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Abstract: Under the concept of metafrontier, technology gap ratio is alternatively interpreted as
potential energy efficiency. Combined with Malmquist index framework and Shephard energy
distance function, we then develop a metafrontier Malmquist energy productivity index to
analyze the total-factor energy productivity growth with four specific components: groupfrontier
efficiency change index, groupfrontier technological change index, efficiency catch-up index and
technological catch-up index. Methodologically, a newly developed two-step stochastic metafrontier
analysis is applied to address the potentially biased estimation problems in the previous mixed
approach. This analytical framework is used to evaluate the energy productivity growth of
China’s 35 sub-industries in industrial sector from 2001 to 2015. The main empirical results
show that: (1) In terms of cumulative metafrontier Malmquist energy productivity growth,
China’s overall industry has witnessed a 25% growth and a U-shaped growing trend bottoming
out in 2006; meanwhile, 19 sub-industries have suffered an energy productivity loss and the
remaining 16 sub-industries have experienced an energy productivity gain. (2) From the technology
heterogeneity perspective, light industry outperforms heavy industry in metafrontier Malmquist
energy productivity growth, while the intra-group and inter-group energy productivity develops
roughly in balance for overall industry. (3) The change of metafrontier Malmquist energy productivity
is mainly driven by technological change components rather than efficiency change components.
On average, groupfrontier technological change makes the biggest contribution to energy productivity
growth, followed by technological catch-up, then efficiency catch-up, and groupfrontier efficiency
change is last. (4) The metafrontier Malmquist energy productivity growth has shown a significant
convergence in heavy industry and light industry, as well as overall industry.
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1. Introduction

According to the Statistical Review of World Energy (BP, 2017) [1], China accounts for 23%
of the total primary energy consumption in 2016, recording the world’s largest increment for the
sixteenth consecutive year and remaining the world’s largest energy consumer since 2010. Meanwhile,
China’s industrial sector is extremely energy-intensive and contributes approximately 70% of the total
energy use from 1990s on [2]. However, energy, especially combusted fuel, is generally regarded
as the main contributor to the environmental and climate change issues. Therefore, to improve
environmental quality and fulfill international responsibility for climate change, China has set several
official targets for energy conversation and emission reduction (ECER), e.g., the obligatory reduction
goals of energy intensity and carbon intensity in the 11th and 12th Five-Year Plans (FYPs). Recently,
Chinese government formulates the 13th FYP (2016–2020) and sets the binding goals of energy intensity
and carbon intensity to be 15% and 18% down with respect to 2015 levels [3]. Accordingly, industrial
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sector, due to its largest contribution to energy consumption, is inevitably controlled and regulated
to attain such binding targets. However, this is a great challenge for industrial sector, since China is
undergoing the rapid industrialization and urbanization. Thus, the evaluation of industrial energy
efficiency, especially the exploration of its dynamics, is of vital importance in order to forecast the
effects of energy policies and then possibly make further adjustments.

In this context, total-factor energy efficiency (TFEE) has gained significant popularity since it
was first introduced by Hu and Wang [4], defining TFEE as a ratio of the target energy input to
actual energy input in the data envelopment analysis (DEA) framework. Afterwards, many studies
followed or extended the concept of TFEE (e.g., [5–10]). However, TFEE is conceptually a static
measure of energy efficiency at a specific period [11,12], which cannot deal with the dynamic energy
efficiency changes. To address this issue, some studies have investigated the dynamic energy efficiency
performance using different productivity indices. For example, Chang and Hu [13] introduced a
total-factor energy productivity index, integrating the concept of TFEE with Luenberger productivity
index, to measure the changes of total-factor energy productivity. It was then decomposed into
two components: total-factor energy efficiency change and total-factor energy technological change.
Wu et al. [11] further combined the Shephard energy distance function and Malmquist productivity
index to develop a dynamic energy efficiency performance index, which is also decomposed into
two components like [13]. Wang et al. [14] introduced a total-factor Malmquist–Luenberger energy
productivity index and decomposed it into two components, the same as in [11,13]. For similar
studies, see Zhou et al. [15] and Li and Lin [16]. Wang et al. [17] went one step further than the
aforementioned studies, which integrated Sato–Vartia index into Malmquist energy productivity index
to study economy-wide energy productivity performance by considering sectoral heterogeneity. This
extended productivity index can be decomposed into three components, namely, energy consumption
structure effect, efficiency change effect and technological change effect. Furthermore, Wang and
Wei [18] decomposed an aggregated specific energy productivity indicator, combining Luenberger
productivity index and DEA models, into four components: pure efficiency change, scale efficiency
change, pure technology change and scale of technology change. Recently, Shen and Lin [19] utilized
the input-oriented Malmquist productivity index to evaluate the dynamic change of total-factor energy
efficiency, and decomposed it into four components according to Balk [20] and Pantzios et al. [21], that
is, technological change, technical efficiency change, scale efficiency change and input-mix effect.

However, the above studies did not take group heterogeneity into account, which might cause
biased results since heterogeneity across groups might lead to different production technologies.
When heterogeneity exists in production technologies, the metafrontier approach is preferred to
assess energy efficiency performance instead. The concept of metafrontier was introduced by
Hayami [22] and Hayami and Ruttan [23] and developed by Battese and Rao [24], Battese et al. [25],
and O’Donnell et al. [26] to solve the incomparability of production performances for different
groups. In the field of dynamic energy efficiency performance, Oh [27] provided a metafrontier
Malmquist–Luenberger productivity growth index based on the framework of global Malmquist
productivity index proposed by Pastor and Lovell [28], to measure the environmentally sensitive
productivity and decomposed it into three components, namely, efficiency change, best practice gap
change and technology gap change for 46 countries between 1993 and 2003. For similar studies with
the same three components, see, e.g., Chung and Heshmati [29] and Munisamy and Arabi [30] with
Malmquist–Luenberger index approach; and Wang et al. [31] and Li and Song [32] with Malmquist
index approach. Fei and Lin [33] provided another three-components decomposition framework of
Malmquist index approach under the concept of metafrontier, namely, technical efficiency change,
technological progress change and technology gap ratio change, to explore the energy productivity
growth in China’s agricultural sector of 30 provinces over the period of 2001–2012. Li and Lin [34]
utilized the metafrontier Malmquist–Luenberger productivity index with the improved directional
distance functions, combining the super-efficiency and sequential DEA models, to measure the energy
efficiency performance with carbon dioxide emissions in Chinese 30 provinces from 1997 to 2011. There
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were two kinds of energy productivity indices according to metafrontier and groupfrontier respectively,
which could be decomposed into two components, namely, efficiency change and technological change.
Furthermore, they used a technology adjustment factor introduce by Chen and Yang [35] to measure
the relative technology level of the groupfrontier to the metafrontier, which was thus disaggregated
into pure technology catch-up and potential technological relative change.

Methodologically, the aforementioned studies all employed the nonparametric DEA models,
and very few studies paid attention to parametric models to evaluate the dynamic energy efficiency
performance. For example, Du and Lin [1] used a newly developed fixed-effects stochastic frontier
approach (SFA) model by Chen et al. [36], accounting for individual heterogeneities and statistical
noises, to estimate the Malmquist energy productivity change of the world’s 123 economies from
1990 to 2010, decomposed by energy efficiency change and energy technological change. When
considering group heterogeneities, Zhang and Ye [37] extended the parametric hyperbolic distance
functions developed by Cuesta et al. [38] and applied SFA to estimate energy and environmental
efficiency of China’s 29 provinces from 1995 to 2010. They further decomposed the Malmquist
total-factor environmental productivity into environmental efficiency change and environmental
technological change. Lin et al. [39] employed a generalized metafrontier Malmquist productivity index
based on the directional output distance function and generalized Malmquist productivity index [40],
and disaggregated this index into three components, namely, efficiency change, technological change
and scale efficiency change, to calculate the environmental productivity by SFA in 70 countries from
1981 to 2007. Zhang and Wang [41] proposed a metafrontier Luenberger productivity index which could
be decomposed into efficiency change, technological change, efficiency change gap and technological
change gap following Chen and Yang [42], and used the deterministic parametric linear programming
technique to estimate parameters and compute the environmentally-sensitive productivity growth for
the Korean fossil fuel power industry at the plant-level from 2003 to 2011.

Based on the existing studies, this paper makes contributions in three aspects to the strand of
literature on the dynamic energy efficiency performance under the parametric metafrontier framework.
First, integrating the metafrontier concept, Malmquist index framework and Shephard energy distance
function introduced by Zhou et al. [43], we develop a metafrontier Malmquist energy productivity
index (MMEPI) and decompose it into four components, namely, groupfrontier efficiency change
index (GECI), groupfrontier technological change index (GTCI), efficiency catch-up index (ECUI) and
technological catch-up index (TCUI), the two latter of which compose the aforementioned technological
gap change. Second, under the concept of metafrontier, energy efficiency and productivity are
previously estimated by a so-called two-step mixed approach introduced by Battese et al. [25] and
O’Donnell et al. [26]. That is, the groupfrontiers in the first step are calculated by DEA or SFA, while
the metafrontier in the second step is computed by mathematical programming techniques. In virtue
of statistical inference, SFA is increasingly used in the first step. However, Huang et al. [44] pointed
out that the statistical properties of the metafrontier estimates in the second step were unknown, since
the technology gaps obtained from the mathematical programming technique might be contaminated
by random shocks. To overcome this limitation, they instead proposed a new two-step stochastic
metafrontier approach to estimate technical efficiency, where SFA is used in both steps. We apply
this approach in the field of energy and environmental studies to calculate both groupfrontiers and
metafrontier simultaneously. Third, to our best knowledge, there are very few studies investigating
the dynamic energy efficiency performance at Chinese industry level using parametric techniques.
Some studies, e.g., Chen and Golley [45], Fan et al. [46], Li and Lin [47], Emrouznejad and Yang [48],
Yang and Yang [49] and Li and Lin [16], applied nonparametric DEA models to analyze total-factor
energy productivity and its determinants of Chinese (Shanghai) industrial sub-industries. Differently,
Shen and Lin [19] used parametric SFA to explore the dynamic change of total-factor energy efficiency
of Chinese 30 industrial sub-industries from 2002 to 2014. Following this strand, the present paper also
utilizes parametric SFA to analyze the total-factor energy productivity of more China’s sub-industries
(35) over a longer period (2001–2015).
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The rest of this paper is organized as follows. Section 2 introduces the methodology, covering
the total-factor energy efficiency under the metafrontier framework, metafrontier Malmquist energy
productivity index and the two-step stochastic metafrontier approach. In Section 3, data and industrial
heterogeneity are discussed first and estimation results and decomposition results are then reported.
Section 4 concludes the paper.

2. Methodology

2.1. Total-Factor Energy Efficiency under the Metafrontier Framework

The metafrontier framework highlights the technological heterogeneity among decision-making
units (DMUs) which can be divided into different groups with homogeneous technology. Thus, there
are two different kinds of technologies: one is the group-specific technology, and the other is the
metafrontier technology. Accordingly, we consider a neoclassical production framework, in which
capital (K), labor (L) and energy (E) are taken as inputs, and gross output (Y) is treated as the output.
Taking technological heterogeneity into account, we suppose that there are J different groups of
industries in China’s industrial sector, the technology of which can be described as follows, referring
to O’Donnell et al. [26] and Chen and Yang [42]:

Pj =
{(

K j, Lj, Ej, Y j
)∣∣∣(K j, Lj, Ej

)
can produce Y j

}
, j = 1, 2, · · ·, J (1)

The production technology of the metafrontier is given by

P∗ = { (K, L, E, Y)|(K, L, E) can produce Y} (2)

where Pj and P∗ denote the specific technologies of groupfrontier and metafrontier, respectively,
and they satisfy the properties following (O’Donnell et al.) [26]: (i) if (K, L, E, Y) ∈ Pj for any
j then (K, L, E, Y) ∈ P∗; (ii) if (K, L, E, Y) ∈ P∗ then (K, L, E, Y) ∈ Pj for some j; and (iii)
P∗ =

{
P1 ∪ P2 ∪ . . . ∪ PJ}.

Referring to Zhou et al. [43] and Lin and Du [50], the Shephard energy distance function relative
to the group-specific technology is defined as:

Dj
E

(
K j, Lj, Ej, Y j

)
= sup

{
ρ|
(

K j, Lj, Ej/ρ, Y j
)
∈ Pj

}
, j = 1, 2, · · ·, J (3)

Accordingly, the Shephard energy distance function relative to the metafrontier technology is
given by

D∗E(K, L, E, Y) = sup{ρ|(K, L, E/ρ, Y) ∈ P∗} (4)

In Equations (3) and (4), ρ denotes the scale of energy reduction, reflecting the maximum
possibility of energy conversation while keeping the remaining input–output combination unchanged
given a specific technology. Furthermore, the two corresponding kinds of total-factor energy efficiency
indices are defined as:

GEEI = 1
/

Dj
E (K, L, E, Y), MEEI = 1

/
D∗E (K, L, E, Y) (5)

Since metafrontier is regarded as an envelopment curve of the groupfrontiers, the group-specific
Shephard energy distance function (groupfrontier energy efficiency index, GEEI) is not bigger (smaller)
than the metafrontier Shephard energy distance function (metafrontier energy efficiency index, MEEI).
The corresponding relationship is described as follows:

D∗E(K, L, E, Y) ≥ Dj
E(K, L, E, Y), MEEI ≤ GEEI (6)
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According to O’Donnell et al. [26] and Fei and Lin [33], we define the metatechnology ratio index
(MTRI) as:

MTRI =
Dj

E(K, L, E, Y)
D∗E(K, L, E, Y)

=
MEEI
GEEI

(7)

It is noteworthy that technology gap ratio (TGR) may be more frequently used than MTR in
literature. However, O’Donnell et al. [26] have pointed out that an increase in TGR implies a decrease
in the gap between groupfrontier and metafrontier. To avoid confusion, we prefer MTR to TGR in
this paper as O’Donnell et al. have done. Actually, Fei and Lin [33] have redefined TGR to be one
minus MTR to follow the intuition of “technology gap”. Differently, we next provide an alternative
terminology of MTR in order to emphasize its technical efficiency nature.

Figure 1 provides a graphical illustration of the difference between GEEI and MEEI. The curves
represent the production isoquants, i.e., three for group frontiers (GF1, GF2 and GF3) and the last one
for metafrontier (MF). We consider a DMU, i.e., X in Figure 1, whose energy is underutilized according
to its own groupfrontier (GF2) as well as the metafrontier (MF). In this case, GEEI and MEEI of DMU X
can be calculated as the ratio of OE1/OE0 and the ratio of OE2/OE0, respectively.
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Then, we show that the MTRI of DMU X can be expressed as the ratio of OE2/OE1, reflecting
the technical efficiency between groupfrontier (GF2) and the metafrontier (MF). Furthermore, if we
regard X′ as the hypothetically corresponding efficient DMU of X relative to its groupfrontier, the
metatechnology ratio index of group j can be seen as a potential energy efficiency index (PEEI), which
is defined as:

MTRI = PEEI =
OE2

OE1
=

1
OE1/OE2

=
1

Dj∗
E (K, L, E, Y)

(8)

where

Dj∗
E (K, L, E, Y) =

D∗E(K, L, E, Y)

Dj
E(K, L, E, Y)

(9)

Dj∗
E (K, L, E, Y) denotes the simulated Shephard energy distance function with respect to the

potential DMU on one specific groupfrontier, so that PEEI can be taken as a special energy efficiency of
a potential (not an actual) DMU (e.g., X′). To specify this, we rewrite Equation (7) as follows:

MEEI = GEEI× PEEI (10)

Equation (10) reveals the links among the abovementioned three different energy efficiency
indices, namely, MEEI, GEEI and PEEI, implying that the energy efficiency relative to the metafrontier
can be regarded as a combination of two separate parts: GEEI for an actual DMU with respect to its
own groupfrontier, and PEEI for a potential DMU on the specific groupfrontier with respective to the
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metafrontier. We can easily conclude that increases in MEEI may be driven by increases in GEEI or
PEEI, or both of them. The implications are that, for a DMU X, it can improve its energy efficiency
relative to the metafrontier through: (i) improving its energy efficiency within a specific group given
that the gap between its own groupfrontier to metafrontier remains unchanged; (ii) improving its
potential energy efficiency (shrinking the gap between its own groupfrontier to metafrontier) given
that its group-specific energy efficiency remains unchanged; or (iii) improving the group-specific and
potential energy efficiency simultaneously. It is worth noting that the terminology of PEEI is of vital
importance to help further decompose the metatechnology ratio change component in a clear and
convenient way.

2.2. Metafrontier Malmquist Energy Productivity Index

The Malmquist productivity index, inspired by Malmquist [51], was first theoretically approved
by Caves et al. [52], and further developed by Färe et al. [53] as the product of efficiency change and
technological change. Referring to Du and Lin [1], we define a Malmquist energy productivity index
to explore the dynamics of total-factor energy efficiency as:

MEPIi
t,t+1 =

[
1/Dt

E
(
Ki

t+1, Li
t+1, Ei

t+1, Yi
t+1
)

1/Dt
E
(
Ki

t, Li
t, Ei

t, Yi
t
) ×

1/Dt+1
E
(
Ki

t+1, Li
t+1, Ei

t+1, Yi
t+1
)

1/Dt+1
E
(
Ki

t, Li
t, Ei

t, Yi
t
) ]1/2

(11)

where the subscripts t and t + 1 denote periods t and t + 1, respectively, and the superscript i denotes
the DMU i. Following this definition and combined with Equation (10), we can express the changes
of total-factor energy efficiency from periods t to period t + 1 in the Malmquist productivity index
framework with two standard components as:

MMEPIi
t,t+1 =

1/D∗,t+1
E (Ki

t+1,Li
t+1,Ei

t+1,Yi
t+1)

1/D∗,tE (Ki
t ,L

i
t ,E

i
t ,Y

i
t)

×
[

D∗,t+1
E (Ki

t+1,Li
t+1,Ei

t+1,Yi
t+1)

D∗,tE (Ki
t+1,Li

t+1,Ei
t+1,Yi

t+1)
× D∗,t+1

E (Ki
t ,L

i
t ,E

i
t ,Y

i
t)

D∗,tE (Ki
t ,L

i
t ,E

i
t ,Y

i
t)

]1/2

= MECIi
t,t+1 ×MTCIi

t,t+1

(12)

GMEPIi
t,t+1 =

1/Dj,t+1
E (Ki

t+1,Li
t+1,Ei

t+1,Yi
t+1)

1/Dj,t
E (Ki

t ,L
i
t ,E

i
t ,Y

i
t)

×
[

Dj,t+1
E (Ki

t+1,Li
t+1,Ei

t+1,Yi
t+1)

Dj,t
E (Ki

t+1,Li
t+1,Ei

t+1,Yi
t+1)

× Dj,t+1
E (Ki

t ,L
i
t ,E

i
t ,Y

i
t)

Dj,t
E (Ki

t ,L
i
t ,E

i
t ,Y

i
t)

]1/2

= GECIi
t,t+1 ×GTCIi

t,t+1

(13)

PMEPIi
t,t+1 =

1/Dj∗,t+1
E (Ki

t+1,Li
t+1,Ei

t+1,Yi
t+1)

1/Dj∗,t
E (Ki

t ,L
i
t ,E

i
t ,Y

i
t)

×
[

Dj∗,t+1
E (Ki

t+1,Li
t+1,Ei

t+1,Yi
t+1)

Dj∗,t
E (Ki

t+1,Li
t+1,Ei

t+1,Yi
t+1)

× Dj∗,t+1
E (Ki

t ,L
i
t ,E

i
t ,Y

i
t)

Dj∗,t
E (Ki

t ,L
i
t ,E

i
t ,Y

i
t)

]1/2

= ECUIi
t,t+1 × TCUIi

t,t+1

(14)

In Equation (12), MMEPI denotes the metafrontier Malmquist energy productivity index, which
can be decomposed into metafrontier efficiency change index (MECI) and metafrontier technological
change index (MTCI), following the benchmark decomposition framework in Färe et al. [53] or Du
and Lin [1]. Accordingly, in Equation (13), GMEPI denotes the groupfrontier Malmquist energy
productivity index with two components, namely, groupfrontier efficiency change index (GECI) and
groupfrontier technological change index (GTCI).

We now focus on the potential Malmquist energy productivity index (PMEPI), which reflects
the catch-up effect from groupfrontier to metafrontier and is in general treated as an indecomposable
component (see, e.g., [27,29–33]). However, Chen and Yang [35,42] regarded it as a technical adjusted
factor and decomposed it into i.e., pure technological catch-up (PTCU) and frontier catch-up (FCU)
in an output-oriented distance function framework. According to Chen and Yang, PTCU captures
the catch-up effect in technology without the ingredients of technical inefficiency from the view of a
groupfrontier, and FCU implies the change in a whole band of TGR lying between the groupfrontiers
and the metafrontier. Furthermore, Zhang and Wang [41] provided another terminology in the
Luenberger index framework, that is, efficiency change gap (ECG) and technological change gap
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(TCG), which were identical to PTCU and FCU, respectively. In this paper, since PEEI is regarded
as a special energy efficiency, its Malmquist productivity can thus be decomposed into two common
components: efficiency change and technological change. Recalling that PEEI reflects the catch-up
effect between groupfrontier and metafrontier, the above components of PMEPI are accordingly
termed as efficiency catch-up index (ECUI) and technological catch-up index (TCUI). Obviously, the
interpretations of the two catch-up components are much more straightforward than before from the
standard decomposition framework of Malmquist productivity index.

Let us consider the relationship among MMEPI, GMEPI and PMEPI. Integrating Equations (9),
and (12)–(14), we can finally obtain the MMEPI as follows:

MMEPIi
t,t+1 =

1/Dj,t+1
E

(
Ki

t+1, Li
t+1, Ei

t+1, Yi
t+1
)

1/Dj,t
E
(
Ki

t, Li
t, Ei

t, Yi
t
)︸ ︷︷ ︸

GECIi
t,t+1

×
1/Dj∗,t+1

E
(
Ki

t+1, Li
t+1, Ei

t+1, Yi
t+1
)

1/Dj∗,t
E
(
Ki

t, Li
t, Ei

t, Yi
t
)︸ ︷︷ ︸

ECUIi
t,t+1

×
[

Dj,t+1
E

(
Ki

t+1, Li
t+1, Ei

t+1, Yi
t+1
)

Dj,t
E
(
Ki

t+1, Li
t+1, Ei

t+1, Yi
t+1
) × Dj,t+1

E
(
Ki

t, Li
t, Ei

t, Yi
t
)

Dj,t
E
(
Ki

t, Li
t, Ei

t, Yi
t
)
]1/2

︸ ︷︷ ︸
GTCIi

t,t+1

×
[

Dj∗,t+1
E

(
Ki

t+1, Li
t+1, Ei

t+1, Yi
t+1
)

Dj∗,t
E
(
Ki

t+1, Li
t+1, Ei

t+1, Yi
t+1
) × Dj∗,t+1

E
(
Ki

t, Li
t, Ei

t, Yi
t
)

Dj∗,t
E
(
Ki

t, Li
t, Ei

t, Yi
t
)
]1/2

︸ ︷︷ ︸
TCUIi

t,t+1

(15)

It is easy to obtain the following equalities:

MECIi
t,t+1 = GECIi

t,t+1 × ECUIi
t,t+1, MTCIi

t,t+1 = GTCIi
t,t+1 × TCUIi

t,t+1 (16)

Furthermore, after reforming Equation (15), MMEPI can be expressed as:

MMEPIi
t,t+1 = GMEPIi

t,t+1 × PMEPIi
t,t+1 (17)

Equation (16) reveals that the efficiency change in metafrontier Malmquist energy productivity can
be seen as a product of groupfrontier efficiency change and efficiency catch-up between groupfrontier
and metafrontier. Similarly, metafrontier technological change is driven by both groupfrontier
technological change and potential technological catch-up. Meanwhile, Equation (17) indicates that the
metafrontier Malmquist energy productivity growth is determined by the groupfrontier Malmquist
energy productivity growth (relative to an actual DMU) as well as the potential Malmquist energy
productivity growth (relative to a potential DMU). In this sense, an increase in MMEPI may be
driven by an increase in GMEPI or PMEPI, or both of them. As such, according to Equation (15), the
metafrontier Malmquist energy productivity can be regarded as a product of four specific components,
namely, groupfrontier efficiency change, groupfrontier technological change, efficiency catch-up and
technological catch-up.

2.3. Model Specification and Estimation

Basically, the Shephard energy distance function can be calculated by DEA or SFA. Up to
date, DEA, featuring in irrespective of mandate model specification, is more widely used than SFA.
However, the conventional DEA has a main drawback that it does not take statistical noises into
account. In this regard, SFA seems more attractive and is increasingly employed in recent studies
about energy and environmental issues, see, e.g., Zhou et al. [43], Du and Lin [1], and Filippini and
Hunt [54]. When considering group heterogeneity, a so-called two-step mixed approach developed
by Battese et al. [25] and O’ Donnell et al. [26] has gained increasingly popularity in the calculation of
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technical efficiency. As its name implies, the two-step mixed approach covers two different steps, that is,
the first step is the estimation of group-specific technical efficiency by SFA, while the technical efficiency
relative to the metafrontier in the second step is estimated by mathematical programming techniques
rather than SFA. The methodological discrepancy weakens to some extent the advantages of SFA
over DEA. Thereafter, Huang et al. [44] introduced a new two-step stochastic metafrontier approach,
featuring in methodological consistency in the two estimation steps, to evaluate the production
performance of world’s agriculture and Taiwanese hotel industry. We apply this approach to address
energy and environmental issues in the present paper.

Referring to Du and Lin [1] and Shen and Lin [19], we use a translog function to describe the
group-specific Shephard energy distance function in the first step, which is given by:

ln Dj,t
E (·) = β

j
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j
K ln Kij

t + β
j
L ln Lij

t + β
j
E ln Eij

t + β
j
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(
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j
LL

(
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j
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(
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KE ln Kij
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j
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j
LY ln Lij

t ln Yij
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tLt ln Lij

t + β
j
EY ln Eij

t ln Yij
t + β

j
tEt ln Eij

t + β
j
tYt ln Yij

t + vij
t

(18)

where ln Dj,t
E (·) = ln Dj,t

E
(
Ki

t, Li
t, Ei

t, Yi
t
)
; and vij

t is a random variable assumed to be independent and

identically distributed, that is, i.i.d N
(

0, σ2
vj

)
. Note that there are two different implications of t; the

subscript t denotes periods; and the variable t captures technological change over time. According
to Equation (3), the Shephard energy distance function is linearly homogeneous in energy, based on
which we can rewrite Equation (18) as:
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where ε
ij
t = vij

t − uij
t , denoting composite error; uij

t = ln Dj,t
E (·) ≥ 0 is independent of vij

t and is assumed

to be uij
t = uij exp[−η(t− T)] following Battese and Collei [55], in which uij is a nonnegative random

variable satisfying i.i.d N
(

µ, σ2
uj

)
. η is an unknown scalar parameter, which indicates an improvement

in technical efficiency if η > 0, or a decline in technical efficiency if η < 0. Additionally, T represents
the total periods.

Equation (19) can be estimated through employing MLE, and GEEI with respect to Equation (5) is
predicted by:

∧
GEEIi

t = E

{
exp

(
−uij

t

)∣∣∣ ∧εij
t

}
(20)

Similarly, we can also estimate the metafrontier Shephard energy distance function to calculate
MEEI. However, due to different data-generating processes, the above estimated metafrontier may
not exactly envelope all the groupfrontiers. To address this issue, Battese et al. [25] redefined the
metafrontier to be an envelope of the deterministic parts of the groupfrontiers, which was further
confirmed and developed in O’ Donnell et al. [26]. However, the deterministic metafrontier function
may have some limitations in terms of computation: (i) it is hard to provide a meaningful statistical
interpretation to the calculated metafrontier function due to the unclear statistical properties of the
estimated parameters; (ii) the mathematical programming techniques are unable to incorporate random
shocks, which may result in a relatively inefficient calculation of metafrontier energy efficiency; and,
more seriously, (iii) the calculation in the second step applies the estimated group frontiers rather
than the theoretical ones such that the degree of bias is unknown (Huang et al. [44]; Chang et al. [56]).
Consequently, Huang et al. [44] introduced a new two-step stochastic metafrontier approach, in which
SFA is also utilized for the calculation of metatechnology ratio (PEEI) in the second step. In this sense,
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the aforementioned difficulties can be avoided. Therefore, this paper follows their methodology with a
marginal extension to the input-oriented distance function framework.

Integrating Equations (8) and (9), MTRI (PEEI) can be rewritten as follows:

MTRIi
t = PEEIi

t =
Ei

t/D∗E
(
Ki, Li, Ei, Yi)

Ei
t/Dj

E
(
Ki, Li, Ei, Yi

) =
oEi∗

t

oEij
t

≤ 1 (21)

where Ei
t denotes the actual energy input, and oEi∗

t , oEij
t denote the optimal energy input with respect to

metafrontier and groupfrontier, respectively. Taking natural logarithms in both sides of Equation (21),
we get:

ln
(

1
/

oEij
t

)
= ln

(
1
/

oEi∗
t

)
− uij∗

t (22)

where −uij∗
t = ln PEEIi

t ≤ 0, that is, PEEIi
t = e−uij∗

t ≤ 1. Further, Equation (19) can be rewritten as:
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1
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/
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)
+ ε

ij
t (23)

In Equation (23), ln
(

1
/

oEij
t

)
stands for the deterministic part of stochastic groupfrontier.

Accordingly, ln
(

1
/

oEi∗
t
)

can be seen as the deterministic part of stochastic metafrontier.
Recalling the relationship between the computed and true deterministic groupfrontier, we have:
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(
1
/

oEij
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∧
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Plugging Equation (24) into Equation (22), we obtain:

ln
∧(

1/oEij
t

)
= ln

(
1/oEi∗

t

)
+ ε

ij∗
t (25)

where ε
ij∗
t = vij∗

t − uij∗
t , vij∗

t = ε
ij
t −

∧
ε

ij
t . According to Huang et al. [44], the non-negative inefficiency

term uij∗
t can be assumed to be i.i.d N

(
µ, σ2

uj∗

)
. On the other hand, vij∗

t can be reasonably assumed to
be asymptotically normally distributed with zero mean, but may not be independently, identically

distributed due to the residuals,
∧
ε

ij
t . To address this issue, the quasi-maximum likelihood estimator

(QMLE) is applied instead of the standard MLE, in which the sandwich-form estimators for covariance
matrix are used to obtain the correct standard errors (Huang et al. [44]; White [57]).

Consequently, PEEI can be predicted by:

∧
PEEIi

t = E

{
exp

(
−uij∗

t

)∣∣∣ ∧εij∗
t

}
(26)

With Equations (20) and (26), the estimated MEEI can be calculated according to Equation (10).
Let us switch to the calculation of energy productivity. On the one hand, groupfrontier efficiency

change index and efficiency catch-up index can be calculated directly from the estimated GEEI and
PEEI between periods t and t + 1.

∧
GECIi

t,t+1 =
∧

GEEIi
t+1

/
∧

GEEIi
t ,

∧
ECUIi

t,t+1 =
∧

PEEIi
t+1

/
∧

PEEIi
t (27)

On the other hand, the groupfrontier technological change index and technological catch-up index
can be estimated following the framework introduced by Fuentes et al. [58]:
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Finally, with Equations (27)–(29), MECI and MTCI can be computed according to Equation (16).
Moreover, MMEPI, GMEPI and PMEPI, can be calculated following Equations (12)–(14), respectively.

3. Empirical Analysis

3.1. Data and Industrial Heterogeneity

We undertake the empirical analysis on the dynamics of China’s industrial energy efficiency at
the disaggregated level over the period of 2001–2015 that covers exactly three FYPs. Since the National
Standard of Industrial Classification (GB/T4754) has been amended three times during this sample
period, we need to make some necessary adjustments to ensure the consistent statistical coverage of
each industrial sector following the amendment framework of Chen [59]. In this regard, we finally
choose 35 two-digit sub-industries listed in Table 1 for this empirical study.

Table 1. Summary statistics and industry classification.

Variables Units
Heavy industry Light industry

Obs. Mean Std. Dev. Min Max Obs. Mean Std. Dev. Min Max

Y 109 RMB 330 1.254 2.078 0.009 15.413 195 0.541 0.456 0.056 2.433
K 109 RMB 330 0.372 0.476 0.016 3.628 195 0.118 0.109 0.005 0.599
L 109 Persons 330 0.036 0.028 0.002 0.108 195 0.027 0.022 0.002 0.095
E 109 TCE 330 0.769 1.296 0.015 8.034 195 0.143 0.162 0.009 0.730

K/L RMB/Person 330 15.019 18.309 1.130 110.882 195 6.698 6.887 0.373 30.250
E/Y TCE/RMB 330 1.885 2.624 0.020 13.608 195 0.266 0.227 0.038 1.229

Note: (1) Heavy industry covers: Coal mining and washing (H01), Oil and natural gas extracting (H02), Ferrous
metal mining (H03), Non-ferrous metal mining (H04), Non-metal mining (H05), Oil processing, coking and nuclear
fuel processing (H06), Chemical materials and products manufacturing (H07), Medicines manufacturing (H08),
Rubber and plastics manufacturing (H09), Non-metallic Mineral Products manufacturing (H10), Ferrous metal
smelting and pressing (H11), Non-ferrous metal smelting and pressing (H12), Metal products manufacturing (H13),
General purpose manufacturing (H14), Special purpose manufacturing (H15), Transport equipment manufacturing
(H16), Electrical machinery and equipment manufacturing (H17), Communication equipment manufacturing
(H18), Measuring instruments manufacturing (H19), Electricity production (H20), Gas production (H21), and
Water production (H22). (2) Light industry covers: Food processing (L23), Food manufacturing (L24), Beverages
manufacturing (L25), Tobacco manufacturing (L26), Textile industry (L27), Textile clothes, shoes and caps (L28),
Leather manufacturing (L29), Timber and wood processing (L30), Furniture manufacturing (L31), Paper industry
(L32), Printing and intermediary replication (L33), Culture, education and sport activities manufacturing (L34), and
Chemical fibers manufacturing (L35).

The required variables include capital stock (K), labor (L) and energy (E) as inputs, and industrial
gross output (Y) as the output. First, the data of capital stock and labor (numbers of employees) from
2001 to 2008 are directly acquired from Chen [59], and the other data from 2012 to 2015 are extrapolated
following Chen’s methodology. The corresponding raw materials are collected from China Statistical
Yearbook and China Industry Economy Statistical Yearbook. Second, energy is measured by final
energy consumption, and the relevant data are collected from China Energy Statistical Yearbook. Third,
the construction of industrial gross output follows Chen’s refinement framework, that is, using total
gross output to solve the discrepancy in statistical coverage over different years. Furthermore, we
apply IO tables (i.e., 2000, 2002, 2005, 2007, 2010, and 2012) released in Input–Output Tables of China
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to amend the values in both total and disaggregated gross outputs. Additionally, the nominal data
on capital stock and industrial gross output have been deflated into constant price at 1990 following
Chen [59].

Regarding the heterogeneity across sub-industries, this paper follows the classifications in
Fan et al. [46] and Li and Lin [60], where sub-industries are divided into two groups, namely, heavy
industry and light industry. The coverage of each industry is noted under Table 1: 23 sub-industries
for heavy industry and 12 sub-industries for light industry.

From Table 1, the average levels of gross output (Y), capital stock (K), labor (L) and energy (E) in
heavy industry are higher than those in light industry. Moreover, from the additional variables, i.e.,
capital intensity (K/L) and energy intensity (E/Y), we can find that heavy industry is in general more
capital-intensive and energy-intensive than light industry. For example, the mean value of capital
intensity in heavy industry is approximately two times higher than that in light industry. Meanwhile,
the mean value of energy intensity in heavy industry is around seven times higher than that in light
industry. When considering the maximum level, the energy intensity gap between heavy and light
industry is even bigger, about 11 times. However, in view of the minimum level, the energy intensity
in heavy industry is approximately half of that in light industry, which implies that some heavy
sub-industries may be more energy efficiently used than light industry.

3.2. Estimation Results

We report the estimation results for four different frontier functions in Table 2, the former three
of which are computed by MLE and the last one is estimated by QMLE. First, the “pooled” column
represents that the model is estimated by pooling all the sub-industries as a whole. The “heavy” and
“light” columns represent the group-specific estimates under the concept of technology heterogeneity.
We use log-likelihood ratio (LR) test to analyze whether group heterogeneity is statistically significant.
The LR statistic is defined by λ =−2{ln[L(H0)]− ln[L(H1)]}, where ln[L(H0)] denotes the log-likelihood
value of “pooled” regression with the null hypothesis (H0) that the frontiers of different groups
are identical, and ln[L(H1)] denotes the sum of log-likelihood values of both “heavy” and “light”
regressions with the alternative hypothesis (H1) that the frontiers of both groups are different. The LR
test listed in Table 2 rejects the null hypothesis, indicating that the frontiers of “heavy” and “light” are
statistically heterogeneous. Second, apart from the listed variables in Table 1 and technology variable
t, we also incorporate two dummy variables, namely, dum115 and dum125, representing the 11th
and the 12th FYPs, respectively. Compared with the period of 10th FYP (2001–2005), energy is more
efficiently used in the periods of 2006–2010 and 2011–2015 with positive signs. Third, most of the
estimated values of lnσ2 and ln[γ/(1 − γ)] for models I–IV are significant at the 1% level, confirming
that technical inefficiency generally exists in the industrial sector.

Based on the estimated parameters in Table 2, we calculate four different energy efficiency indices,
that is, the pooled energy efficiency index (hereinafter POOLED), GEEI, PEEI and MEEI, and depict
the average values from 2001 to 2015 in Figure 2.

It can be seen that the average values in measuring instruments manufacturing in heavy industry
(H19) and furniture manufacturing in light industry (L31) are approximately equal in terms of GEEI.
However, in view of MEEI, the average value in H19 stays almost unchanged while that in L31 becomes
much smaller. This difference between the two typical sub-industries comes from the metatechnology.
That is, the potential energy use technology in H19 is more advanced than that in L31, which leads to a
bigger value of PEEI in H19 than that in L31, as shown in Figure 2. Generally, the average values of
PEEI in heavy industry are higher than those in light industry, which is in line with Li and Lin [60].
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Table 2. Estimations of pooled frontier, groupfrontiers and metafrontier functions.

First Step Second Step

I Pooled a II Heavy a III Light a IV Metafrontier b

lnk 0.221 ** 0.110 0.868 *** 0.138 −0.669 ** 0.308 0.124 0.142
lnl −0.720 *** 0.235 −1.673 *** 0.238 0.832 ** 0.377 −0.969 ** 0.392
lny −0.531 *** 0.136 −0.221 * 0.137 −1.337 *** 0.361 −0.399 ** 0.181

t −0.057 *** 0.021 −0.168 *** 0.026 0.114 *** 0.042 −0.056 ** 0.023
(lnk)2 −0.071 *** 0.015 −0.058 ** 0.025 −0.124 *** 0.050 −0.075 *** 0.009
(lnl)2 −0.140 *** 0.039 −0.311 *** 0.042 −0.026 0.045 −0.171 *** 0.055
(lny)2 0.024 0.022 0.017 0.020 −0.145 0.134 0.021 0.018

t2 0.001 0.001 0.001 ** 0.001 −0.003 ** 0.001 0.000 0.000
lnklnl 0.257 *** 0.033 0.414 *** 0.051 0.279 *** 0.052 0.238 *** 0.044
lnklny −0.089 *** 0.025 −0.115 *** 0.025 −0.221 * 0.134 −0.084 *** 0.024

tlnk 0.029 *** 0.003 0.032 *** 0.005 0.048 *** 0.013 0.036 *** 0.002
lnllny −0.043 0.046 0.055 0.046 0.026 0.113 −0.005 0.049

tlnl −0.030 *** 0.005 −0.059 *** 0.007 −0.026 *** 0.010 −0.036 *** 0.005
tlny 0.010 *** 0.004 0.015 *** 0.004 0.040 * 0.022 0.010 *** 0.002

dum115 0.053 ** 0.023 0.081 *** 0.024 0.087 ** 0.038 0.055 *** 0.008
dum125 0.048 0.036 0.049 0.037 0.149 *** 0.056 0.048 *** 0.010

cons 1.546 *** 0.452 −0.074 0.486 2.537 *** 0.562 0.946 0.130
µ 1.678 *** 0.447 1.552 ** 0.669 1.045 *** 0.180 −4.287 *** 1.692
η −0.013 *** 0.002 −0.020 *** 0.002 0.008 0.006 −0.019 *** 0.004

lnσ2 0.827 ** 0.406 0.922 * 0.544 −1.925 *** 0.291 1.014 *** 0.266
ln[γ/(1 − γ)] 5.260 *** 0.414 5.734 *** 0.552 2.677 *** 0.385 6.846 *** 0.400
log-likelihood 293.397 243.325 81.528 678.769

LR test Chi-squared = 62.91 (p-value = 0.000)
obs. 525 330 195 525

Note: (1) superscript “a” denotes MLE and “b” denotes QMLE; (2) σ2 = σv2 + σu2, γ = σu2/(σu2/σ2); (3) *, ** and
*** denote coefficient significant at 10%, 5% and 1%, respectively.
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In view of POOLED, light industry seems to perform better than heavy industry. For example,
there are four sub-industries exceeding 0.6 in light industry (L28, L29, L31, and L34) but only one in
heavy industry (H19). However, the performance of light and heavy industry becomes closer in terms
of MEEI, that is, four sub-industries and three sub-industries are over 0.4, respectively. The difference
between POOLED and MEEI implies that the homogeneous technology assumption is somewhat
inappropriate and biased.

3.3. Decomposition Results

3.3.1. Macro-Analysis

We calculate the cumulative MMEPI and its components according to Equations (27)–(29) for
the period of 2001–2005, setting 2001 as the base year. Figure 3 presents the cumulative average
trends among different sub-industries in three categories, where “O”, “H” and “L” denote overall
industry, heavy industry and light industry, respectively. We can see that MMEPI(O) has experienced
a U-shaped change, going downward until 2006 with a minimum cumulative energy productivity
of 0.825. From then on, the growth rate of MMEPI(O) becomes positive and peaks in 2015 with a
maximum cumulative energy productivity of 1.250. It means that energy productivity in overall
industry has increased by 25% during the past fifteen years. In general, this U-shaped development of
energy productivity is in line with Du and Lin [1]. Moreover, the turning point of 2006 implies that
China’s ECER program seems to take effect.
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Figure 3. Cumulative metafrontier Malmquist energy productivity growth and its components:
(a) heavy and light industries; (b) groupfrontier and potential productivity indices; and (c) efficiency
and technology components.
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Further, Figure 3 provides more details about cumulative growth of MMEPI from three aspects.
First, Figure 3a displays two MMEPIs for heavy industry and light industry in the additive manner.
We find that: (i) both of them have experienced a U-shaped development, but the turning points are
different, that is, 2007 and 2005, respectively; and (ii) the average cumulative values of MMEPI in light
industry are generally bigger than those in heavy industry, albeit they are equal at the base year.

Second, Figure 3b plots the decomposition results based on Equation (17) in the multiplicative
manner. It is noteworthy that the turning points in the cumulative growth of GMEPI and PMEPI are
the same year (2007), while that in MMEPI is 2006. This difference is caused by the used averaging
techniques: the average value of GMEPI multiplying that of PMEPI does not necessarily equal that of
MMEPI, albeit it holds in each sub-industry. However, the comparison between GMEPI and PMEPI is
meaningful. We can observe that the curve of PMEPI is above GMEPI until 2014, indicating that PMEPI
performs better than GMEPI before 2014 in terms of geometric mean of cumulative energy productivity
growth. However, when it turns to 2015, the cumulative growth of GMEPI slightly surpasses PMEPI.
That is, on average, GMEPI performs a little better than PMEPI for the period of 2001–2015.

Third, based on Equations (12), (16) and (27)–(29), Figure 3c presents the decomposition results
of MECI and MTCI also in the multiplicative manner. We can see that MECI undergoes a decline
during the sample period, which is different from the U-shaped change of MTCI as well as the other
components in Figure 3a,b. This means that energy efficiency has generally deteriorated over time,
whereas after 2004 energy technological progress is so significant that it finally drives up the energy
productivity from 2006 on.

According to Equations (15) and (27)–(29), we further provide four specific components and their
contributions for the cumulative metafrontier Malmquist energy productivity growth in Table 3. In
the column of “Cumulative growth index”, MMEPI is decomposed into four components, namely,
GECI, GTCI ECUI and TCUI. For the averaging reasons as discussed above, MMEPI is not necessarily
equal to the product of these four components. Accordingly, we take natural logarithm of productivity
growth in order to analyze the relative contributions of different components.

Table 3. Decomposition of metafrontier Malmquist energy productivity index.

Groups Periods
Cumulative Growth Index Log Cumulative Growth

MMEPI GECI GTCI ECUI TCUI MMEPI GECI GTCI ECUI TCUI

Heavy 2001–2005 0.821 0.882 0.938 0.986 0.998 −0.198 −0.125 −0.064 −0.014 −0.002
Light 2001–2005 0.866 1.034 0.977 0.943 0.885 −0.144 0.033 −0.023 −0.059 −0.122

Overall 2001–2005 0.837 0.938 0.952 0.970 0.956 −0.177 −0.064 −0.049 −0.030 −0.045
Heavy 2006–2010 0.966 0.871 1.044 0.985 1.075 −0.034 −0.138 0.044 −0.015 0.072
Light 2006–2010 1.041 1.032 1.094 0.937 0.971 0.040 0.032 0.090 −0.065 −0.030

Overall 2006–2010 0.994 0.931 1.063 0.967 1.036 −0.006 −0.072 0.061 −0.033 0.036
Heavy 2011–2015 1.174 0.858 1.184 0.983 1.177 0.160 −0.153 0.169 −0.017 0.163
Light 2011–2015 1.195 1.031 1.171 0.931 1.057 0.179 0.031 0.158 −0.071 0.055

Overall 2011–2015 1.182 0.922 1.179 0.964 1.132 0.167 −0.081 0.165 −0.037 0.124
Heavy 2001–2015 1.139 0.635 1.290 0.948 1.394 0.130 −0.454 0.255 −0.053 0.332
Light 2001–2015 1.437 1.120 1.496 0.800 0.969 0.363 0.114 0.403 −0.223 −0.032

Overall 2001–2015 1.250 0.815 1.366 0.893 1.236 0.223 −0.204 0.312 −0.113 0.212

Note: (1) the base year for the periods of 2001–2005, 2006–2010, 2011–2015 and 2001–2015 are 2001, 2006, 2011 and
2001, respectively; and (2) due to the averaging techniques, MMEPI is not necessarily equal to the product of GECI,
GTCI, ECUI and TCUI.

First, in the 10th FYP period (2001–2005), MMEPI has experienced a general decline in heavy
industry, light industry and also overall industry. Specially, only GECI in light industry witnesses
a positive growth in this period. Second, during the 11th FYP period (2006–2010), the metafrontier
Malmquist energy productivity in light industry shows a productivity gain, while that in heavy
industry and overall industry suffers a productivity loss. However, we observe that average values
of MMEPI in heavy industry and overall industry for 11th FYP period are bigger than those for 10th
FYP period, implying that energy productivity starts to improve. Third, even bigger improvements
are made in the 12th FYP period in all groups, and the total contributions of technological change
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components (GTCI and TCUI, the same below) are bigger than those of efficiency change components
(GECI and ECUI, the same below).

Finally, during the period of 2001–2015, all categories have experienced an improvement in the
metafrontier Malmquist energy productivity, whereas the components perform somewhat differently.
For example, in heavy industry, technological change components and efficiency change components
make positive and negative contributions to energy productivity growth respectively, and the
former overtakes the latter, resulting in an improvement in energy productivity. Among these four
components, GECI is the biggest (negative) contributor. Similarly, in overall industry, the positive
contributions of technological change components surpass the negative contributions of efficiency
change components, but GTCI becomes the biggest (positive) contributor. However, the picture for
the light industry is quite different. That is, the contribution of GECI is positive while that of TUCI
is negative, albeit the total contributions of technological change components are bigger than those
of efficiency change components. Parallel to overall industry, GTCI is also the biggest (positive)
contributor in light industry.

Furthermore, Figure 4 describes the dynamic contributions of four components for the cumulative
metafrontier Malmquist energy productivity growth with 2001 as the base year. We can see that
the cumulative efficiency change components (GECI and ECUI) contribute negatively to energy
productivity growth over time, while the contributions of cumulative technological change components
(GTCI and TCUI) turn from negative to positive during the sample period. Specifically, TCUI remains
the biggest (negative) contributor to energy productivity growth until 2006. After, GECI takes the
lead in energy productivity growth for the period of 2007–2010. GTCI begins to dominate the energy
productivity growth and maintains ahead in the 12th FYP period.
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Figure 4. Dynamic contributions of different components for cumulative MMEPI in overall industry.

Comparatively, for the period of 2001–2015, GTCI makes the biggest contribution to energy
productivity growth, followed by TCUI, then ECUI and GECI, which are approximately equal.
Moreover, the former two technological change components contribute positively to energy
productivity growth, whereas the latter two efficiency change components make the negative
contributions. It means that: (i) overall industry has experienced a significant technological progress
and suffered a long-run deterioration in energy efficiency, indicating that sub-industries tend to
adopt new technologies rather than make full use of the existing technologies; (ii) group-specific
technology has advanced faster than metatechnology, implying that low-tech sub-industries seem to
be more willing to approach new technologies than high-tech sub-industries; and (iii) the managerial
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inefficiency almost equally exists in the utilization of energy technologies for both low-tech and
high-tech sub-industries.

3.3.2. Sectoral-Analysis

Table 4 reports the calculation results of MMEPI for all sub-industries in the period of 2001–2015.
In general, the average values of MMEPI in different groups have increased over time, indicating that
energy productivity has been improved for the past fifteen years. According to the geometric mean of
MMEPI from 2001 to 2015, light industry has performed better than heavy industry, both of which
grow at around 0.93% and 1.64% annually. This result is coincident with what it shows in Figure 3a.

Table 4. The MMEPI values of 35 sub-industries from 2001 to 2015.

Indus. 01/02 02/03 03/04 04/05 05/06 06/07 07/08 08/09 09/10 10/11 11/12 12/13 13/14 14/15 Geom.

H01 0.875 0.882 0.886 0.883 0.881 0.887 0.902 0.920 0.934 0.948 0.957 0.964 0.977 0.989 0.920
H02 1.044 1.040 1.029 1.025 1.020 1.023 1.033 1.049 1.058 1.064 1.075 1.093 1.114 1.128 1.056
H03 0.915 0.919 0.916 0.907 0.906 0.920 0.943 0.969 0.988 1.005 1.018 1.028 1.043 1.062 0.966
H04 0.936 0.948 0.959 0.966 0.972 0.974 0.981 0.997 1.008 1.015 1.020 1.025 1.037 1.051 0.992
H05 0.858 0.875 0.887 0.900 0.914 0.929 0.932 0.931 0.939 0.950 0.959 0.968 0.977 0.984 0.928
H06 1.002 1.006 1.009 1.006 1.003 1.005 1.014 1.033 1.050 1.056 1.061 1.071 1.080 1.089 1.034
H07 0.949 0.956 0.960 0.963 0.968 0.974 0.982 0.993 1.003 1.014 1.026 1.036 1.047 1.058 0.994
H08 0.964 0.978 0.990 1.001 1.012 1.022 1.028 1.032 1.037 1.043 1.047 1.053 1.064 1.072 1.024
H09 0.875 0.884 0.891 0.892 0.896 0.909 0.927 0.942 0.950 0.961 0.974 0.987 1.000 1.008 0.935
H10 0.837 0.848 0.861 0.874 0.887 0.901 0.913 0.924 0.935 0.949 0.963 0.974 0.984 0.995 0.916
H11 0.945 0.956 0.967 0.973 0.981 0.990 0.999 1.010 1.022 1.030 1.037 1.039 1.044 1.052 1.003
H12 0.936 0.949 0.958 0.960 0.966 0.972 0.978 0.992 1.009 1.022 1.031 1.042 1.053 1.064 0.994
H13 0.845 0.860 0.873 0.882 0.896 0.915 0.932 0.943 0.950 0.961 0.977 0.986 0.997 1.003 0.929
H14 0.895 0.903 0.906 0.908 0.916 0.929 0.946 0.961 0.971 0.982 0.989 0.998 1.009 1.017 0.951
H15 0.921 0.929 0.933 0.941 0.951 0.962 0.973 0.982 0.989 0.999 1.010 1.019 1.028 1.036 0.976
H16 0.945 0.954 0.961 0.966 0.974 0.985 0.994 1.006 1.016 1.028 1.037 1.046 1.057 1.067 1.002
H17 0.904 0.906 0.910 0.910 0.915 0.925 0.944 0.966 0.980 0.997 1.011 1.019 1.029 1.037 0.960
H18 0.989 0.992 0.992 0.984 0.981 0.984 0.979 0.983 1.004 1.016 1.022 1.035 1.047 1.054 1.004
H19 0.898 0.910 0.919 0.929 0.937 0.947 0.956 0.966 0.978 0.989 0.993 1.003 1.019 1.029 0.962
H20 1.056 1.062 1.076 1.088 1.093 1.103 1.114 1.122 1.132 1.148 1.155 1.155 1.162 1.174 1.117
H21 1.028 1.042 1.061 1.072 1.086 1.100 1.102 1.108 1.117 1.122 1.122 1.121 1.130 1.144 1.096
H22 0.965 0.968 0.976 0.984 0.992 1.005 1.010 1.007 1.012 1.024 1.033 1.036 1.042 1.044 1.007

L23 1.017 1.025 1.031 1.036 1.050 1.070 1.082 1.088 1.095 1.104 1.115 1.126 1.134 1.138 1.079
L24 0.976 0.986 0.989 0.993 1.005 1.024 1.039 1.044 1.046 1.049 1.054 1.059 1.065 1.071 1.028
L25 1.009 1.012 1.022 1.028 1.037 1.045 1.049 1.052 1.057 1.062 1.065 1.068 1.074 1.077 1.047
L26 1.061 1.064 1.068 1.067 1.065 1.065 1.065 1.065 1.068 1.073 1.076 1.074 1.074 1.075 1.069
L27 1.046 1.046 1.048 1.050 1.056 1.069 1.084 1.092 1.094 1.097 1.104 1.114 1.122 1.126 1.082
L28 0.848 0.861 0.876 0.894 0.917 0.939 0.958 0.966 0.969 0.976 0.990 1.004 1.011 1.017 0.943
L29 0.827 0.834 0.842 0.851 0.865 0.882 0.902 0.914 0.920 0.927 0.941 0.953 0.959 0.965 0.897
L30 0.910 0.922 0.923 0.930 0.945 0.971 0.997 1.007 1.009 1.016 1.024 1.032 1.042 1.045 0.983
L31 0.805 0.823 0.832 0.845 0.865 0.895 0.926 0.937 0.937 0.940 0.946 0.954 0.963 0.967 0.901
L32 1.008 1.015 1.021 1.027 1.033 1.039 1.051 1.061 1.068 1.081 1.087 1.087 1.089 1.090 1.054
L33 0.903 0.913 0.913 0.910 0.916 0.931 0.947 0.954 0.954 0.954 0.959 0.974 0.988 0.994 0.943
L34 0.788 0.793 0.795 0.800 0.814 0.831 0.851 0.865 0.867 0.867 0.919 0.977 0.987 0.996 0.865
L35 1.046 1.052 1.059 1.059 1.063 1.070 1.071 1.068 1.069 1.075 1.083 1.085 1.088 1.093 1.070

Avg.H 0.936 0.944 0.951 0.955 0.961 0.971 0.981 0.993 1.004 1.015 1.024 1.032 1.043 1.053 1.009 a

Avg.L 0.942 0.950 0.955 0.961 0.972 0.987 1.001 1.009 1.012 1.017 1.028 1.039 1.046 1.059 1.016 a

Avg.O 0.938 0.946 0.952 0.957 0.965 0.977 0.989 0.999 1.007 1.015 1.025 1.035 1.044 1.057 1.015 a

Note: (1) ”Indus.” decnotes industries; (2) “Geom.” denotes geometric mean among 2001–2015; (3) “Avg.” denotes
arithmetic mean among sub-industries; (4) “01/02” denotes the period of 2001–2002, the same below; and
(5) the superscript “a” denotes geometric mean of the average accumulated productivity growth (2001–2015)
among sub-industries.
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Figure 5. Contributions of different components for MMEPI in heavy industry: (a) productivity loss;
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Figure 6. Contributions of different components for MMEPI in light industry: (a) productivity loss;
and (b) productivity gain.

The contributions of different drivers for metafrontier Malmquist energy productivity growth are
shown in Figures 5 and 6, classified by: (a) productivity loss; and (b) productivity gain. It is worth
noting that the contributions are calculated the same way as in Table 3 by taking natural logarithms
of the cumulative growth of different components. The numbers in brackets denote the ranks of
cumulative productivity growth from 2001 to 2015.

We can see that, in Figure 5 for heavy industry, efficiency change components (GECI and ECUI)
contribute negatively to energy productivity growth, implying that the existing technologies are not
efficiently used in heavy industry. That is, energy managerial efficiency needs to improve urgently.

Specifically, in Figure 5a, of 13 sub-industries, GECI makes the biggest contributions to
energy productivity growth in eight sub-industries; GTCI takes the lead in four sub-industries;
TCUI dominates energy productivity growth only in Measuring instruments manufacturing (H19).
Moreover, we can find that GMEPI (GECI and GTCI) controls the energy productivity loss in these
sub-industries. On the other hand, in Figure 5b, technological change components become the
dominating factor of energy productivity growth with positive contributions except for Communication
equipment manufacturing (H18), in which GTCI makes a negative contribution to the growth of energy
productivity (−3.4%).

As for the two best productivity performance sub-industries, namely, Electricity production (H20)
and Gas production (H21), we can see that technological change components play an overwhelming
role in energy productivity growth, accounting for 75.8% and 82.5%, respectively. Furthermore, the
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productivity growth is mainly driven by the inter-group technological progress in H20 (TCUI, 42.5%)
while by intra-group technological progress in H21 (GTCI, 53.8%). Meanwhile, we can also observe
that the contribution of ECUI to the growth of energy productivity is negligible.

We plot in Figure 6 the different contributions of four components for MMEPI in light
industry. Compared with Figure 5, GECI turns to play a positive role in energy productivity
growth in light industry, albeit ECUI still contributes negatively to energy productivity growth in all
light sub-industries.

In Figure 6a, technological change components (GTCI and TCUI) contribute most to the energy
productivity loss in all sub-industries. Specially, in the three worst productivity performance
sub-industries, namely, Culture, education and sport activities manufacturing (L34), Leather manufacturing
(L29) and Furniture manufacturing (L31), the total contributions of technological change components
are −93.3%, −92.8% and −88.8%, respectively. Recalling those two best productivity performance
sub-industries (H20 and H21) in Figure 5b, we can conclude that in those sub-industries technological
progress or regress determines energy productivity gain or loss.

In Figure 6b, apart from GECI, GTCI and TCUI also contribute positively to energy productivity
growth in light industry except for Textile industry (L27) with a negative contribution of TCUI (−3.4%).
Moreover, technological change components are the biggest contributor for productivity growth, as
in Figures 5b and 6a. In addition, GTCI dominates the increase of MMEPI in all light sub-industries
except for Tobacco manufacturing (L26), in which TCUI is the biggest contributor accounting for 45.7%.
It means that the energy productivity gains in light industry are mainly due to the intra-group
technological progress.

To sum up, we provide the numbers of dominant contributor of the metafrontier Malmquist energy
productivity growth in the 35 sub-industries in Table 5. First, 20 out of 35 sub-industries are dominated
by GMEPI for energy productivity growth, and PMEPI controls the remaining 15 sub-industries.
Moreover, GMEPI mainly leads to a productivity loss in heavy industry but a productivity gain in
light industry; in contrast, PMEPI mainly makes positive contributions to energy productivity gain
in heavy industry but negative contributions to energy productivity loss in light industry. Second,
energy productivity growth in the vast majority of sub-industries is dominantly driven by MTCI; the
remaining seven sub-industries are governed by MECI for productivity loss only, implying that the
productivity loss may be caused by the bad management of the utilization of existing technologies.
Third, as for individual contributors, GTCI performs better than others with 15 sub-industries, followed
by GECI (11), and then TCUI (9). It is worth noting that: (i) no sub-industry is dominated by ECUI for
productivity growth; and (ii) GECI makes most and negative contributions to productivity growth in
three heavy sub-industries, albeit they experience a productivity gain.

Table 5. Dominate contributor of the growth of MMEPI.

Total GMEPI PMEPI MECI MTCI GECI GTCI ECUI TCUI

Sub-industries 35 20 15 7 28 11 15 0 9
Heavy industry 22 13 9 7 15 11 6 0 5

productivity loss 13 12(−) 1(−) 7(−) 6(−) 8(−) 4(−) 0 1(−)
productivity gain 9 1(+) 8(+) 0 9(+) 3(−) 2(+) 0 4(+)

Light industry 13 7 6 0 13 0 9 0 4
productivity loss 6 0 6(−) 0 6(−) 0 3(−) 0 3(−)
productivity gain 7 7(+) 0 0 7(+) 0 6(+) 0 1(+)

Note: the signs in brackets donate the contributions are positive (+) or negative (−).

Finally, we depict the dynamic trends of coefficients of variation (CVs) for cumulative MMEPI
in different groups in Figure 7. We can observe that the CVs in overall industry show a falling trend,
indicating that metafrontier Malmquist energy productivity growth in all sub-industries tends to
converge over time, which is known as σ-convergence. Moreover, we can also find that the CVs of
energy productivity growth in heavy industry and light industry are generally decreasing over time,
and light industry seems to converge faster than heavy industry during the sample period.
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4. Conclusions

In this paper, metafrontier energy efficiency consists of groupfrontier energy efficiency and
potential energy efficiency, the latter of which is previously termed as technology gap ratio.
Accordingly, metafrontier Malmquist energy productivity is decomposed into groupfrontier Malmquist
energy productivity (i.e., groupfrontier efficiency change and groupfrontier technological change)
and potential Malmquist energy productivity (i.e., efficiency catch-up and technological catch-up).
Furthermore, a newly developed two-step stochastic metafrontier analysis technique is applied for
the calculation of energy efficiency and productivity. The developed approach is used to compare
the energy productivity growth of 35 sub-industries in China’s industrial sector for the period of
2001–2015. The main empirical results are shown as follows.

(1) In view of metafrontier Malmquist energy productivity, overall industry has witnessed a 25%
cumulative growth and a U-shaped trend bottoming out in 2006, which may indicate that the
ECER programs are effective in the periods of 11th and 12th FYPs. Meanwhile, 19 sub-industries
have suffered an energy productivity loss, and the remaining 16 sub-industries have experienced
an energy productivity gain.

(2) From the technology heterogeneity perspective, light industry outperforms heavy industry in
metafrontier Malmquist energy productivity growth, while groupfrontier Malmquist energy
productivity growth is on average a little higher than potential Malmquist energy productivity
growth, indicating that the intra-group and inter-group energy productivity develops roughly in
balance as a whole.

(3) As for individual components, groupfrontier technological change makes the biggest
contribution to energy productivity growth (43.4%), followed by technological catch-up (21.8%),
efficiency catch-up (−17.4%) and groupfrontier efficiency change (−17.1%). That is, it is
technological change that dominates the energy productivity growth, implying that the
existing technologies are not utilized sufficiently and the management efficiency needs to
improve. Furthermore, groupfrontier technological change makes positive (mainly negative)
contributions in productivity gain (loss) sub-industries; technological catch-up works like
groupfrontier technological change, both of which dominate the growth of energy productivity
in 28 out of 35 sub-industries; efficiency catch-up contributes negatively to all the sub-industries;
groupfrontier efficiency change plays a negative (positive) role in energy productivity growth for
heavy (light) industry.

(4) There exists σ-convergence of metafrontier Malmquist energy productivity growth in heavy
industry and light industry as well as overall industry, implying that the energy efficiency
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laggards can catch up the energy efficiency leaders in the future, which is line with the concept
of metafrontier.

These results indicate that, to perfectly fulfill the ECER targets, the Chinese government
should pay more attention to heterogeneous energy policies for heavy industry and light industry.
Moreover, general technologies for the improvement of energy efficiency in both heavy and light
industries need to be better adopted and diffused. In particular, the management of the existing
metatechnology needs urgent improvement since the efficiency catch-up component contributes
negatively to all sub-industries.

There are three possible directions for future research. First, to capture environmental effect,
pollutants could be incorporated into the present framework to explore environmentally sensitive
energy efficiency and productivity. Second, the global Malmquist productivity index may be integrated
into the present decomposition framework, so that more insights might be explored into the energy
productivity growth. Third, this paper mainly investigates group heterogeneity with a two-step
stochastic metafrontier analysis approach. Moreover, individual heterogeneity might also be captured
and addressed by, e.g., the “true fixed effects” model suggested by Greene [61] or the within-MLE
approach introduced by Chen et al. [36]. That is, a new parametric approach may be developed to
solve the problems of individual heterogeneity as well as group heterogeneity.
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