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Abstract: This study examines the productivity and resilience of agroecosystems in the Korean 
Peninsula. Having learned valuable lessons from a Chapman University project funded by the 
United States Department of Agriculture which concentrated on the semi-arid region of 
southwestern United States, our joint Korea—Chapman University team has applied similar 
methodologies to the Korean Peninsula, which is itself an interesting study case in the mid-latitude 
region. In particular, the Korean Peninsula has unique agricultural environments due to differences 
in political and socioeconomic systems between South Korea and North Korea. Specifically, North 
Korea has been suffering from food shortages due to natural disasters, land degradation and 
political failure. The neighboring developed country, South Korea, has a better agricultural system 
but a low food self-sufficiency rate. Therefore, assessing crop yield potential (Yp) in the two distinct 
regions will reveal vulnerability and risks of agroecosystems in the mid-latitude region under 
climate change and variability and for different conditions. 
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1. Introduction 

The mid-latitude region (MLR), broadly defined as the region between the 30- and 60-degree 
parallels, about 6700 km wide, is of critical concern for many socioeconomic and Earth system 
science reasons as it contains much of world’s population and industrial activities. In climate 
studies, scientists examine coupled Earth systems, how they affect changing global climate and how 
in turn they are affected by the global climate. However, when we examine socioeconomic aspects of 
the Earth and human societies, relevant coupling mechanisms, etc., then local conditions become 
necessary in order to extract meaningful results. The issue then becomes, what fine scales should we 
use to study such coupled systems? Clearly, continental scales are too coarse. We also have 
latitudinal variations, even for the same country, which cannot be summarized together in a 
meaningful way. As such, the MLR presents great opportunities to study a large swath of the Earth, 
without getting overwhelmed by either fine processes or broad categorization. The MLR provides a 
reasonable way to examine the Earth at intermediate scales and obtain quick outlook of similarities 
and differences between different regions. As such, the MLR involves different countries but with 
certain broad similarities and considerations involving global carbon budget, climate change 
adaptation/mitigation, and sustainable development in terms of food, water, and ecosystems [1,2]. 

Studying resilience in the MLR can allow us to identify primary factors of stress as well as 
resilience. Often, climate change resilience in agriculture sector is challenged by low precipitation, 
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low cropland productivity, desertification, loss of biodiversity, different political and economic 
systems with associated conflicts that can lead to long-lasting conflicts at regional and even global 
levels. 

Resilience of ecosystems involves understanding the effects of severe weather, long-term 
droughts and hazards such as fires. Desertification is a particular important driver of vulnerability 
of ecosystems and human societies in the MLR, in addition to the growth of megacities and 
associated pollution affecting pristine ecosystem areas, loss of forested areas and degradation of 
agricultural productivity. MLR is particularly important in agriculture since principal 
agriculture-producing countries, including the United States, China, and Russia, are in the MLR. 
Thus, climate change in the MLR will result in substantial impact not only for agricultural systems in 
MLR but also for food security worldwide. 

The MLR includes a temperate climate zone and divided diverse climate regions as well as 
diverse land cover types depending on the climate classifications (such as deserts, semi-arid regions, 
Mediterranean climate, large forested areas, coastal regions, agricultural regions, etc.). The MLR has 
one unifying social characteristic: it contains many urban centers and most of the megacities of the 
world. Roughly half of the population of the Earth lives in the MLR, with a combined GDP being a 
large fraction of the global value [3,4]. Despite the socioeconomic and cultural diversity, the MLR 
shares some common elements and often similar climate characteristics. Regions within the MLR are 
facing similar challenges such as increased water and food stress, as well as land degradation and 
desertification [5–7]. We note that there is another MLR, namely the one located in the Southern 
Hemisphere. Given though that the Southern Hemisphere contains percentage-wise more ocean 
bodies, it is natural to first concentrate on the (northern) MLR. 

In this study, we examine agricultural productivity, resilience and changing climate conditions 
for two different countries within the MLR: The Republic of Korea (or South Korea, SK thereafter) 
and the Democratic Peoples’ Republic of Korea (or North Korea, NK thereafter). The size of the 
Korean Peninsula is relatively small (221,000 km2) but it contains most of the climate types in the 
MLR, namely continental, subtropical and subarctic climate. Considering the agricultural 
productivities of different climate zones in the MLR is beyond this study. However, the results 
applied to the Korean Peninsula will represent most of the climate types found in the MLR. In 
addition to the diverse local climate in the Korean Peninsula, the socioeconomic factors of the two 
countries are as diverse as it can be for adjacent countries which are similar in terms of language, 
racial characteristics and history. Therefore, understanding resilience in the Korean Peninsula can 
provide useful insights and lessons learned for other regions in the MLR. 

Resilience in the MLR applied to the Korean Peninsula involves several considerations for 
agricultural system responses to future climate variability. There are several modeling and data 
tools that can be brought into such considerations, including global models, downscaling to regional 
levels, statistical analyses, current observations and past satellite observations. Challenges facing the 
Korean Peninsula include degradation of forests (mainly in NK) [8], growth of megacities (mainly in 
SK), droughts, famines (in NK) [9], severe weather and hazards such as fires and floods. Global 
atmospheric phenomena can affect the weather in the Korean Peninsula. 

The Korean Peninsula has unique agricultural environment due to the differences of political 
and socioeconomical system between SK and NK. The northern populations have been suffering 
from lack of food supplies caused by natural disasters, land degradation and political failure. The 
neighboring developed country SK has a much better agricultural system but very low food 
self-sufficiency rate (around 1% of maize). Maize is an important crop in both countries since it is 
staple food for NK, and SK is the number-two maize importing country in the world after Japan. 

Policy makers in SK have maintained their food self-security goal [10,11]. Food self-sufficiency 
is a politically important objective related to national security by reducing vulnerability from 
international supply disruptions and excessive reliance of food supplies from other countries [12]. 
However, agroeconomists have criticized the food self-sufficiency policy due to the inefficiency, 
distortion of the market and the possible detriment to the consumer [13]. Assessing the SK’s 



Sustainability 2017, 9, 1361  3 of 15 

potential crop production under climate change will provide crucial information for maximizing 
benefit from food self-sufficiency policy and minimizing risks from over-reliance on trade [14]. 

Although maize is an important crop in both SK and NK, few studies have been done on maize 
compared to rice in Korean Peninsula. In this study, we select maize for future agricultural 
productivity for the above reasons. First, we validate crop models and estimate the yield change 
under future climate change scenarios. We then examine possible adaptation strategies. Finally, we 
discuss resilience and sustainability in these two countries having distinct socioeconomic conditions 
and examine the implication for other countries in the MLR. 

2. Methodology 

In this study, we have employed the concept of “yield gap” to assess climate change impacts on 
the crop productivity in the Korean Peninsula. Yield gap is defined as the difference between the 
actual yield (Ya) and Yp [15]. Yp is the maximum yield that can be achieved in current technology 
and optimal management practices and determined only by climate variables with nonlimiting 
nutrients, water, and controlled biotic stresses. We utilize multiple process-based crop models for 
regional scale assessments to evaluate maize Yp and assess the model uncertainties, models which 
include the Environmental Policy Integrated Climate (EPIC) model, the GIS-based EPIC model 
(GEPIC), and the Agricultural Production Systems sIMulator (APSIM) model that has capability of 
regional scale expansion (ApsimRegions). First, we evaluated each crop model for three years from 
2012 to 2014 using reanalysis weather data (RDAPS; Regional Data Assimilation and Prediction 
System produced by Korea Meteorological Agency) and observed yields. Each model’s 
performances were compared over the different regions in the Korean Peninsula having different 
local climate characteristics. We have conducted assessment of future changes of climate variables in 
the Korean Peninsula and their impact on maize productivity using a multi-crop model 
multi-Regional Climate Model (RCM) super ensemble method. Lastly, we evaluated effects of the 
shifting planting date as one of the adaptation strategies to increase climate change resilience in the 
future. 

2.1. Climate Data 

Two types of meteorological data were employed in this study. RDAPS reanalysis data, 
produced by the Korean Meteorological Administration (KMA), are utilized to validate the crop 
models for three years from 2012 to 2014. The data are of 12 km and 6 h resolutions in space and 
time, respectively. For the climate change impact assessment, we used three RCM products 
(HadGEM3-RA, RegCM4 and YSU-RSM) from CORDEX (COordinated Regional Downscaling 
Experiment) East Asia (https://cordex-ea.climate.go.kr) (Table 1). The domain areas are defined in an 
equidistant longitude/latitude projection with 0.5-degree resolution in regular coordinates. Twenty 
years of a historical period was selected (from 1981 to 2000), as well as a period in the future (from 
2031 to 2050). Note that only the RCP 8.5 scenario is selected among the RCP scenarios since the 
differences between scenarios are not significant in mid-century. 

Table 1. Regional Climate Model description and its operating institute. 

Model Institute Description

HadGEM3-RA 
National Institute of 
Meteorological Research 
(NIMR), South Korea 

HadGEM3-RA is based on the global atmospheric Hadley Center Global 
Environmental Model version 3 (HadGEM3) of the Met Office Hadley Centre 
(MOHC) [16]. 

RegCM4 
Kongju National 
University, South Korea 

The Regional Climate Model version 4 (RegCM4), developed by the 
International Centre for Theoretical Physics (ICTP) with some noteworthy 
improvements, such as the coupling of a sophisticated land surface model, 
community land model 3 [17]. 

YSU-RSM 
Yonsei University, 
South Korea 

Regional Spectral Model (RSM), which is also known as Regional Model 
Program (RMP) of the Global/Regional Integrated Model System (GRIMs) [18]. 
The dynamic frame of RMP is rooted in the National Center for Environmental 
Prediction (NCEP) RSM and most of physical parameterizations are newly 
developed and adapted to the RMP. 
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2.2. Observational Data 

The observed maize yield data are used for crop model validation for three years in the period 
2012 to 2014. The information applied to the SK is well-documented in the Korean Statistical 
Information Service (KOSIS; http://kosis.kr). Any statistical data from the North Korean government 
had limited availability. For the two years from 2012 to 2013, there are special reports by the Food 
and Agriculture Organization of the United Nations/World Food Programme (FAO/WFP) Crop and 
Food Security Assessment Mission to the Democratic People’s Republic of Korea [19,20]. During this 
period, the observed yield data are available at the province level of NK. For the validation 
procedure for year 2014, we employed FAO Global Information and Early Warning System (GIEWS) 
Update [21], but this data has only national-level data. 

The selecting agricultural area in the Korean Peninsula used data of GlobeLand30 produced by 
National Geomatics Center of China (NGCC) (http://www.globallandcover.com). Based on the land 
cover data, a grid of regularly spaced 2716 points were used to cover the study area. 

2.3. Crop Model Description 

Process-based crop models have been widely used in a number of recent climate change impact 
studies (e.g., [22]). However, model uncertainties exist at every stage of crop model simulation like 
other numerical models, and it is critical to quantify them for applications by end-users and 
stakeholders. Recent studies attempted to evaluate such uncertainties by using multiple models 
and/or statistical methods [23–25]. Multi-model ensemble approaches have been widely used to 
assess model uncertainties in climate modeling community but only a few studies have been 
performed in crop modeling studies, such as the Global Gridded Crop Model Intercomparison 
(GGCMI) project [24,26]. Multi-model ensemble methods show clear advantages over single-model 
approaches with smaller uncertainties and explicit estimates of the range of uncertainties [24]. With 
above reasons, we employed three process-based crop models (ApsimRegions, EPIC and GEPIC) 
were used in this study (Table 2). 

Table 2. Description of crop models. 

Model Description Daily Climate Input Data

ApsimRegions 
Extended the point-specific Agricultural Production 
Systems sIMulator (APSIM) crop model to regional 
spatial scales (http://www.apsimregions.org) 

Maximum Temperature,  
Maximum Temperature,  
Radiation, Precipitation 

EPIC Environmental Policy Integrated Climate  
(EPIC, v. 0810) 

Maximum Temperature,  
Maximum Temperature,  
Radiation, Precipitation 

GEPIC 
GIS-based Environmental Policy Integrated Climate 
(EPIC) model v. 0509. The EPIC model us integrated 
with a GIS by a loose coupling approach 

Maximum Temperature,  
Maximum Temperature,  
Radiation, Precipitation 

The Agricultural Production Systems sIMulator (APSIM) model (http://www.apsim.info) 
simulates specific crop yields by calculating interactions among plants, animals, soil, climate, and 
management practices [27–29]. APSIM has been widely used for various regions of a wide range of 
environmental characteristics with multiple field experiments [30–34]. The model has been used to 
study the potential impact of climate change on crop productivity [35–39]. APSIM is well 
documented, open source, scriptable, and modular structure masks makes it possible for scaling up 
to regional domains. In this study we utilized ApsimRegions, which has extended the point-specific 
APSIM model to regional spatial scales (http://www.apsimregions.org) [40]. 

The EPIC model was developed to assess soil erosion and soil productivity, followed by a 
module on plant growth and hydrological parameters [41,42]. The model has been renamed the 
Environmental Policy Integrated Climate model (EPIC) with the addition of environmental 
assessment functions such as pesticides and water quality. 
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The EPIC model simulates crop growth using energy and biomass on a daily basis [41]. The 
potential biomass accumulation is calculated using climate variables such as solar radiation and 
crop-specific biomass–energy conversion rates. Plant stress variables (water, nutrient, temperature, 
aeration, and salinity) influence the decrease of the potential biomass. Crop yields are estimated 
based on crop harvest index and actual biomass accumulation [43]. 

The EPIC model has been successfully applied on crop productivity in East Asia [44]. In this 
study, the model was calibrated for the Korean Peninsula. Some of key maize parameters were 
modified setting through calibration; the biomass–energy ratio was set at 30 kg MJ−1, the harvest 
index at 0.55 mg mg−1, the optimum temperature at 25 °C, 10 °C, and the potential heat unit (PHU) 
range from 1300 to 1500 °C, depending on the grid cell specific climate. 

We used the modified GEPIC model, which incorporates a Geographical Information System 
(GIS) with the EPIC version 0509 for spatially explicit simulations [45,46]. The GEPIC (GIS-based 
EPIC) framework integrates and connects the EPIC model with GIS through data exchange, and 
enables GEPIC to use all the functions of the EPIC model. GEPIC was widely used for modeling crop 
growth, crop water use, and agroenvironmental externalities over large areas in the last decade 
[44,45,47]. 

2.4. Experimental Design 

A number of previous climate impact studies have used fixed sowing date for the entire 
analysis period because of the lack of relevant data. The actual sowing dates not only change every 
year but are also highly dependent on geographical locations. Maize productivity is highly sensitive 
to the planting dates but the historical planting data are not available in the study domain. Recently, 
Myoung et al. has pointed out the importance of the proper sowing date in climate change impact 
studies [38]. In this study, we have calculated the optimal planting dates at each point using Monte 
Carlo simulations for maximum Yp to estimate future planting date changes. This was done by 
simulating yields at each grid point with 10 different dates in one-week intervals from 22 March to 1 
June, resulting in 10 separate runs for every year over the 21-year period. The planting dates that 
generated the maximum Yp were then identified as an optimal planting date for each grid point and 
for each year. More detailed information on the optimal planting date can be found in [39]. 

The HC27 generic soil profiles database was used for soil type data at each grid point [48,49]. 
HC 27 soil profiles have been widely used in regional and global crop modeling studies [39,50–52]. 

In addition to the soil type, management decisions such as cultivar, irrigation, and planting 
practices play an important role in crop yields [53]. Optimal management practice setups were 
applied in this study to minimize crop stress through management practices and follow the 
definition of Yp. The cultivar coefficients in the crop models were calibrated using year 2010 data of 
popular waxy corn cultivar Mibaek No.2 from Maze Experiment Station of Gangwon-do 
Agricultural Research & Extensions Services in South Korea (http://www.ares.gangwon.kr/hb/en). 

Irrigation was applied to maintain the 95% water-holding soil capacity following previous 
studies (e.g., [54]). Unlimited use of nitrogen fertilizer was also assumed. Other management 
practices in the region were obtained from Experiment Station of Gangwon-do Agricultural 
Research & Extensions Services in South Korea, including specific row spacing, planting depth, and 
crop density. 

3. Results 

3.1. Crop Model Validation 

The calibrated crop models were validated using RDAPS weather data and observed yields for 
three years (2012–2014) in the entire Korean Peninsula (Figure 1). The simulated Yp was evaluated 
using the province-level Ya records from KOSIS for SK and FAO/WFP for NK. Figure 1 shows that 
the averaged Ya was about 75.5% for SK and 84.6% for NK of the averaged Yp. Overall, the average 
ratio was 80% and matched the results in a previous study of Lobell et al. (2009) which concluded 
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that 80% is a typical value under irrigated systems in a developed country [55]. The results suggest 
that the crop models were estimated Yp reasonably well for the study region. 

 
Figure 1. Evaluation of the crop models for the South Korea (SK) and North Korea (NK) regions. The 
blue shaded region is simulated Yp at each region and black solid line shows median of the Yp. Box 
plot shows observed yields. Note that there are no NK regional yields reports on 2014, thus marked 
averaged value of entire country. 

3.2. Future Climate Change in the Korean Peninsula 

All three RCM results consistently show about 4 °C increases in both daily maximum 
temperature (Tmax) and minimum temperature (Tmin) in the Korean Peninsula during the growing 
season (April to July) in the future period (2031–2050) relative to the historical period (1981–2000) 
(Figure 2). Incoming solar radiation (Rad) is projected to slightly increase for the future period, but 
shows strong interannual variations because of the changes in cloud cover. 

 
Figure 2. Future changes in growing season (April to July) mean of Maximum temperature, 
Minimum temperature, and incoming solar radiation (2031–2050) relative to historical period (1981–
2000). Black solid line shows ensemble average of three RCM results. Blue shaded region indicates 
maximum and minimum of each ensemble members. 

The temperature increases in the mid-century period are consistent with numerous previous 
climate change studies (Figure 2). The changes of the climate variables show a heterogeneous 
horizontal distribution (Figure 3). The projected temperature increases are slightly larger for NK 
than for SK. The east coast of NK shows the highest temperature increase in the Korean Peninsula. 
Incoming solar radiation is increased over most of the southern and eastern coastal region in the 
Korean peninsula. This is related with the amount of cloud cover change in the future and looks like 
related with the temperature increase in the southern and eastern coastal region. The similar pattern 
between radiation and temperature change imply that the cloud cover is affected on horizontal 
distribution of the temperature change. 
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Figure 3. Same as Figure 2 except horizontal distribution of the averaged differences between 
historical and future period. 

3.3. Projected Yield Potential (Yp) Changes 

Climate variables are one of the most important factors on agricultural productivity [56]. The 
previous section indicates that climate variables will significantly change in the next 50 years in the 
Korean Peninsula. To evaluate the future changes of the climate variables on the Yp, we have 
employed process-based crop models. 

A numerical model has its own characteristics such as systematic model bias. That does not 
necessary mean that the model is not correctly representing the physical phenomena. In climate 
studies, significant efforts have been devoted to estimate model uncertainties to deliver the 
information to the stakeholders with greater confidence [57]. Studies on climate change impact 
assessments for the agricultural sector have used widely adopted ensemble methods to reduce 
model uncertainties [24,26]. 

Multi-RCM and multi-crop model ensemble results indicate about 17.6% and 13.11% decrease 
of maize Yp in SK and NK, respectively, compared to the future projection based on RCP8.5 scenario 
(Figure 4). The significant lower Yp in the future is mainly due to the higher Tmax and Tmin over 
the Korean peninsula under future climate. Maize is highly sensitive to maximum temperatures and 
does better in cooler climates (e.g., optimal temperature in phenological phases is about 30 °C) [58]; 
thus increased temperature adversely affects the yield potential. Yp changes in SK is higher than 
NK. The NK has lower averaged temperature due to the higher latitude and mountainous terrain 
characteristics. The increased temperatures in the future will be more beneficial especially in places 
where there will be lower yields due to the lower temperature. The high elevation region in the 
northeastern region of NK shows increase of Yp (not show here). This is not only averaged 
temperature but also more frequent extreme events can contribute to the lower yield with higher 
chance of above lethal temperature of the maize [39]. 

Tmax Tmin Rad

[˚C] [MJ m¯²]
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Figure 4. Black solid line shows the ensemble averaged yield potential changes [%] in the future. 
Colored lines represent yield potential of each ensemble members. Note that left-hand (right-hand) 
side figure shows result for South Korea (North Korea). 

3.4. Sensitivity Test 

The future Yp change in Figure 4 shows strong interannual variation in some of the ensemble 
members. To identify the cause of the spread, we have tested interannual variability using standard 
deviation (STD) (Figure 5). In the future period, the interannual variation has been reduced 
significantly; thus, the strong interannual variation stems from variation in historical period. 

In the RCM perspective, Yp shows relatively larger variation when crop models use climate 
variables of RegCM model. STD of climate variables of each RCM has similar value thus the 
interannual variation of climate model is not the main cause. The major reason is that cold biases in 
the RegCM data during the growing season (not shown). The temperature is near the lower limit of 
the optimal temperature for the maize growth. When the year is below the optimal temperature, the 
Yp decrease significantly. It causes strong interannual variations in Yp. The reduced variation in the 
future period also supports that the RCM bias is the reason of the variation. The projected warmer 
climate in the future relives the cold bias and the temperature stresses, thus the variation has been 
reduced. The interannual variability is higher in NK than SK in the historical period. It is projected to 
be reduced significantly in the future, thus supporting the above argument (not shown). 

In both the historical and future periods, the APSIM crop model show larger variability. As 
APSIM involves more complex processes, it may have responded to the climate model more 
sensitively than EPIC or GEPIC models. Finding the cause of the sensitivity in the model is beyond 
the subject of this study. 

The interannual variability and inter-model variability is examined using coefficients of 
variation (CV) is defined as the ratio between standard deviation and mean (Figure 6). The 
interannual variability of simulated Yp is 14.6% and 9.1% on average across all models for historic 
and future period, respectively. 

Compared to STD, the CV shows similar pattern but less distinctive between ensemble 
members. The interannual variability is reduced in the future period as shown in the STD plot in the 
previous section. The inter-model variability also reduced in the future period. 
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Figure 5. The portrait table indicates that standard deviation of yield potential for each ensemble 
members. Left-hand (right-hand) side table shows averaged standard deviation for the historical 
(future) period. 

 

Figure 6. Same as Figure 5 but coefficients of variation (%). 

3.5. Adaptation Strategies 

It is necessary for maintaining maximum yields to continue to adjust the management practices 
according to values of climate variables. There are several ways to adapt to climate change for 
sustaining crop yields. A previous sensitivity study has shown that changing planting date is the 
most effective way among the adaptation strategies [39]. Averaged optimal planting date in present 
day is 30 April in Korean Peninsula and used the date both in historical and future period in 
previous sections. We have estimated the optimal planting date in the future using Monte Carlo 
simulations and applied the dates for simulation in future period. Yp changes between historical and 
future period is −4.4% and −3.1% in SK and NK, respectively (Figure 7). The Yp changes are 
significantly reduced with the optimal planting dates comparing to the fixed planting dates having 
over −17% and −13% in SK and NK respectively. With proper adaptation strategies (e.g., changing 
planting dates), the maize Yp stays at a similar level in the historical period. 

The CV is 12.2% and 6.6% in historical and future period, respectively and about 2.5% lower 
than when the results used fixed planting dates (Figure 8). The adaptation strategy using optimal 
planting date does help to relieve the decreasing rate of Yp, but also supports to increase the 
stability. The change is distinct in APSIM crop model results. The CV is reduced in both historical 
and future period and CV across the ensemble members has similar values in the future. The result 
implies that APSIM is relatively sensitive to the planting dates. 

One important concept in assessing the performance of agricultural system under climate 
change is stability. Stability in agricultural system is defined as the constancy of agricultural 
production over extended periods of time across various environments [59]. The concept is 
especially useful when one evaluates impacts of individual component on the agricultural system. 
The decreased values of CV over Korean Peninsula in the future (e.g., Figure 6) suggest that maize 
yield will become more consistent under climate change. However the simulated yields shows 
significantly reduced amount of yield. This implies that the maize growing regions having 

APSIM EPIC GEPIC
Historical Period Future Period

APSIM EPIC GEPIC

APSIM EPIC GEPIC

Historical Period Future Period
APSIM EPIC GEPIC

[%]
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inconsistent yield over NK in historical period will be decrease in the future thus it provides stable 
agricultural output. 

 
 

Figure 7. Same as Figure 4 except optimal planting date. 

 
Figure 8. Same as Figure 6 except optimal planting dates in Yp simulation. 

3.6. Planting Dates 

The optimal planting dates appear very important for adaptions to warmer climate in the 
future. Figure 9 shows that the date is shifted about 20 days earlier in the mid-century period 
comparing to the averaged optimal planting date in the historical period (30 April). The shift in 
planting dates is a compromise between avoiding frost damages in spring and damages by extreme 
heat in summer under a warmer future climate [38]. It can also provide longer growing season that is 
usually favorable for higher yields. The projected 20 years of trend (e.g., dotted line in Figure 9) 
suggests that the optimal planting date becomes one-half of a day earlier every year. It is hard to find 
one-to-one correlation between climate variables and optimal planting dates changes because 
climate variables are nonlinearly affected on the Yp and need to consider season and extreme climate 
variables simultaneously. A possible reason is the increasing trend in the Tmin during spring time 
and in the frequency of extreme Tmax events in the future (not shown). 

APSIM EPIC GEPIC

Historical Period Future Period
APSIM EPIC GEPIC

[%]
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Figure 9. Time series of optimal plant dates from 2031 to 2050. Color shaded lines ensemble member 
and black solid line are averaged value. Dotted line shows the trend of the date. 

4. Conclusions 

The present study examines the simulated maize productivity, Yp, using three crop models in 
conjunction with climate forcing from three regional climate models and assessed for the Korean 
Peninsula at regional scales. The multi-model ensemble projection results show that this approach 
has the ability to provide better assessment of agricultural systems to respond to climate change. In 
this study, the modeling framework successfully assesses the consequences of several temporal and 
spatial perturbations in the climate variables affecting agricultural systems. The results indicate that 
the projected Yp in the Korean Peninsula will significantly change compared to the historical period 
and that proper adaptation strategies such as optimized planting dates can considerably alleviate 
issues associated with Yp decrease. Using the optimal planting date will not only lower the 
decreasing trend of Yp in the future but will also help to increase stability in agroecosystems under 
climate change. 

To build resilience for adaptation to climate change, the agriculture sector is required to reduce 
vulnerabilities and increase adaptive capacity [60]. This can be achieved by reducing the sensitivity 
of the crop systems from unexpected shocks and modifying the system to increase the adaptive 
capacity. Our results show that reducing the maize yield sensitivity under a future warmer climate 
in both NK and SK can be achieved by shifting planting dates. Undesirable impact on crop 
production due to climate change can be minimized even more with other adaptation strategies such 
as avoiding monoculture, locally adapted cultivar selection, and crop rotation. These strategies will 
increase the productivity, sustainability, and resilience of agricultural production. 

Our results imply that proper management practices can minimize the climate change impacts 
and maintain the crop yield potential at current levels until mid-century. Developed countries like 
SK in the MLR need to find ways to transition from intensive high-yield agriculture to sustainable 
agriculture like organic farming, precision farming, and renewable energy production. Appropriate 
intensive efforts and educating of farmers will be essential for a successful transition. Like other 
poor, developing countries, NK is vulnerable to extreme climate events due to lack of infrastructure 
and land degradation. Any disruption to agricultural production will have a significant impact on 
the food security and its impacts will spread throughout other sectors. Capacity-building is required 
through increasing water use efficiency, building soil fertility and reforestation to help increase the 
productive capacity and enhance its resilience against future climate change. 
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The present work indicates that the study of similar geographic and climate regions, but with 
very different socio-economic conditions in the MLR, can yield important clues to resilience in a 
changing climate, when subject to uncertain conditions of socioeconomic evolution. In this study, we 
selected a single crop type and two countries in MLR. The climate resilience evaluation on 
agricultural system can be examined for other perturbations and expanded to other regions in the 
MLR. Recent study has shown that understanding of local culture is important to assess the climate 
change adaptation [61]. In future study, we need to consider the cultural knowledge on adaptation 
and investigate how it influences on agricultural systems in the MLR under climate change. Also, we 
need to expand our approach with other types of crops, cultivars, and crop cycle to different 
countries in the MLR. 
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