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Abstract: Comprehensive risk assessment across multiple fields is required to assess the potential
utility of hydrogen energy technology. In this research, we analyzed environmental and
socio-economic effects during the entire life cycle of a hydrogen energy system using input-output
tables. The target system included hydrogen production by naphtha reforming, transportation to
hydrogen stations, and FCV (Fuel Cell Vehicle) refilling. The results indicated that 31%, 44%, and 9%
of the production, employment, and greenhouse gas (GHG) emission effects, respectively, during
the manufacturing and construction stages were temporary. During the continuous operation and
maintenance stages, these values were found to be 69%, 56%, and 91%, respectively. The effect
of naphtha reforming was dominant in GHG emissions and the effect of electrical power input
on the entire system was significant. Production and employment had notable effects in both the
direct and indirect sectors, including manufacturing (pumps, compressors, and chemical machinery)
and services (equipment maintenance and trade). This study used data to introduce a life cycle
perspective to environmental and socio-economic analysis of hydrogen energy systems and the
results will contribute to their comprehensive risk assessment in the future.

Keywords: hydrogen energy system; socio-economic effect; environmental effect; input-output table;
life cycle inventory analysis

1. Introduction

We currently face significant environmental and energy problems. In particular, economic activity
and greenhouse gas (GHG) production are strongly correlated [1]. Current GHG emissions are expected
to increase by one-third before 2040, based on current projections of economic development and
population growth in the Middle East, India, China, Africa, and Southeast Asia [2]. Hydrogen
energy technology is expected to address this problem. In the latest Basic Energy Plan, the Japanese
government expressed the need for comprehensive analysis of hydrogen energy technology from
the perspectives of environmental safety, convenience, and economy throughout the entire supply
chain, including production, transportation, and utilization of hydrogen [3]. In addition, the Japanese
government intends to employ hydrogen energy in transport, athletes’ villages, and venues during the
Tokyo Olympic and Paralympic Games in 2020 [4]. Fuel cell vehicles (FCVs) have been available on
the Japanese market since 2015. The Tokyo Metropolitan Government is aiming to build 35 hydrogen
fueling stations by 2020 [5].

The triple bottom line viewpoint says that energy technology is an important element of
a functioning society [6]. International Organization for Standardization/ International Electrotechnical
Commission (ISO/ICE) Guide 73 [7] defines risk as the “effect of uncertainty on objectives”,
and effect as “deviation from the expected-positive and/or negative”. In his social risk analysis for
energy systems and social infrastructure, Branscomb [8] indicated 13 features—including agriculture,
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food, water, public health, emergency services, government, defense industrial base, information and
telecommunications energy, transportation (people and products), banking and finance, the chemical
industry, and postal and shipping—that are important for the functioning of a city, with reference to
United States Department of Homeland Security [9]. Shi et al. [10] assessed social risks associated with
the process of urban development using observations, expert meetings, interviews, and discussion
forums. Furthermore, in energy technology analysis, McLellan et al. [11] studied the social risks of
the main power generation technologies when impacted by natural disasters from points of view of
humanity, society, economics, manufacturing, and nature. In addition, Japanese decision-making and
social acceptance emphasizes a balance of multiple values, including stable economic foundation,
safety, security, reliable social systems, and sustainable and good relationships among different
groups. [12,13]; therefore, it is important to identify the variety of risks generated by new energy
technologies and systems in order to promote their popularity within society and consider risk balance
among various fields.

To date, Japanese hydrogen energy technology has been analyzed in several areas. In the safety
field, Sakamoto et al. [14] analyzed the safety distance between pieces of equipment in a hydrogen
fueling station; Nakayama et al. [15] analyzed accident scenarios that could occur in hydrogen stations;
and Okada et al. [16] analyzed the safety of organic chemical hydride. Ono and Tsunemi [17] suggested
that providing precise risk information contributes to better acceptance. In the economic field,
cost analyses of the manufacturing, construction, and operation phases have been conducted [18–24].
Additionally, environmental analyses have focused on CO2 emissions in the supply chain during
hydrogen production [25–29].

However, many of these studies were not conducted from a consistent, holistic point of view as
operators and technicians in their respective areas developed them independently. Studies of future
energy technology from an inclusive viewpoint that spans all areas and incorporates the values of users
are very limited. Furthermore, studies that adopt a life cycle perspective across multiple industries
are lacking.

Input-output analysis is useful as a method for life cycle analyses. The effectiveness of
input-output analysis and scenario analysis for energy technology has been demonstrated, especially
for renewable energy technology [30–36]. Currently, Lee et al. [37] and Chun et al. [38] are developing
analyses for hydrogen energy systems to harness attention for future development.

This study aimed to highlight the environmental and socio-economic effects caused by the
hydrogen energy system during its life cycle in Japan, using input-output tables. This basic analysis
introduces the assessment of life cycle effects of hydrogen energy systems and will assist in future
comprehensive risk (In reference to the ISO/ICE Guide 73 [7], risk is defined as the “effect of uncertainty
on objectives.” In addition, similarly, the effect is defined as “a deviation from the expected—positive
and/or negative.”) analysis of hydrogen energy technology.

2. Materials and Methods

2.1. Input-Output Analysis

Input-output analysis can comprehensively estimate direct and indirect effects caused by final
demand. Balance of the input-output table is shown in Equation (1). Direct and indirect production X
was estimated using Equation (2). Using the diagonal matrix of employment l̂, and GHG emissions ĝ,
direct and indirect employment L and GHG emissions G were estimated using Equations (3) and (4),
respectively:

AX + f = X, (1)

X = (I − A)−1 f, (2)

L = l̂·X, (3)

G = ĝ·X, (4)
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where A is the input coefficient matrix, I is the unit matrix, and f is the final demand column
vector calculated using the detailed cost. The Ministry of Internal Affairs and Communications 2011
edition includes the latest version of the input-output table [39]. However, the Japanese economics
and energy systems were strongly affected by the Great East Japan Earthquake in 2011, and no
information is available to estimate GHG emissions. Therefore, we used the input-output table of 2005
(520 × 407 sectors) [40], employment table [40], and 3EID (Embodied Energy and Emission Intensity
Data for Japan) [41] for our calculations. We assumed that all production activities occurred in Japan
because we focused on highlighting the direct and indirect effects of each sector in the hydrogen
energy system.

2.2. Assumptions of the Hydrogen Energy System

Hydrogen production and transportation were included within the system boundary to
comprehensively analyze environmental and socio-economic effects associated with the introduction
of hydrogen fueling stations. For practical and economic purposes, hydrogen was produced by steam
reforming of naphtha [42], and transported to eight hydrogen stations [23] as high-pressure gas,
and used to fill FCVs (Figure 1 and Table 1). The lifetime of all hydrogen equipment was assumed
to be ten years, with an equipment utilization rate of 0.8 [43]. The hydrogen filling capacity of the
hydrogen station during its life cycle was 9 450 t-H2. The sales price in Japan was estimated (USD
equivalent was calculated using the exchange rate of 110.22 JPY per USD in 2005 [44]) at 1080 JPY/kg
according to the author’s field survey, and production cost was calculated as JPY 10 206 million,
according to the Japan Hydrogen & Fuel Cell Demonstration Project (JHFC) [23] and Fuji [45] (Table 2).
The overall cost balance was adjusted based on the added value of the original input-output table’s
closing sectors in 2005 (hydrogen production was from “petroleum refinery products, Inc. greases”;
hydrogen transportation was from “road freight transport”; hydrogen fueling station was represented
by “retail trade”). These costs are projected for the period 2015 to 2020.
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Figure 1. System boundary.

This study considered the manufacturing, construction, operation, and maintenance stages.
The manufacturing and construction costs of a hydrogen production facility established near the
refinery, with a running time of 24 h per day, a production capacity of 1500 Nm3/h, and employing one
person per year were estimated. The manufacturing and construction costs included: PSA (Pressure
Swing Adsorption) equipment, hydrogen compressor, suction drum, off-gas compressor, other piping,
installation, electrical equipment, civil engineering, construction, engineering, raw material and
fuel naphtha, power, clean water, labor, repairs, insurance premiums, property tax, and overheads.
In addition, the costs for raw material and fuel naphtha were assumed to be 45,900 JPY/kL, cost for
power was 12 JPY/kWh, and cost for clean water was 300 JPY/t.
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Transportation routes included path from the production location to the eight hydrogen fueling
stations. Transport distance was assumed to be 100 km per round trip, and eight round trips per day
were undertaken for each station. Eight trailers and two tractors were used for transport. Each trailer
consisted of 68 pieces of the CFRP (Carbon Fiber-Reinforced Plastics) container (45 MPa). Trailers were
allocated as follows: eight trailers in detention, two trailers in transportation, and two trailers in filling.
However, we assumed that only four tractors were produced within the life cycle, as the lifetime of
each tractor is five years. In addition, we assumed that 2 km/L of light oil was required for transport,
at a unit price of 120 JPY/L, and four laborers are used per year.

Hydrogen stations were assumed to be built at eight off-site locations, producing 300 Nm3/h,
and operating 15 h every day. Manufacturing and construction costs included costs for the pressure
accumulator (high pressure), compressor (filling), hydrogen dispenser, pre-cooler equipment, hydrogen
valve, hydrogen sensors, civil engineering, construction, and engineering. In the operation and
maintenance stages, costs of 2.98 kWh/kg-H2 power requirement for equipment control, lighting
power, and pre-cooler starting power/maintaining power/H2 distribution were considered, in addition
to regular maintenance costs.

The details of final demand (f) created from the above-mentioned prerequisite and the cost
information are described in Appendix A.

Table 1. Preconditions of the hydrogen energy system.

Activity Amount/Rate Unit Reference

Hydrogen
Production

Supply capacity 1500 Nm3/h [23]
Business hours 24 h
Utilization rate 0.8 - [43]
Lifetime 10 years

[23]Employment 1 person-years

Hydrogen
Transportation

Trailer

Number for detainment 8 unit

[23]

Number for transportation 2 unit
Number for filling 2 unit
Lifetime 10 years

Tractor
Number 2 cars
Lifetime 5 years

Diesel oil consumption 50 l/time/car
Transport frequency 4 time/car
Running number 2 car/day
Transport distance (round trip) 100 km/time

Utilization rate 0.8 - *
Employment 4 person-years [23]

Hydrogen
Fueling Station

Type Off-site
[23]

Supply capacity 300 Nm3/h
Business hours 15 h/day *

Number 8 places
[23]Lifetime 10 years

Utilization rate 0.8 - *
Employment (8 stations total) 16 person-years [23]

* Estimated by the authors.
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Table 2. Assumed cost data during 10 years.

Activity Life Cycle Stage Goods and Services Cost [Million-JPY] References

Hydrogen Production

Manufacturing & Construction

PSA (Pressure Swing Adsorption) 70

[23]

Hydrogen compressor 101
Suction drum 4
Off-gas compressor 11
Piping, installation, instrumentation, electrical equipment 113
Civil engineering and construction 30
Engineering 51

Operation & Maintenance

Naphtha (raw material) 1616
Naphtha (fuel) 54
Power 361
Clean water 22
Personnel expenses 70
Repair costs 114
Insurance fee 23
Property tax 53
Overhead 38

Value added except for depreciation cost 200 [23,39]

Total 2932 -

Hydrogen Transportation

Manufacturing & Construction
Hydrogen trailer (45 MPa) 336

[23]

Undercarriage 96
Tractor 44

Operation & Maintenance

Maintenance 190
Insurance fee 29
Property tax 67
Overhead 48
Fuel cost 140
Personnel expenses 280

Value added for depreciation cost 200 [23,39]

Total 1597 -
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Table 2. Cont.

Activity Life Cycle Stage Goods and Services Cost [Million-JPY] References

Hydrogen Fueling Stations

Manufacturing & Construction

Accumulator (high and low pressure) 210

[45]

Compressor (filling) 720
Hydrogen dispenser 400
Pre-cooler equipment 240
Hydrogen valve 63
Hydrogen sensor 26
Engineering 411
Civil engineering and construction 549

Operation & Maintenance

Maintenance 324

Power 476 [23]
Personnel expenses 1600 [45]
Value added for depreciation cost 200 [23,39]

Total 5677 -
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2.3. Established New Sectors

Table 3 showed six new sectors in this study. Three new sectors related to hydrogen energy were
established in the original input coefficient matrix to reflect the technical characteristics of hydrogen.
These included hydrogen production, hydrogen transport, and the hydrogen fueling station. Input
coefficients (A), employment coefficient (l̂), and GHG emissions coefficient (ĝ) of the three sectors were
estimated. GHG emissions caused by naphtha reforming and light oil combustion were quoted as 2.24
(As information on clear GHG emissions caused by naphtha reforming is not available, the value of
naphtha combustion was substituted) and 2.58 t/kL of CO2, respectively [46]. Additionally, production
(X) during the manufacturing and construction stages was estimated by setting the final demand vector
(f) in as much detail as possible, as the appropriate sectors appeared in the original input-output table.

Table 3. Methods of establishment of new sectors.

Sector Input
Coefficients-Column-

Output
Coefficients-Row-

Employment
Coefficients

GHG Emissions
Coefficient

Hydrogen Production Publication
information

[23,43,45]
Zero vector

Publication information
[23,43,45]

Publication
information [23,46]Hydrogen Transportation

Hydrogen Fueling Station

Nuclear Power Generation
Basic table of original
input-output table in

2005 [40]

Disaggregation of
grid mix in 2005 or

any year [47]

Employment table of
original IO in 2005 [40]

Number of employees of
each type of power

generation in 2005 [47]

3EID (Embodied
Energy and

Emission Intensity
Data for Japan) [41]

Thermal Power Generation

Hydro and Geothermal
Power Generation

The details of three new sectors related to hydrogen energy system (A) created from the
above-mentioned prerequisite and the cost information are described in Appendix B.

A relatively large amount of electric power is input to the hydrogen energy system from the
above cost information (Table 2). The grid mix of Japan has changed greatly since the Great East Japan
Earthquake of 2011. In 2015, nuclear power generation was 1%, thermal power was 89%, and others
were 10%, while, in 2005, nuclear power was 31%, thermal power was 61%, and others were 9%.
The differences in the grid mix between 2005 and 2015 might have a significant effect on the results [47];
therefore, the structures input into the grid mix of a given year are reflected in the input-output table.

Three new sectors related to power generation were established in the original input coefficient
matrix to reflect the 2005 grid mix. The power generation sectors in the original basic input output
table consisted of one row (total power generation) and three columns (“nuclear power generation”,
“thermal power generation”, and “hydro and geothermal power generation”). Therefore, all sectors
of the input coefficient (A) were disaggregated to three sectors by the grid mix ratio in 2005 (Table 3).
Employment coefficients were estimated using the original employment matrix [40] and number of
employees of each type of power generation in 2005 [47]. The GHG emissions coefficient was estimated
by 3EID [41] and assumed that everything would discharge in thermal power generation.

3. Results and Discussion

3.1. Life Cycle Effects

The input-output analysis estimated the effect of production, employment, and GHG emissions
per ton of the hydrogen energy system at JPY 2.64 million, 0.09 person per year, and 13.9 t-CO2 eq.,
respectively (Figure 2). The ratios of the effects of production and employment in the manufacturing
and construction stages were calculated as 31% and 44%, respectively, and are relatively higher
compared to the operation and maintenance stages. Thus, about 30–40% of the production
and employment effects associated with manufacturing and construction stages were temporary.
However, 91% of the GHG emission effects were associated with operation and maintenance stages,
which included 78% production, 3% transportation, and 10% hydrogen fueling stations.



Sustainability 2017, 9, 1376 8 of 16

Sustainability 2017, 9, 1376  8 of 16 

compared to the operation and maintenance stages. Thus, about 30–40% of the production and 
employment effects associated with manufacturing and construction stages were temporary. 
However, 91% of the GHG emission effects were associated with operation and maintenance stages, 
which included 78% production, 3% transportation, and 10% hydrogen fueling stations.  

 

Figure 2. Life cycle embodied intensity. 

3.2. Sectoral Effects 

Sectoral effects of the hydrogen energy system are illustrated in Figure 3. The direct effect of 
hydrogen refill stations, hydrogen production, and hydrogen transportation ranked the highest. 
Indirect effect was attributed to various industries including energy production of naphtha 
(petroleum refinery products, including greases) and its material (coal mining, crude petroleum, and 
natural gas) in the operation and maintenance stages; engineering services (other business services), 
electricity, commercial (wholesale trade) during the entire life cycle; and manufacturing of pumps, 
compressors, and chemical machinery in the manufacturing and construction stages.  

The effect of employment was the same as production, with the greatest effect from the hydrogen 
station. However, the effects of engineering services (other business services), commercial (wholesale 
trade and retail trade) and civil engineering and construction were greater than the direct effect of 
hydrogen production and hydrogen transportation. In addition, temporary effects of manufacturing 
were recorded owing to pumps, compressors, and chemical machinery. For example, this study 
assumed that there were two employers at a hydrogen station, based on published reports [18,45]. 
However, our field survey revealed that two to five employees were always working. Furthermore, 
operation and maintenance of the hydrogen fueling station is often carried out by the same enterprise 
that maintains the gas station, indicating that a direct increase effect of employment owing to the 
hydrogen system is unlikely. However, different qualifications are required for hydrogen fueling 
stations and gas stations operation as specific laws concerning dangerous goods and high-pressure 
gas safety are applied. Therefore, it is desirable to interpret these numerical values in light of social 
and business conditions. The indirect effect of GHG emissions accounted for about 55% of the total 
during hydrogen production and 25% during electricity consumption. The former is due to naphtha 
reforming and could possibly be reduced by CO2 recovery and industrial use. The latter is attributed 
to the power required for the naphtha reforming refinery, hydrogen station compressor, and 
precooling equipment, which can be reduced by selection improved power generation technology. 
However, despite similar fuel combustion for thermal power, the effects for the hydrogen 
transportation sector are relatively small, and account for about 2% of the entire life cycle. This can 
be attributed to the large difference in consumption. While the amount of light fuel needed for 
transport is 0.4 kL/day, the amount of naphtha is 12.5 kL/day during hydrogen production. 

44%

20%

9%

27%

0.09
[person-years/t-H2]

31%

30%

10%

29%

2.64
[million-yen/t-H2]

9%

78%

3%
10%

13.9
[t-CO2 eq./t-H2]

※This analysis is based on 2005 Japanese IO tables, 2005 Grid Mix and assumed costs for 2020.

Hydrogen Refilling Station – Operation & Maintenance 

Hydrogen Transportation – Operation & Maintenance 

Hydrogen Production  – Operation & Maintenance

All Manufacturing & Construction

Figure 2. Life cycle embodied intensity.

3.2. Sectoral Effects

Sectoral effects of the hydrogen energy system are illustrated in Figure 3. The direct effect
of hydrogen refill stations, hydrogen production, and hydrogen transportation ranked the highest.
Indirect effect was attributed to various industries including energy production of naphtha (petroleum
refinery products, including greases) and its material (coal mining, crude petroleum, and natural gas)
in the operation and maintenance stages; engineering services (other business services), electricity,
commercial (wholesale trade) during the entire life cycle; and manufacturing of pumps, compressors,
and chemical machinery in the manufacturing and construction stages.

The effect of employment was the same as production, with the greatest effect from the hydrogen
station. However, the effects of engineering services (other business services), commercial (wholesale
trade and retail trade) and civil engineering and construction were greater than the direct effect of
hydrogen production and hydrogen transportation. In addition, temporary effects of manufacturing
were recorded owing to pumps, compressors, and chemical machinery. For example, this study
assumed that there were two employers at a hydrogen station, based on published reports [18,45].
However, our field survey revealed that two to five employees were always working. Furthermore,
operation and maintenance of the hydrogen fueling station is often carried out by the same enterprise
that maintains the gas station, indicating that a direct increase effect of employment owing to the
hydrogen system is unlikely. However, different qualifications are required for hydrogen fueling
stations and gas stations operation as specific laws concerning dangerous goods and high-pressure
gas safety are applied. Therefore, it is desirable to interpret these numerical values in light of social
and business conditions. The indirect effect of GHG emissions accounted for about 55% of the total
during hydrogen production and 25% during electricity consumption. The former is due to naphtha
reforming and could possibly be reduced by CO2 recovery and industrial use. The latter is attributed
to the power required for the naphtha reforming refinery, hydrogen station compressor, and precooling
equipment, which can be reduced by selection improved power generation technology. However,
despite similar fuel combustion for thermal power, the effects for the hydrogen transportation sector
are relatively small, and account for about 2% of the entire life cycle. This can be attributed to the
large difference in consumption. While the amount of light fuel needed for transport is 0.4 kL/day,
the amount of naphtha is 12.5 kL/day during hydrogen production.
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Environmental and socio-economic effects due to fuel consumption by high-pressure hydrogen
transport (tractor and lorries) are small throughout the life cycle, and it is unlikely that this result
will change significantly in the near future. However, in the liquefied hydrogen and organic hydride
methods, although the amount of hydrogen that can be transported increases, the trade-off between
the total energy input and transportation mode needs to be studied. As these two methods have not
currently been introduced in Japan, it is necessary to assess the economic effect, employment effect,
and GHG emissions, along with safety and acceptability.

3.3. Sensitivity Analysis Using Grid Mix Scenarios

When hydrogen is used in society, significant power is needed for compressing and cooling over
the life cycle. In the transportation of high pressure hydrogen, the effect of this electric power also
applies to hydrogen production as by-product of hydrogen and water electrolysis hydrogen. Japan's
power supply composition in 2005 was influenced by thermal power generation, which contributed
nearly 60%, while nuclear power contributed 30%. As the ratio of thermal power generation in 2015
rose to 90%, current production, employment, and GHG emissions from this sector may now be even
larger [47]. Therefore, sensitivity analysis was performed assuming three grid mixes (Table 4). The first
(base) scenario was 31%, 60%, and 9% for nuclear, thermal, and hydrogen and geothermal, respectively.
For the second scenario, the values were 16%, 74%, 9%, and, for the third scenario, the values were 1%,
89%, 10%, respectively. The first and third grid mix were assumed to be 2005 and 2015. The second
was the average of the two.

For grid mixes of scenarios 2 and 3, GHG emissions per ton of the hydrogen energy system
were found to be 14.6 and 15.3 t-CO2 eq. (Table 4). The grid mix of 2015 would discharge about
10% more GHG emissions than that of 2005. In scenarios 2 and 3, GHG emissions for the thermal
power generation sector increased by +24% and +48%, respectively. In particular, the amounts of
electric power used for hydrogen production and for the hydrogen fueling station would be significant,
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regardless of the method of hydrogen production. On the other hand, production and employment
had no major change in total in spite of the differences in the grid mixes.

Figure 4 shows the results of sensitivity analysis for each scenario. The stages of hydrogen
production and hydrogen fueling station account for 90% of the total increase, reflecting the differences
in grid mix between 2005 and 2015. It should be noted that the stage of hydrogen production included
8.6 t-CO2 eq. from naphtha reforming. Therefore, at the hydrogen production stage, the remaining
2.2, 2.5, 2.8 t-CO2 eq. influenced the increased in thermal power generation. At the hydrogen fueling
station stage, there is a possibility of a ~50% increase in GHG emissions due to the change in grid
mixes. This is most influenced by stage-by-stage analysis among the four life cycle stages. Finally,
the remaining ~10% of the total increase reflect the manufacturing and construction stage, which is
affected relatively less than the previous two stages.

Table 4. Preconditions and results of sensitivity analysis.

Grid Mix Production
[Million-Yen/t-H2]

Employment
[Person-Years/t-H2]

GHG Emissions
[t-CO2 eq./t-H2]

2005
(Scenario 1)

Nuclear 31% 2.64
(Base)

0.09
(Base)

13.9
(Base)Thermal 60%

Hydro & Geothermal 9%

Mean of 2000
and 2015

(Scenario 2)

Nuclear 16% 2.65
(+0.4%)

0.09
(+0.4%)

14.6
(+4.9%)Thermal 74%

Hydro & Geothermal 9%

2015
(Scenario 3)

Nuclear 1% 2.67
(+0.8%)

0.09
(+0.8%)

15.3
(+9.9%)Thermal 89%

Hydro & Geothermal 10%
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4. Conclusions

In this study, we analyzed the environmental and socio-economic effects of the hydrogen energy
system during its life cycle from hydrogen production by naphtha reforming to refilling fuel cell cars.
Currently, field-specific assessments highlight valuable information, but do not holistically assess
effects of hydrogen energy systems. However, input-output analysis conducted in this study enables
assessment of a range of effects in an objective manner using economic indicators, and contributes to
the identification of potential risks in related sectors. The following were clarified.

• Many of the socio-economic analyses of hydrogen energy systems are limited to direct cost
calculations, which focus on manufacturing and construction stages. Our study reveals that the
effect of production, employment, and GHG emissions during the operation and maintenance
stages was also significant. Thus, this study highlights the contributions of different indicators
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change during the life cycle, confirming that a life cycle perspective using multiple indices is very
important for hydrogen energy system analysis.

• The socio-economic effect due to the introduction of the hydrogen energy system is influenced by
direct effects of hydrogen production, hydrogen transportation, and hydrogen station, along with
indirect effects of raw materials, electrical power, equipment maintenance, and commerce.
Specifically, indirect effects of the service sector such as equipment maintenance and commerce
among others are highlighted by the input-output table.

• Most of the GHG emissions were discharged during hydrogen production indicating that
low-carbon hydrogen production options such as renewable energy can significantly reduce
emissions. Additionally, the amount of electricity required for compressor and pre-cooling devices
is also significant, and similar active use of low-carbon power generation systems including
renewable energy can contribute to a more decarbonized society. The results of the sensitivity
analysis also indicate that life cycle of GHG emissions are influenced by changes in the grid mix.
However, since low-carbon power generation technology generally tends to be expensive, it is
necessary to analyze the trade-off between the expected-positive (GHG emission reduction) and
the expected-negative (its cost, stable supply and security, etc.).

This research undertakes the first steps in life-cycle based environmental and socio-economic
effect analysis using collected information, and contributes to comprehensive risk assessment of
hydrogen energy systems in the future. We propose to develop the following in the future:

• In this study, data regarding hydrogen production using naphtha reforming and high-pressured
transportation were employed. However, there are several types of production, including
by-product hydrogen and water electrolysis using renewable energy among others. In addition,
different types of hydrogen transport are employed for liquefied and organic hydride systems.
Future research should address multiple production and transportation methods.

• The input-output table employed in this study assumed the setup to include three sectors:
hydrogen production, hydrogen transportation, and hydrogen station. However, future studies
should address other factors while accounting for the demand and supply of hydrogen energy.

• All hydrogen energy systems discussed in this research are expressed in terms of 2020 prices
as hydrogen energy systems are currently in the initial stage of introduction. Therefore, it is
necessary to investigate additional changes in the future, such as price changes and subsidies.

Acknowledgments: This work was supported by the Council for Science, Technology and Innovation (CSTI)
through its cross-ministerial Strategic Innovation Promotion Program (SIP), “Energy Carrier” (funding agency:
Japan Science and Technology Agency (JST).

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Table A1. Details of final demand.

Life Cycle Stage Sector Final Demand
[Million-JPY]

Manufacturing &
Construction

Hydrogen
Production

Other electrical devices and parts 99
Pumps and compressors 146
Other business services 50
Wholesale trade 50
Other civil engineering and construction 30
Other Sectors 4
Total 380
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Table A1. Cont.

Life Cycle Stage Sector Final Demand
[Million-JPY]

Hydrogen
Transportation

Chemical machinery 281
Trucks, buses, and other cars 89
Wholesale trade 83
Retail trade 16
Road freight transport 5
Other Sectors 1
Total 476

Hydrogen
Fueling Station

Pumps and compressors 729
Other civil engineering and construction 549
Other business services 406
Chemical machinery 335
Wholesale trade 297
Other Sectors 305
Total 2619

Operation &
Maintenance

Hydrogen Production (Established New Sector) * 2932 *
Hydrogen Transportation (Established New Sector) * 1597 *
Hydrogen Fueling Station (Established New Sector) * 5677 *

* Final demand of established new sector included depreciation.

Appendix B

Table A2. Input ratio of new sectors.

Life Cycle Stage Sector Ratio

Operation &
Maintenance

Hydrogen
Production

Petroleum refinery products (Inc. greases) 42.0%
Thermal power generation 10.9%
Wholesale trade 8.9%
Other business services 5.1%
Other industrial sectors 9.1%
Total added value * 24.0% *
Total 100.0%

Hydrogen
Transportation

Machine repair 11.9%
Petroleum refinery products (Inc. greases) 6.5%
Other business services 2.9%
Non-life insurance 1.8%
Other industrial sectors 2.3%
Total added value * 74.5% *
Total 100.0%

Hydrogen Fueling
Station

Thermal power generation 7.4%
Other business services 5.6%
Hydro and geothermal power generation 0.9%
Nuclear power generation 0.1%
Other industrial sectors 0.1%
Total added value * 85.9% *
Total 100.0%

* “Total added value” was not included coefficient matrix (A).
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