreased PD. For non-urban areas, the number
of influential factors was less than in urban area. Changes in total edge, edge density, and slope acted
as the main contributor to dynamics of fractal dimension in non-urban areas for 1994, while changes
of TE, LSI, CI and agricultural populations accounted for the dynamics of fractal dimension in 2003.
This means that TE is a key factor influencing the fractal of non-urban areas. In addition, in 1994, most
people chose settlements in plain areas, showing that slope is a very important factor impacting the
fractal dimension. In 2003 most built-ups had been built, with connectedness being a very important
factor influencing the fractal dimension.

Table 3. Spatial regression models of fractal dimension in urban and non-urban areas a.

Year Y X Spatial Regression Models R2

1994

Urban

LSI c Y = 1.093 × X + 0.302 ×WY − 0.196 0.64 **
LPI c Y = −0.366 × X + 0.841 ×WY + 0.154 0.51 **
ED c Y = 0.104 × X + 0.909 ×WY − 0.006 0.63 **

GDP c Y = 0.949 × X + 0.424 ×WY − 0.042 0.72 **

Non-urban
TE c Y = 0.635 × X + 0.549 ×WY + 0.009 0.65 **
ED c Y = −0.271 × X + 0.855 ×WY + 0.159 0.56 **

Slp_std b Y = −0.575 × X + 0.875 (lambda = 0.277) 0.53 **

2003

Urban

LSI c Y = 0.891 × X + 0.284 ×WY − 0.130 0.66 **
PD c Y = −0.480 × X + 0.835 ×WY + 0.209 0.63 **

GDP b Y = 0.781 × X + 0.218 (lambda = 0.695) 0.74 **
Ele_mean c Y = −0.676 × X + 0.645 ×WY + 0.384 0.67 **

Non-urban

TE c Y = 0.650 × X + 0.590 ×WY + 0.046 0.61 **
LSI c Y = 0.724 × X + 0.570 ×WY − 0.096 0.75 **
CI c Y = −0.811 × X + 0.229 ×WY + 0.634 0.72 **
AP b Y = −0.451 × X + 0.858 (lambda = 0.501) 0.51 **

** p < 0.01; a Abbreviations: landscape shape index (LSI), largest patch index (LPI), edge density (ED), gross domestic
product (GDP), patch density (PD), total edge (TE), connective index (CI), mean value of elevation (Ele_mean),
standard deviation of slope (Slp_std), and agricultural population (AP); b Spatial error regression; c Spatial lag
regression. WY is the weighted mean fractal values of adjacent blocks based on the spatial weight matrix of Y.

Most R square values in these two years reached 0.6, denoting the powerful predictive ability of
spatial regression. A higher R2 (>0.7) in GDP in urban areas implied that the fractal dimension in urban
area was better explained by this factor in both years. In addition, the spatial lag model suited most
factors. Specifically, it was suitable for predicting the dynamics of all the factors in urban area, but only
the landscape metrics in non-urban areas. These results denoted that spatial dynamics of landscape
metrics and other associated parameters in urban area depended on not only local independent factors,
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but also the dynamics of neighboring counties. Differently, spatial error regression was powerful in
characterizing the dynamics of slope and agricultural populations in non-urban areas. This implied
that associations of slope and agricultural population dynamics omitted from the model are correlated
over space in non-urban areas, and unobserved factors should follow spatial patterns.

5. Discussion

5.1. Characteristics of Fractal Dimension in Urban and Non-Urban Areas

Fractal dimension values of borderlines ranged from 1 to 1.5. Values of 1 denoted smooth
borderlines and not much spare land in the areas, which may be explained by the strong control
of urbanization. Values equal to 1.5 denoted a dendritic pattern similar to a teragon, which can be
explained by the rather weak influence from rapid urbanization The surface dimensions observed here
were lower than those observed in other areas, especially the European countries [30], indicating that
built-up land in Wen-Tai region was less uniformly distributed. This may be explained by the rather
weak control of urbanization or the low sustainability of the development. Some counties had
significant sprawling with a slight decrease in fractal dimension values (such as Taishun, Wencheng
and Xianju) indicating that economic development of these counties are under a general upward
trend, and that governments have strong control in these counties. Some counties had an increasing
trend for both areas and fractal dimension values. It is important for governments to control urban
sprawl, in order to make land use more rational and effective so as to ensure better and faster
growth. Traditionally, urban development is accompanied by increasing fractal dimension value and
decreasing cluster scale. This indicates that these counties sprawl to the outer spaces with normal and
common developing patterns. Similarly, different kinds of built-up land form were identified by fractal
dimension values and urban density [48]. Fractal analysis provided insight into the spatial variation of
urban sprawl patterns, suggesting that built-up land continuously expanded at most edges over the
10 years.

5.2. Factors Associated with Built-Up Land Expansion Patterns

Over the years, landscape metrics have been used in research on urban morphology [1,49,50].
The relations between the fractal dimension of urban form and landscape patterns were discussed
based on fractal theory and urban land-use maps [51,52].Terzi and Kaya [53] found that the fractal
dimension of urban areas presented a positive correlation with the urban sprawl index. In this research,
it indicated that some landscape metrics showed positive correlations with the fractal dimension
(LSI, TE), and some showed negative correlations (ED, CI). It indicated that the changes of landscape
structure can significantly influence the value of the fractal dimension, which provides new insights
into urban building planning through a landscape approach.

Cai et al. [33] discussed the relationships between fractal dimension and landscape metrics such
as compactness index and social-economic components such as GDP and population. Shen [34]
discussed the relationships between the fractal dimension and other factors, showing that the fractal
dimension has a positive relationship with urbanized areas and is not always positively correlated to
urban populations. Similarly, population was not a main indicator for changes of fractal dimension in
our study.

Also, socio-economic changes were discussed in the fractal dimension studies [54,55] while no
quantitative relationships had been established. Due to convenient transportation, flat terrain and
better ecological environment people choose to live near the sea, and most urban areas are located
near coastal zones. This leads to economic increase, and urban development depends largely on the
sea environment for these coastal counties. The pleasant climate and beautiful natural environment
attract people to build their houses near the coastal zones. We will focus on the reason behind this
phenomenon using fractals measures in our future research.
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5.3. Management Implications

Due to economic reform and the open-up policy, the Wen-Tai region has enjoyed a series of
preferential policies that emphasize the development of environment, economy, and society with
increased focus on little towns and villages. Built-up lands are specifically located for living close to
and engaging in economic, political, and cultural activities, coastal zones are vulnerable to human
activities [25]. The rapid urban growth influences new characteristics and new trends for the local
urbanization. For coastal areas, the attention is increasingly paid to sustainable district development,
thus urbanization development should be sustainable. Since there is an absence of uniform planning
for built-up land, the spatial distribution of built-up land is characterized by weak control of urban
development. This unplanned urban sprawl can result in severe wastage of land resources, irrational
built-up land structures, and restriction on the processes of rural developments. This was especially
true for the Wen-Tai region, which is characterized by a majority of hill lands and some small plains.
Built-up lands are historically located in the narrow plains near the sea in eastern areas. Yet, low
levels of human activity have impacts on the hill land areas. Since the 1990s, the Chinese government
has taken many measures to balance development between urban and non-urban areas. The special
national conditions in China tells us that the economic increase requires us to pay more attention to
science-based built-up land use planning. Managers are willing to develop efficient tools to facilitate
the identification of urban sustainability, and therefore quantitative assessment urban morphology is
urgently needed [27].

In this study, the general characteristics of built-up land expansion across the Wen-Tai region were
identified through fractal dimension analysis. Fractal analysis can provide practical and significant
results, thus it can meet the needs of city managers. For example, farmlands are occupied by built-up
land in urban areas due to the human activities, and this process can be quantitatively calculated
by fractal method. Although economies have developed, the trends of land use multiplicity and
fragmentation have also increased along with dominance and concentration. This may restrict
the sustainability of agricultural development. The reform and opening-up policy has led coastal
China, especially the Wen-Tai region, toward rapid development of the market economy and a good
investment environment. The variability of the fractal dimension can indicate the spatial pattern of
potential pressure on vulnerability for this coastal region. Rapid and uncontrolled development has
occurred in non-urban areas, which resulted in increased urban sprawl. This is the reason why increases
in economics, local infrastructure development, and industrialization have made people move from
non-urban areas to the urban areas, accelerating urbanization. Under the force of market economic
mechanisms, most people leave their rural homes for urban areas, because of their concentration in the
urban areas, and the decreasing trend of agricultural activity becoming more and more apparent.

6. Conclusions

This study employed the fractal theory, spatial autocorrelation, and spatial regression
methodologies to identify the built-up land expansion and its correlations in eastern coastal China.
The main findings were summarized as follows:

(1) Fractal dimension values increased significantly during the ten years, which means that urban
growth brought a more complex, scattered and disordered distribution of built-up land patches
in Wen-Tai region. If this trend continues, complex and fragmented landscapes will increase
rapidly with urbanization, which might lead to the inefficient usage of built-up land resources.
Accordingly, the authors suggest that local government implement reasonable built-up land plans
by balancing economic growth with the construction of settlements and industrial land in order
to guide the city toward sustainable development.

(2) Landscape shape index and GDP played a key role in determining the fractal dimension of
urban area. There is a trend in China that governments pay much more attention on improving
economics, but ignore the optimization of urban spatial patterns and land utilization structure.
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This study showed that the government should give more consideration to the reasonable
planning of urban layouts during economic development rather than focusing only on the growth
of GDP. In addition, the government should, in future urban planning, consider the impact of
landscape shape index, which would play an important role in urban construction.

(3) The application of spatial regression in analyzing the correlation between fractal dimension and
its associated factors can also be used for other urban growth research on other spatial scales.
Our study implies that long-term management should also be adopted by governments to control
the development of urban growth.

(4) This study also incorporates limitations. For one thing, the dataset covered a very limited
temporal dimension. For another, the complex interactive relationships among land use and
management were not considered. Further studies will be carried out regarding these points.
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