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Abstract: Most of the world’s population is concentrated in accumulated spaces in the form of cities,
making the concept of urban planning a significant issue for consideration by decision makers. Urban
vulnerability is a major issue which arises in urban management, and is simply defined as how
vulnerable various structures in a city are to different hazards. Reducing urban vulnerability and
enhancing resilience are considered to be essential steps towards achieving urban sustainability. To
date, a vast body of literature has focused on investigating urban systems’ vulnerabilities with regard
to natural hazards. However, less attention has been paid to vulnerabilities resulting from man-made
hazards. This study proposes to investigate the physical vulnerability of buildings in District 6 of
Tehran, Iran, with respect to intentional explosion hazards. A total of 14 vulnerability criteria are
identified according to the opinions of various experts, and standard maps for each of these criteria
have been generated in a GIS environment. Ultimately, an ordered weighted averaging (OWA)
technique was applied to generate vulnerability maps for different risk conditions. The results of the
present study indicate that only about 25 percent of buildings in the study area have a low level of
vulnerability under moderate risk conditions. Sensitivity analysis further illustrates the robustness of
the results obtained. Finally, the paper concludes by arguing that local authorities must focus more on
risk-reduction techniques in order to reduce physical vulnerability and achieve urban sustainability.

Keywords: urban sustainability; urban physical vulnerability; intentional explosion hazards; fuzzy
set theory; multi-criteria decision analysis (MCDA); geospatial information systems (GIS)

1. Introduction

The world population continues to shift to urban areas. Cities are loci of capital accumulation,
economic growth, political power, social and cultural activities, and technological innovation [1]. This
high level of concentration of resources and activities makes cities potentially vulnerable to a variety of
natural and man-made risks and disasters. Identifying potential risks and developing mitigation plans
to reduce urban vulnerability is critical for achieving urban sustainability and should be an integral
part of urban planning and design [2,3]. Urban vulnerability can be defined as the extent of the damage
that occurs to the components of a city. Urban vulnerability is a function of the severity and frequency
of hazards, the sensitivity of the urban system, and the city’s adaptive capacity [4]. In general, there
are different types of vulnerability, and these can be divided into four main categories: physical, social,
economic, and environmental [5]. Depending on the origin of the disaster, vulnerability can also be
classified as either natural or man-made [6]. Among other things, what makes hazards major threats
is the lack of preparedness to deal with them, so an effective way to deal with these hazards is to
create and maintain preparedness [7]. One of the basic ways to create preparedness for hazards is by
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improving awareness of the degree of vulnerability in different locations and areas of the city. This
study aims to analyze the vulnerability of buildings, as major physical urban elements, to intentional
explosions, which are a common form of man-made hazard. The vulnerability of the building stock in
District 6 of Tehran is evaluated under different risk conditions, varying from the most optimistic to
the most pessimistic scenario.

This study only considered the modelling of physical vulnerability to an explosion hazard (one
of the man-made hazards). Among various physical components, only the vulnerability of buildings
has been of interest in this research. Vulnerability is a function of several criteria; therefore, this
study used a multi-criteria decision making (MCDM) model. MCDM or multiple-criteria decision
analysis (MCDA) is a subdiscipline of operations research that explicitly evaluates multiple conflicting
criteria in the decision-making process. MCDM is concerned with structuring and solving decision
and planning problems involving multiple criteria [8]. The difficulty of the problem originates from
the presence of more than one criterion.

However, many of the criteria related to vulnerability have a spatial nature, such that they are
a function of the geographical positions of buildings. Hence, geospatial information systems (GIS)
have a very high potential for storing, editing, and analyzing spatial data, and providing multiple
applications for modelling vulnerability. Therefore, in this study, a combination of MCDM and GIS
(GIS-based MCDM), as one of the most common models for vulnerability evaluation, is considered.
Examples of spatial criteria include the distance from the facilities network and the distance from
petrol pumps; these criteria and others are described in the criteria extraction section. According to the
above description, the vulnerability of buildings is a function of their geographical position. Therefore,
this study used spatial modelling for evaluating vulnerability.

Since many people may be living in the buildings, when they are damaged the population can
be seriously affected. Such damage will also have many secondary consequences, including human
loss and social and economic vulnerability. Although the purpose of this study is modelling physical
vulnerability, the results can be used for modelling other types of vulnerability, (e.g., social, economic
and environmental). For instance, based on the number of residents in each building, we can estimate
the vulnerable population and the resulting human casualties.

GIS-based, multi-criteria decision analysis techniques have been used extensively to evaluate
disaster risk, prioritize risks, and inform land-use planning. Studies employing such techniques are
mainly focused on the vulnerability of cities to natural hazards such as floods and earthquakes [9–17].
Many investigations have been conducted regarding combining the GIS-MCDM models and fuzzy set
theory [18–25]. Risk management is an integral part of urban crisis management [26] and many studies
have been undertaken on the application of GIS in crisis management and modelling vulnerability in
different risk conditions [27–33]. Risk management uses various different techniques and models; in
this research, ordered weighted averaging (OWA) has been employed as one of the commonly-used
aggregation operators. In recent years, there has been much progress in this area and many researchers
have used the OWA operator [34–39].

As previously stated, use of certain techniques for estimating risks and losses related to man-made
and technological hazards such as explosions and blast loads is limited (with respect to natural
hazards). Arguing that it is important to enhance the blast resistance of civilian structures, Tadepalli
and Mullen [40] proposed a model for risk assessment, damage analysis, and loss estimation. Their
GIS model incorporates building data such as the type of structure, occupancy level, number of storeys,
type of glazing, economic value of the building and its contents, and the maximum number of building
occupants. Damage levels were quantified as low, moderate, or high. Once the degree of damage in a
building due to a blast event was determined, the performance levels of the building were classified
into levels for immediate occupancy, life safety, and collapse prevention. The loss due to a blast event
was computed using a methodology similar to that used for seismic loss estimation. The premise was
that the range of damage states which might occur due to a blast is similar to those which occur during
earthquakes. The results of a simulation analysis conducted for buildings located at the University
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of Mississippi were visualized in the GIS environment. The results of this type of simulation study
can be used for blast-hazard mitigation. Kulawiak and Lubniewski [41] used a web-based GIS to
spatially visualize the impact of a simulated blast on a railway station in Gdansk, Poland. Results
indicated that this technique can reveal vulnerabilities in terms of the extent to which buildings and
critical infrastructure can be damaged, and the costs and injuries that may occur. Ma and Cheng [42]
developed a GIS-based quantitative risk analysis (QRA) model and simulated the potential damage to
buildings as a result of a natural gas pipeline explosion. The process incorporated an assessment of the
failure rates of integrated pipeline networks, a quantitative analysis model of accident consequences,
and an assessment of individual and societal risks. Firstly, the failure rates of the pipeline network
were calculated using empirical formulas influenced by parameters such as external interference,
corrosion, construction defects, and ground movements. Secondly, the impacts of accidents due to gas
leakage, diffusion, fires, and explosions were analyzed by calculating the area subject to instances of
poisoning, burns, and death. Lastly, based on the previous analyses, individual risks and social risks
were calculated. The potential damage was divided into four categories, i.e., minor damage, minor
structural damage, major structural damage, and partial demolition. The proposed GIS-based QRA
system proved to be promising for use in planning for urban risk management of gas pipeline networks
on a macro-scale. By combining GIS index modelling and risk assessment methods, Armenakis and
Nirupama [43] developed a spatial risk assessment method to estimate the spatial risks of hazards
caused by a propane explosion. Their work investigated the propane explosion that occurred on
the 10 August 2008 at 3:30 a.m. in a Toronto neighborhood, as a case study to estimate spatial risk
in the neighborhood around the explosion site using a GIS-based approach. The total vulnerability
was estimated based on social, physical, and economic vulnerabilities. This research demonstrated
the utility of risk assessment using GIS techniques for prioritizing spatial risks and estimating the
potential impacts based on proximity to the blast source. Integrating such techniques into land-use
planning is essential for disaster risk reduction in urban areas. Matijosaitiene and Petriashvili [44], by
investigating explosion-related terrorist events in different countries, concluded that terrorists’ choice
of targets was firmly based on a series of criteria. Therefore, the researchers identified these factors
via questionnaires, and the most effective factors were identified using automatic regression analysis.
The authors demonstrated that crime prevention through environmental design principles—such as
minimizing vehicle access points to buildings, separating public and private domains, and ensuring
that buildings with identical functions in a given area are highly distributed—can have a significant
impact on whether a site is likely to be selected as a target for terrorist attacks.

On the other hand, research on the vulnerability of the built environment to blast and explosion
is scarce in the Iranian context. Integrating GIS and analytic hierarchy process (AHP) techniques,
Azizi et al. [45] evaluated the vulnerability of urban blocks in the 11th district of Tehran Municipality.
Vulnerability was evaluated using 13 criteria. Ultimately, a vulnerability map was generated for the
studied structural blocks, in which 8% of structural blocks had low vulnerability, 64% had medium
vulnerability, and 28% had high vulnerability. Results also indicated that antiquity of structures and
high structural density were the main factors inducing vulnerability in the buildings of Tehran’s 11th
district. This study was developed based on the hypothesis that vulnerability to air raids can be
modelled in a similar way to vulnerability to earthquakes. Accordingly, no specific criterion relating
to explosions was incorporated into the study. Other limitations of the study were that the model
was developed based on certainty conditions (no inclusion of uncertainty factors) and there was no
sensitivity analysis. Torabi and Mehdi Nezhad [46] modelled road network vulnerability (among
other physical components of cities) in the 6th district of Tehran Municipality, Iran. The Delphi
method was used for extraction of criteria, along with the IHWP method for allocating weights to the
different criteria. After identifying 11 vulnerability criteria and their corresponding weights, criterion
maps were combined using weighted linear combination (WLC) to generate a final vulnerability map.
According to the vulnerability map, 8% of road networks were of low vulnerability, 55% had medium
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vulnerability, and 37% were of high vulnerability. Similarly to the previous study, uncertainty was not
considered during the modelling phase and model validation was not performed.

As can be understood from the above paragraphs, existing research is mainly focused on
single-point blast events, with a special focus on critical infrastructures such as railways and street
networks, and less attention has been paid to structures at a relatively large scale (for instance
at a district level). Blast-hazard risk management and mitigation in urban areas warrants further
investigation. The present study builds on existing research by demonstrating how GIS-based MCDA
can be used to estimate vulnerability at the district level to intentional explosion hazards. Fuzzy sets
theory is utilized to take account of uncertainty conditions in the decision-making process. Compared
to existing research, this study uses a more comprehensive list of vulnerability criteria. In this study,
vulnerability maps were generated for different risk conditions (varying from the most optimistic to
the most pessimistic scenario). However, most existing studies produced only a single vulnerability
map as output. The main advantage of modelling under different risk conditions is gaining knowledge
about the minimum and maximum vulnerability of buildings. In fact, this information is essential
for risk management which is an integral part of urban crisis management [26]. Therefore, the final
outcome of this study is a series of vulnerability maps for addressing one of the needs of urban
planners and managers in achieving sustainable development. In addition to vulnerability maps, the
main causes of vulnerability and some solutions to the problem of reducing vulnerability are presented
in this study. This is in contrast to most research which mainly focuses on producing vulnerability
maps and pays less attention to the reasons behind vulnerabilities and approaches for alleviating these
issues. The authors of the present study attempted mainly to identify vulnerability criteria and to
weight them using experts’ opinions. By identifying these criteria and their weights, vulnerability
maps were generated using GIS and MCDM techniques for different risk conditions. A sensitivity
analysis was finally performed as a means of validating the model.

The paper proceeds with a detailed description of the study area in Section 2, and the methodology
and research framework in Section 3. The results of the study are presented and discussed in Section 4.
The results of the sensitivity analysis are given in Section 5. The paper concludes with notes on the
possible implications of the study and suggestions for future research.

2. Study Area

District 6 of Tehran is located in the central part of the city. With an area of about 20 km2 (3% of the
total city area), it accommodates about 242,302 people (2.8% of the total city population) [47]. Figure 1
shows the study area, including the buildings and the main road networks. Descriptive information
relating to the buildings (including the structure, age, height, and building density) can be seen in the
form of criterion maps. The census information relating to District 6 is shown in Table 1.

Table 1. Census information of study area.

Year
Total

Population
Young
(0–14)

Middle-Age
(15–65)

Old (More
Than 65) Male/Female

Population Growth Average
Household

IncomeNatural Migration

2016 242,302 51,174 175,717 15,411 116,188/126,114 1478 10,844 9260$

2011 229,980 45,766 169,955 14,259 110,751/119,229 2729 7020 9010$

2006 217,127 40,711 162,845 13,571 110,734/106,393 1211 1893 8490$

The supplementary results obtained from the 2016 National Population and Housing Census,
conducted by the Statistical Center of Iran, showed that for the population of Tehran in the last 10 years,
migration was the main reason behind population growth. District 6 of Tehran, as one of the most
populous districts of this city, is not an exception. Immigration has made a significant contribution
to population growth in the district over the past 10 years. Saving the lives of humans should be
the priority for urban officials and they should adopt some fundamental measures to reduce the
vulnerability to a variety of hazards. This could be of special importance in this district of Tehran.
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A wide range of critical facilities—including embassies, ministry buildings, company
headquarters, institutions of higher education, hospitals, and public and private organizations—are
located in the district. This makes District 6 particularly important in the context of local and national
policy-making and any disaster occurring in this district could have far-reaching ramifications, both
within and beyond its physical boundaries. A total number of 28,228 building parcels were identified
and considered as alternatives in the multi-criteria evaluation (see Figure 1).

3. Methodology

There are several models for evaluating vulnerabilities that can be generally classified into the
two categories of data-driven and knowledge-driven models [48]. In data-driven models, by analyzing
the existing data, a vulnerability model can be developed. Therefore, such models are practicable
when a history of the data related to vulnerability is available. The most widely used data-driven
models and techniques are neural networks, fuzzy rule-based systems, and genetic algorithm-based
modelling [49]. Among the most common data-driven vulnerability models are seismic vulnerability
models, which benefit from the presence of numerous seismic centers in many parts of the world that
continually monitor and record earthquakes. Therefore, a large database of earthquake information
(such as location, time, and magnitude of earthquakes) is always available. Since a history of explosion
data is not available in the study area, data-driven models have not been used in the present study.

On the other hand, knowledge-driven models are of special importance when there are not
enough data available for modelling and a model is designed based on existing knowledge and experts’
opinions. This type of model is therefore suitable for the present study. In the present research, physical
vulnerability modelling of urban buildings with respect to explosion hazards is considered, with the
assumption that explosion data (such as location, time, and vulnerability) are not available for the
study area, and therefore, the modelling must be carried out using the knowledge and opinions of
experts. Considering that vulnerability is a multi-criteria function, multi-criteria analysis models based
on knowledge and experts’ opinions are used in this research. The model was designed and developed
according to the characteristics of the study area using experts’ opinions. In addition, during the
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design of the model, content from the National Building Regulations, which were considered to be the
basis for designing and building the studied buildings, was used. The main concern of the researchers
in this study was firstly to identify the criteria influencing the vulnerability of buildings with respect
to explosion; secondly, to classify these criteria based on the degree of vulnerability; and thirdly, to
consider the relative importance of the criteria to one another. By identifying the criteria and their
weights, MCDM techniques were used to determine the final vulnerability. The purpose of this study
was not to propose or develop a MCDM technique, but rather to use existing MCDM techniques to
develop a vulnerability assessment model. MCDM models are generally divided into multi attribute
decision making (MADM) and multi objective decision making (MODM) types [50]. The present study
makes use of MADM models, since the alternatives relating to multi-criteria evaluation (of buildings)
have been explicitly specified.

The overall research framework is illustrated in Figure 2. The first step in the modelling is
the extraction of vulnerability criteria. Following this, standard criterion maps were generated and
normalized. These standard maps were produced at a scale of 1:2000 (using existing urban cadastral
maps at the same scale) and they illustrate the vulnerability of buildings in the study area against each
of the vulnerability criteria.
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This study identified various criteria and their relative importance with respect to one another by
using experts’ opinions. It is obvious that if a different set of experts had been used, the quantitative
results may have differed slightly. Changes in the results could be owing to uncertainty in the experts’
opinions, which, in turn, could be due to the use of the linguistic variables used to draw out those
opinions. To manage such uncertainties, fuzzy sets theory was applied [22]. However, this also has
some deficiencies, for instance, in terms of expressing the membership degree with a real number. To
address this issue, type-2 fuzzy sets or intuitionistic fuzzy sets can be used [51].

Calculation of the weights of the criteria was performed by extracting the experts’ opinions and
conducting a pairwise comparison. A number of methods exist for assigning weights to criteria such
as ranking, rating, pairwise comparison, and trade-off analysis [52]. Considering the large number of
criteria in this study, it was not possible to compare all the criteria simultaneously. Therefore, their
relative importance could only be found using pairwise comparison methods. One of the most popular
weighting methods based on pairwise comparison is the AHP method. This study used the Chang
extent analysis (CEA) method, which is a fuzzy analytic hierarchy process (fuzzy AHP). There are a
number of reasons justifying the use of this method, including the low complexity of the structure of
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the vulnerability criteria in this study and the high accuracy of the technique [53]. It is also possible
to calculate the consistency ratio using this method. Another reason for using this method was the
fact that it is able to simultaneously compare qualitative and quantitative criteria. In addition, the
calculated weights in this method are no longer fuzzy numbers, and therefore do not need any further
processing for defuzzification. Buckley’s geometric averaging can be a suitable substitute for the
CEA if trapezoidal fuzzy numbers are used instead of triangular fuzzy numbers [54]. If the criterion
structure is more complex, the use of a fuzzy analytic network process (fuzzy ANP) is recommended.

Given the criteria and their weights, the vulnerability map can be generated by the weighted
combination of criterion maps. There are several methods for providing a decision rule for combining
criterion maps (such as WLC, TOPSIS, VIKOR, ELECTRE, PROMETHEE, DEMATEL, etc.). In this
study, the OWA method has been used. The reason for using the OWA method is its ability to
generate vulnerability maps under different risk conditions, while other existing methods can only
produce a single vulnerability map. Generating vulnerability maps for different risk conditions can
be beneficial in many applications of crisis management and urban planning in order to achieve
sustainable development, which is also the main objective of this research.

Sensitivity analysis was used for validation and robustness-checking of results. Sensitivity
analysis is an integral part of MCDM and is used in many models whose efficiency has been well
confirmed [55]. Other methods, such as error propagation analysis and Monte Carlo simulation, can
also be used instead of sensitivity analysis. All the steps and methods of the research are given in more
detail below.

3.1. Expert Survey for Extracting Vulnerability Criteria

In this study, the vulnerability criteria were derived based on a literature review and on experts’
opinions. Accordingly, a report of the previous studies was prepared by the authors and given
to experts to evaluate, improve, and complete. All the selected experts had prior knowledge and
experience related to the study theme. General information about the experts is provided in Table 2.

Table 2. Information about the experts.

Field of Study Level of Education Organization/Institute

Structural Engineering PhD NIT University
Structural Engineering PhD student KNTU University

Urban Planning PhD Tehran Municipality
Urban Planning MSc Tehran Municipality
Passive Defence MSc MUT University
Passive Defence PhD student Tehran University

Architectural Engineering PhD Shahid Beheshti University
Architectural Engineering MSc Tehran Municipality

In the extraction stage of the multi-criteria decision making, a number of principles have been
followed. These principles are that the criteria used should be: complete, operational, decomposable,
non-redundant, and minimal [55]. Finally, 14 vulnerability criteria were extracted, as shown in Table 3.
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Table 3. Physical vulnerability criteria.

Vulnerability Criteria Vulnerability Levels

Very Low Low Moderate High Very High

Degree of importance Very low important Low important Important Sensitive Critical

Surface area of the site (m2) More than 500 400–500 300–400 200–300 Less than 200

Distance to petrol station (m) More than 400 300–400 200–300 100–200 Less than 100

Distance to gas storage
facilities (m) More than 400 300–400 200–300 100–200 Less than 100

Distance to electrical facilities (m) More than 300 225–300 150–225 75–150 Less than 75

Distance to water facilities (m) More than 300 225–300 150–225 75–150 Less than 75

Distance to telecommunications
facilities (m) More than 300 225–300 150–225 75–150 Less than 75

Building density (%) Less than 60 60–120 120–180 180–240 More than 240

Age of buildings (year) Less than 5 5–15 15–25 25–35 More than 35

Width of pathways (m) More than 40 25–40 12–25 6–12 Less than 6

Quality of buildings New house Under construction Common Restorable Old house

Height of buildings (m) Less than 6 6–15 15–30 30–45 More than 45

Construction materials Concrete Metal Brick–Iron Masonry others

Number of adjacent buildings 0 1 2 3 More than 3

Since in most intentional man-made disasters the targets are predefined and prioritized, the
“degree of importance” is the most important criterion. This criterion implies that the potential
targets of intentional attacks are often prioritized according to their socio-economic and/or political
importance. In this study, depending on their “degree of importance”, buildings are divided into five
main categories, namely, critical, sensitive, important, of low importance, and of very low importance.
Examples of facilities falling under each category are shown in Table 4. This classification has been
made according to the stipulations of the national building regulations.

Table 4. Categorizing buildings based on their degree of importance.

Degree of Importance Land Uses

Critical
Critical infrastructures, fire stations, petrol stations, water, electricity, gas and
telecommunications facilities, large hospitals, military facilities (key buildings), ministries,
central banks and key banks, and transport terminals.

Sensitive
Metro stations, important banks, very important administrative centers, important
technical and engineering services, Sepah buildings, major commercial centers, important
disciplinary centers, important hotels, doctors’ buildings, hospitals, and large clinics.

Important

Important administrative centers, fairly important military centers, important airline
agencies, important warehouses, day markets, great universities, military bases,
commercial complexes, factories, police buildings, important theatres, and important
religious places.

Low Importance

Travel agencies, public parking, boarding houses, restaurants, government production
centers, educational centers, car repair shops, photo shops, local religious centers, local
technical and engineering services, medical centers, small universities, Sepah local offices,
cultural centers, etc.

Very Low Importance
Uncultivated lands, pools, green spaces and parks, restaurants, government and non-profit
schools with a small area, small pharmacies, cinemas and small cultural centers, embassies,
gyms, neighborhood-scale commercial centers, hotels, etc.

3.2. Generating Criterion Maps

Criterion maps in this study are the maps indicating the vulnerability of buildings in the district
against each vulnerability criterion (Figure 3). Each criterion map contains 28,228 building units
generated from maps at a scale of 1:2000. Since the qualitative and quantitative criteria used in this
study are measured on different scales, all the criterion maps were normalized, and the degree of
vulnerability of buildings (against each criterion) is shown by a real number that falls within a fixed
range between zero and one.
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Various methods exist for normalizing vulnerability maps, for example, linear scale
transformation, the value function approach, the utility function approach, the probabilistic approach,
revised probabilistic and fuzzy set membership [55]. Given that no special function was used for
the normalization of the data and also that no probabilistic methods were used for modelling in the
present study, the method of linear scale transformation was used as the simplest normalization method.
The min-max scaling method was used for the purpose of normalization via the following equation:

x′ij =
xij − xmin

xmax − xmin
(1)

For the purpose of illustration, the criterion maps are generated for five different degrees of
vulnerability, ranging from ‘very low’ (0 to 0.2) to ‘very high’ (0.8 to 1). All maps were generated using
ESRI’s ArcGIS 10.3 software (Esri, Redland, CA, USA).
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3.3. Weighting Criteria

In this study, pairwise comparison of the criteria using the experts’ opinions is used for assigning
weights (Table 6). As a result of using this method, uncertainties associated with the subjective
judgements of the experts are involved and should be considered in the calculations. The experts
used linguistic variables for pairwise comparison of criteria and for expressing their preference for
(the importance of) one criterion over another, and this procedure is associated with uncertainties.
The uncertainties caused by linguistic variables are handled using fuzzy logic [22]. As mentioned,
in this study Chang’s extent analysis, which is one type of fuzzy analytical hierarchy process (AHP)
method, is used.

The linguistic variables and their corresponding triangular fuzzy numbers are shown in Table 5.
In Table 6, which shows the matrix of pairwise comparisons, verbal variables are shown with numbers
from 1̃ to 9̃ in order to save space.

Table 5. Linguistic variables, pairwise comparison numbers, and their equivalent triangular fuzzy
numbers [56].

Linguistic Variable Fuzzy
Number

Inverse Fuzzy
Number

Triangular Fuzzy
Number

Inverse Triangular
Fuzzy Number

Equal importance 1̃ 1̃ (1, 1, 1) (1, 1, 1)
Intermediate importance 2̃ 2̃−1 (1, 2, 3) (1/3, 1/2, 1)

Low importance 3̃ 3̃−1 (2, 3, 4) (1/4, 1/3, 1/2)
Intermediate importance 4̃ 4̃−1 (3, 4, 5) (1/5, 1/4, 1/3)

Medium importance 5̃ 5̃−1 (4, 5, 6) (1/6, 1/5, 1/4)
Intermediate importance 6̃ 6̃−1 (5, 6, 7) (1/7, 1/6, 1/5)

High importance 7̃ 7̃−1 (6, 7, 8) (1/8, 1/7, 1/6)
Intermediate importance 8̃ 8̃−1 (7, 8, 9) (1/9, 1/8, 1/7)

Extremely high importance 9̃ 9̃−1 (9, 9, 9) (1/9, 1/9, 1/9)

According to Wang et al. [57], Chang’s extent analysis, whose final outputs are the relative weights
of criteria, has five basic steps as follows:

Step 1: Formation of a pairwise comparison matrix with triangular fuzzy numbers (Mn×n) (where n is
the number of criteria)

M̃n×n =

 m̃11 . . . m̃1n
...

. . .
...

m̃n1 · · · m̃nn

 =

 (l11, m11,u11) . . . (l1n, m1n,u1n)
...

. . .
...

(ln1, mn1,un1) · · · (lnn, mnn,unn)

 (2)

Step 2: Calculating the fuzzy synthetic geometric mean of each criterion using the following equation
for (S̃i) (where i and j are the number of rows and columns, respectively)

S̃i =
n

∑
j=1

Mij ⊗
[

n

∑
i=1

n

∑
j=1

Mij

]−1

, i = 1, 2, ..., n. (3)

n

∑
j=1

Mij = (
n

∑
j=1

lij,
n

∑
j=1

mij,
n

∑
j=1

uij) (4)

[
n

∑
i=1

n

∑
j=1

Mij

]−1

= (
1

n
∑

i=1

n
∑

j=1
uij

,
1

n
∑

i=1

n
∑

j=1
mij

,
1

n
∑

i=1

n
∑

j=1
lij

) (5)
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In Chang’s extent analysis, if two triangular numbers M̃1 = (l1, m1, u1) and M̃2 = (l2, m2, u2) are
considered, mathematical operators are defined as

M1 + M2 = (l1 + l2, m1 + m2, u1 + u2) (6)

M1 ×M2 = (l1 × l2, m1 ×m2, u1 × u2) (7)

M−1
1 = (

1
u1

,
1

m1
,

1
l1
), M−1

2 = (
1
u2

,
1

m2
,

1
l2
) (8)

It should be noted that the product of two triangular fuzzy numbers or the reverse of a triangular
fuzzy number is not a triangular fuzzy number. These equations show an approximation of the actual
product of two triangular fuzzy numbers and the inverse of a triangular fuzzy number. Thus, S̃i will
be calculated as

S̃i =
n

∑
j=1

Mij ⊗
[

n

∑
i=1

n

∑
j=1

Mij

]−1

=


n
∑

j=1
lij

n
∑

i=1

n
∑

j=1
uij

,

n
∑

j=1
mij

n
∑

i=1

n
∑

j=1
mij

,

n
∑

j=1
uij

n
∑

i=1

n
∑

j=1
lij

 (9)

Step 3: Calculating the magnitudes or priorities of S̃i with respect to each other (V(M̃i ≥ M̃j)),
according to the equation

V(M̃i ≥ M̃j) = Sup
y≥x

[
min(µM̃1

(x), µM̃2
(y))

]
(10)

This value is obtained for triangular fuzzy numbers from the equation

µ(d) = V(M̃i ≥ M̃j) =


1 mi ≥ mj
0 lj ≥ ui

uj−li
(uj−mj)−(mi−li)

otherwise
(11)

In this equation, d represents the coordinates of the highest point of intersection between µM̃1
and

µM̃2
as shown in Figure 4 and its value is derived from the equation

hgt(M̃i ∩ M̃j) =
uj − li

(uj −mj)− (mi − li)
(12)

Step 4: Calculating the magnitude of each S̃i compared to S̃i, that can be calculated for k fuzzy numbers
through the equation

V(M̃ ≥ M̃1, M̃2, ..., M̃k) = minV(M ≥ Mi) i = 1, 2, ..., k (13)

The weight vector is obtained using the equation

W ′ = (w′1, w′2, ..., w′n)
T
= (d′(A1), d′(A2), ..., d′(An))

T (14)

where d′(Ai) = minV(Si ≥ Sk) k = 1, 2, ..., n; k 6= i
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Table 6. Fuzzy pairwise matrix of vulnerability criteria.

Degree of
Importance

Surface
Area of
the Site

Distance
to Gas
Station

Height of
Buildings

Number
of

Adjacent

Distance
to Gas

Storage

Building
Density

Distance
to

Electrical

Quality of
Buildings

Distance
to Water

Age of
Buildings

Construction
Materials

Distance to
Telecommunications

Width of
Pathways

Degree of
importance 1̃ 4̃ 2̃ 2̃ 9̃ 2̃ 3̃ 2̃ 2̃ 2̃ 5̃ 3̃ 2̃ 2̃

Surface area of
the site 4̃−1 1̃ 3̃−1 3̃−1 3̃ 3̃−1 2̃−1 2̃−1 2̃−1 2̃−1 2̃ 2̃−1 2̃−1 3̃−1

Distance to gas
station 2̃−1 3̃ 1̃ 2̃ 8̃ 1̃ 3̃ 1̃ 2̃ 1̃ 4̃ 3̃ 2̃ 2̃

Height of
buildings 2̃−1 3̃ 2̃−1 1̃ 7̃ 2̃−1 2̃ 2̃−1 1̃ 2̃−1 4̃ 3̃ 2̃−1 1̃

Number of
Adjacent 9̃−1 3̃−1 8̃−1 7̃−1 1̃ 7̃−1 2̃ 6̃−1 6̃−1 5̃−1 2̃−1 4̃−1 5̃−1 8̃−1

Distance to gas
storage 2̃−1 3̃ 1̃ 2̃ 7̃ 1̃ 3̃ 1̃ 2̃ 1̃ 4̃ 2̃ 2̃ 2̃

Building density 3̃−1 2̃ 3̃−1 2̃−1 2̃−1 3̃−1 1̃ 3̃−1 2̃−1 2̃−1 3̃ 2̃ 2̃−1 3̃−1

Distance to
electrical 2̃−1 2̃ 1̃ 2̃ 6̃ 1̃ 3̃ 1̃ 2̃ 1̃ 3̃ 2̃ 1̃ 2̃

Quality of
buildings 2̃−1 2̃ 2̃−1 1̃ 6̃ 2̃−1 2̃ 2̃−1 1̃ 2̃−1 3̃ 2̃ 2̃−1 1̃

Distance to water 2̃−1 2̃ 1̃ 2̃ 5̃ 1̃ 2̃ 1̃ 2̃ 1̃ 3̃ 2̃ 1̃ 2̃
Age of buildings 5̃−1 2̃−1 4̃−1 4̃−1 2̃ 4̃−1 3̃−1 3̃−1 3̃−1 3̃−1 1̃ 2̃−1 3̃−1 4̃−1

Construction
materials 3̃−1 2̃ 3̃−1 3̃−1 4̃ 2̃−1 2̃−1 2̃−1 2̃−1 2̃−1 2̃ 1̃ 2̃−1 2̃−1

Distance to
Telecommunications 2̃−1 2̃ 2̃−1 2̃ 5̃ 2̃−1 2̃ 1̃ 2̃ 1̃ 3̃ 2̃ 1̃ 2̃

Width of
pathways 2̃−1 3̃ 2̃−1 1̃ 8̃ 2̃−1 3̃ 2̃−1 1̃ 2̃−1 4̃ 2̃ 2̃−1 1̃

Weights 0.149 0.034 0.11 0.071 0.017 0.107 0.042 0.095 0.063 0.092 0.023 0.042 0.084 0.071

Consistency Ratio = 0.039.
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Step 5: At this stage, the calculated weights should be normalized using the equation

wi =
w′i

n
∑

i=1
w′i

(15)

It should be noted that one of the most important steps in AHP and fuzzy AHP is calculating
the consistency ratio of the pairwise comparison matrix. This rate is also calculated in this study.
Various methods have been proposed for calculating the consistency ratio in fuzzy AHP. One method
is defuzzification of pairwise comparison matrix elements using one of the available methods and
calculation of the consistency ration with the classic method [58]. In this case, a consistency ratio
lower than 0.1 shows acceptable pairwise comparison with respect to the experts, (i.e., the experts’
opinions have acceptable consistency with each other) [59]. Various methods have been presented for
defuzzification of fuzzy numbers. In this study, defuzzification of the center of gravity has been used.
The best non-fuzzy performance (BNP) for a triangular fuzzy number M̃ = (l, m, u) is achieved by a
defuzzification process using the center of gravity, calculated using the equation [60]

BNP = l +
(u− l) + (m− l)

3
(16)

After defuzzification of the pair-wise comparison matrix (M), the consistency ratio can be
calculated. Initially, using Equations (17) and (18), the eigenvector (λ) of the pairwise matrix
is calculated.

|M− λI| = 0 (17)

(M− λmax I)×W = 0 (18)

By identifying the eigenvector and using its maximum value (λmax), the consistency index and the
consistency ratio can be determined using Equations (19) and (20).

CI =
λmax − n

n− 1
(19)

CR =
CI
R.I

(20)

where n is the number of criteria, i.e., 14. Table 7 gives the RI (random index) for different values of n.
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Table 7. Values of the random index (RI) [61].

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R.I 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.53 1.55 1.57 1.58

All calculations in this research have been performed using MATLAB 8.1 (MathWorks, Natick, MA,
USA) and Microsoft Excel software (Microsoft, Redmond, WA, USA). The final weights of criteria are
shown in Table 6. Moreover, a consistency ratio of 0.039 is obtained, indicating acceptable consistency
of the experts’ opinions.

3.4. Combination of Criterion Maps

When the generation of criterion maps is completed, a suitable decision rule should be used to
combine the maps and develop the eventual vulnerability map. Weighted linear combination (WLC) is
the simplest combination operator which functions under moderate risk conditions (neutral conditions)
and provides the maximum balance between the criteria [36]. However, since the objective here is
to generate different vulnerability maps under different risk conditions, weighted-ordered weighted
averaging (W-OWA) is used for combining the criterion maps. The W-OWA method involves using
two types of weights: ‘criterion weights’ which were calculated in the previous section and ‘order
weights’ which are exclusive to the OWA operator [62]. The main difference between criterion weights
(w) and order weights (v) is that the former weights are identical for all the features available in a given
layer, (i.e., buildings in this study), while the latter vary for different features that exist in a given layer.
Criterion maps are obtained by pairwise comparison between the criteria and remain constant under
different risk conditions. However, order weights vary depending on the risk-taking or risk-avoiding
behavior of the decision maker [63]. Therefore, it is the order weights which lead to the generation of
different vulnerability maps under different risk conditions. These two types of weights (criterion and
order) sum to unity as shown by the equation

n

∑
i=1

wi = 1, w ∈ [0, 1]n,
n

∑
i=1

vi = 1, v ∈ [0, 1]n (21)

In Equation (17), n indicates the number of criteria, i.e., 14 in this study. In the following sections,
the OWA operator, methods for calculating the ordered weight vector and the W-OWA operator
are explained.

3.4.1. OWA Operator

OWA was introduced by Yager in 1988. It is an aggregation operator F with a weighting vector (v),
such that the following equation holds for the components of an input dataset X = (x1, x2, ..., xn) [64]:

Fv(x1, ..., xn) =
n

∑
i=1

vi.bi, x ∈ In (22)

where bi is the i-th largest value in the dataset X that is sorted in a descending order and Vi is the i-th
element of the ordered weight vector of the OWA operator. Two characteristics are used for explaining
the behavior of the OWA operators: (1) the degree of ORness (or risk-taking) and (2) the extent of
trade-offs between the criteria. The degree of ORness shows the position of the OWA operator between
AND (min) and OR (max) operators. This degree is used to understand how much emphasis is put on
higher (better) or lower (worse) values of a set of criteria by decision makers. In other words, it is used
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to understand the extent to which decision makers tend to be optimistic or pessimistic. The degree of
ORness is defined using the equation [64]

ORness =
1

n− 1

n

∑
i=1

(n− i).vi, 0 ≤ ORness ≤ 1 (23)

Higher values of ORness indicate that the decision maker is more risk-taking or optimistic and
lower values mean that the decision maker is more pessimistic or risk-avoiding. Generally, ORness
values higher than 0.5 imply that the decision maker tends to be optimistic or a risk taker, an ORness
value equal to 0.5 indicates the neutrality of the decision maker and ORness values lower than 0.5 mean
that the decision maker tends to be pessimistic or a risk avoider. The closer the behavior of the OWA
operator is to that of the OR (or max) operator, the closer is its ORness to unity. However, if the behavior
of this operator is closer to that of the AND (or min) operator, its ORness is closer to zero. Therefore,
considering V∗ = (0, 0, 0, ..., 1)T as the weight vector of the AND operator, V∗ = (1, 0, 0, ..., 0)T as the
weight vector of the OR operator and VA = ( 1

n , 1
n , ..., 1

n ) as the weight vector of the weighted linear
combination (WLC) operator, we obtain

ORness(V∗) = 0, ORness(V∗) = 1, ORness(VA) = 0.5 (24)

ORness can also be calculated as ANDness = 1 − ORness.
The degree of trade-off between the criteria is the second characteristic associated with the OWA

operator. Trade-off refers to the interaction between the criteria and the extent to which they affect one
another. It can be defined using the equation [64]

trade− o f f = 1−
√

n
n− 1

n

∑
i=1

(vi −
1
n
)2, 0 ≤ trade− o f f ≤ 1 (25)

A broad range of trade-off and risk conditions can be identified regarding the two main attributes
of the OWA operator. A vulnerability map can also be produced for each of these two characteristics.
As Figure 5 shows, this wide range is situated within a triangular decision strategy space (Figure 5).Sustainability 2017, 9, 1274  18 of 29 
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As can be seen in Figure 5, minimum risk without balance, maximum risk without trade-off,
and average risk and maximum trade-off correspond to the AND operator, the OR operator, and
the weighted linear combination (WLC) operator, respectively. Therefore, various operators can be
generated between the two operators (AND operator and OR operator).
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3.4.2. Calculation of Weight Vector of the OWA Operator

When defining the OWA operators, it is essential to calculate the weight vector (V). Different
methods exist for calculating the weight of an OWA operator. Calculation using linguistic quantifiers
is used in this paper [66]

Vi = Q(
i
n
)−Q(

i− 1
n

), i = 1, ..., n (26)

where, i is the criterion number, n is number of criteria, and Q is a linguistic quantifier that reflects the
concept of the fuzzy maximum and is used to calculate the ordered weight vector [66]

Q(r) = rα, α > 0 (27)

Note that, as shown in the equation below, Q is closely related to the level of optimism [66]

ORness(v) =
1∫

0

Q(r)dr =
1∫

0

rαdr =
1

α + 1
(28)

If α > 1, then ORness (v) < 0.5. This indicates that the decision maker is risk-avoider or pessimistic.
If α = 1, then ORness (v) = 0.5, indicating the neutrality of the decision maker and if α < 1, then
ORness (v) > 0.5, indicating that the decision maker tends to be a risk-taker or optimistic. Since various
levels of optimism exist, a broad range of risk conditions between the AND and OR operators can
be defined. For each risk condition, vulnerability under the most pessimistic scenario (AND), the
most optimistic scenario (OR), and an infinite number of other scenarios that lie between these two is
examined. Linguistic quantifiers and corresponding α parameter and ORness degree are shown in
Table 8.

Table 8. Linguistic quantifiers and corresponding α parameter and ORness degree [67].

Quantifier At Least One Few Some Half Many Most All

α 0.0001 0.1 0.5 1 2 10 ∞
ORness 1 0.9 0.66 0.5 0.33 0.09 0

Operator OR WLC AND

A broad range of risk scenarios, with different optimism levels can be identified between the
AND operator and the OR operator. In addition, vulnerability related to each of these risk scenarios
can be evaluated under the most pessimistic scenario (AND), the most optimistic scenario (OR), and
an infinite number of other scenarios between these two.

3.4.3. W-OWA Operator

In a multi-criteria analysis, each criterion carries a weight. These weights are called criterion
weights and are identical for all features of a specific layer. In the W-OWA operator, in addition to
ordered weights which are associated with the OWA operator, criterion weights are employed for
aggregation purposes [68].

W −OWAi =
n

∑
j=1

 wi · vj
n
∑

i=1
wi · vj

 · zij (29)

where the order zi1 ≥ zi2 ≥ . . . . ≥ zin is obtained by arranging the values of each alternative (building)
for each of the criteria and wj is the criterion weight arranged following the order of zij values. As
mentioned earlier, the ordered weight vector can be produced using different methods, including the
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method associated with the linguistic quantifiers explained in the previous section. In this method,
proposed by Yager, criterion weights can be used for generating ordered weights using the equation [68]

vj =


j

∑
k=1

wk

n
∑

k=1
wk


α

−


j−1
∑

k=1
wk

n
∑

k=1
wk


α

(30)

Considering the above equations and under the condition
n
∑

j=1
wj = 1, we obtain the equation

W −OWAi =
n

∑
j=1

( j

∑
k=1

wk

)α

−
(

j−1

∑
k=1

wk

)α
.zij (31)

4. Results and Discussions

The OWA operator mentioned in the previous sections can be used to generate vulnerability
maps for different risk conditions (ranging from the most pessimistic to the most optimistic). These
vulnerability maps are illustrated in Figure 6. The maps present five different categories of vulnerability,
namely, ‘very low’, ‘low’, ‘moderate’, ‘high’, and ‘very high’.

As can be seen in Figure 6, in the most optimistic scenario, more than 50% of the buildings exhibit
very low levels of vulnerability. Under the most pessimistic scenario, about 90% of the buildings are
very highly vulnerable. The statistical analysis of vulnerability under different scenarios (conditions)
is presented in Figure 7.

According to Figure 7, when ORness = 0 (indicating the most optimistic scenario) approximately
48, 2, 21, 23, and 6% are categorized as having ‘very low’, ‘low’, ‘moderate’, ‘high’, and ‘very
high’ vulnerability respectively. A simpler presentation of these results can be found in Table 9.
It can be observed that under the most pessimistic scenario, only a few buildings exhibit low
levels of vulnerability and 11% and 89% of the buildings are categorized as having ‘high’ and ‘very
high’ vulnerability.

As is expected, the higher the degree of optimism of the decision taker, the lower the vulnerability
level (value) calculated for the buildings should be. The degree of optimism is, in fact, an indication
of the extent of proximity between the OWA and OR operators. As the degree of optimism increases
gradually, the number of buildings categorized as ‘very low’ vulnerability increases and the number
of those categorized as ‘very high’ vulnerability declines. Detailed statistical information about the
vulnerability of buildings under different degrees of optimism is shown in Figure 7. As vulnerability
carries a negative connotation, the most optimistic condition is indicative of a scenario where
vulnerability is at its minimum level. Conversely, the most pessimistic condition occurs when
vulnerability is at its maximum level.

As mentioned, one of the main purposes of this study is modelling vulnerability under
different risk conditions. The main advantage of modelling under different risk conditions (from the
most optimistic to the most pessimistic) is gaining knowledge about the minimum and maximum
vulnerability of buildings. In fact, this information is needed for risk management which is an integral
part of urban crisis management [26]. In contrast to the related works previously mentioned, the
present study has the benefit of producing multiple vulnerability maps for various risk conditions.
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Figure 7. Statistical analysis of vulnerability under various risk conditions.

Vulnerability maps, in both the optimistic (maximum risk) and pessimistic (minimum risk) views,
are of special importance for managers and urban planners. Vulnerability maps in the pessimistic view
(minimum risk) show the worst or maximum vulnerability of buildings in the city and therefore the
planners know that the condition will not be aggravated, and they assume that if they act based on
these maps, the vulnerability can be reduced and adequate measures can be adopted to protect the
city against the hazards. On the other hand, in some cases, adequate measures may not be adopted to
reduce the vulnerability and achieve the ideal state, but nevertheless minimum actions are needed
to reduce vulnerability. Vulnerability maps developed based on the optimistic viewpoint show the
minimum urban vulnerability. As mentioned, the model developed in this study can prepare maps for
different degrees of risk (between maximum and minimum). The choice of risk degree depends on the
approach followed by city managers and planners.
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Table 9. Criteria weights resulting from sensitivity analysis of the ‘degree of importance’ criterion

Degree of
Importance

Surface
Area of
the Site

Distance
to Petrol
Station

Height of
Buildings

Number
of

Adjacent
Buildings

Distance
to Gas

Storage
Facilities

Building
Density

Distance
to

Electrical
Facilities

Quality of
Buildings

Distance
to Water
Facilities

Age of
Buildings

Construction
Materials

Distance to
Telecommunications

Facilities

Width of
Pathways

Primary
Weights 0.1497 0.0340 0.1100 0.0705 0.0174 0.1062 0.0417 0.0954 00627 0.0918 0.0232 0.0418 0.0842 0.0714

Increase 10% 0.1647 0.0334 0.1081 0.0693 0.0171 0.1043 0.0410 0.0937 0.0616 0.0902 0.0228 0.0411 0.0827 0.0701
Decrease 10% 0.1347 0.0346 0.1119 0.0717 0.0177 0.1081 0.0424 0.0971 0.0638 0.0934 0.0236 0.0425 0.0857 0.0727
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Obviously, the desired risk preparation can only be achieved if the most pessimistic conditions are
used as a basis for planning and decision-making, and if proper measures are taken to minimize the
degree of vulnerability. The fact that, under the most pessimistic scenario, about 90% of buildings in
District 6 are highly vulnerable, should serve as a strong warning to the local authorities that reducing
vulnerability should be high on their agenda and urgent preparation and mitigation measures should
be taken in order to minimize potential losses.

Even under the most optimistic scenario, about 50% of buildings exhibit moderate or higher levels
of vulnerability and this is a clear indication of the urgent need for reducing physical vulnerability in
the study area. Providing strategies and action plans for reducing vulnerability is beyond the scope
of this paper. Here, the main intention is to raise awareness about the existing condition through
generating maps that illustrate vulnerability under different risk conditions.

The high level of physical vulnerability in the district can be explained by the presence of critical
facilities such as embassies and ministry buildings, high building density (higher than the average
density of the city), high rates of canopy closure (height to width ratio), and the relatively high age of
the building stock (over 50% of the buildings were built more than 25 years ago). However, it should
be noted that similar results have also been achieved by other researchers, for instance Azizi et al. [45],
although less attention has been paid to reducing vulnerability, which is among the issues investigated
in the present study. A more detailed look at the results reveals that the southern, and especially the
south-eastern, parts of the district are relatively more vulnerable than the other parts. This is mainly
because critical facilities such as the Ministry of Cooperatives, Labor, and Social Welfare; the Ministry
of Petroleum; the Ministry of Roads and Urban Development; and the Ministry of Industry, Mining,
and Trade are located in this part of the district. In addition, this part of the district features higher
density levels and older buildings.

Due to the high vulnerability of buildings in District 6 of Tehran, it is necessary for the authorities
to consider basic measures to reduce the vulnerability. Given the high concentration of important
centers in this area, decentralization is needed and applications of critical importance must be
transferred to areas with less vulnerability. In addition, owing to the high building density in the
study area, it is necessary for the municipality to reconsider the regulations relating to construction
and building permits. The other essential measure is retrofitting of old buildings, especially the oldest
of these.

Furthermore, the municipality has poor control over construction activities in the district, passive
defence principles are not appropriately taken into account and building regulations are often
contravened. These have all contributed to the high levels of physical vulnerability in the district and
should therefore be considered as major shortcomings that need to be addressed in the future.

5. Sensitivity Analysis

Evaluating the reliability of the results is an essential step of a multi-criteria decision analysis.
Different sources of error may impact the ultimate output of the models, (i.e., alternative rankings).
One of the most common techniques used for evaluating the results of multi-criteria decision-making
models (MCDM) is sensitivity analysis. Sensitivity analysis is conducted to ensure the overall reliability
and accuracy of the model. Generally, it refers to evaluating the degree to which the model outputs have
been influenced by input variables [69]. In MCDM, sensitivity analysis is carried out by examining how
changing the weights and values of the criteria affects the final rankings. In other words, the degree of
variation in the final outputs of the model (fixed results) is examined [70]. Criterion maps are assigned
based on expert opinions. Since this process involves a certain degree of subjectivity, it is possible that
some errors occur. If changing the criteria weights does not result in significant changes in the final
outputs, it can be concluded that the model outputs are accurate and reliable. To conduct a sensitivity
analysis, a ±10% change was applied to the weights of the criteria. For the sum of the weights to
remain equal to one, when the weight of a given criterion is changed, the weights of the rest should
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also be adjusted. The results of making changes to the weight of the ‘degree of importance’ criterion
are shown in Tables 10–12.

Table 10. Statistical analysis of vulnerability under various risk conditions with primary weights

Primary Weights ORness = 0 ORness = 0.25 ORness = 0.5 ORness = 0.75 ORness = 1

Very Low 48% 10% 7% 4.5% 0%
Low 2% 26% 19% 17% 0%

Moderate 21% 25.5% 33% 31.5% 0%
High 23% 28.5% 29% 32.5% 11%

Very High 6% 10% 12% 14.5% 89%

Table 11. Statistical analysis of vulnerability under various risk conditions after increasing weight of
‘degree of importance’.

Increasing Weight ORness = 0 ORness = 0.25 ORness = 0.5 ORness = 0.75 ORness = 1

Very Low 48% 10% 7% 5% 0%
Low 2% 26% 20% 17% 0%

Moderate 21% 25% 33% 32% 0%
High 23% 29% 29% 32.5% 11%

Very High 6% 10% 11% 13.5% 89%

Table 12. Statistical analysis of vulnerability under various risk conditions after decreasing weight of
‘degree of importance’.

Increasing Weight ORness = 0 ORness = 0.25 ORness = 0.5 ORness = 0.75 ORness = 1

Very Low 48% 10.5% 7% 4.5% 0%
Low 2% 26.5% 19% 16.5% 0%

Moderate 21% 26% 31% 30.5% 0%
High 23% 28% 30% 32.5% 11%

Very High 6% 9% 13% 16% 89%

The results of the sensitivity analysis show that no significant changes in the model outputs can
be seen under the most optimistic and most pessimistic conditions. Some changes can be observed
under the neutral condition (ORness = 0.5). However, these are not statistically significant (about 1%).
For the other criteria, changing the weights resulted in even less significant changes in the overall
results of the model. This indicates the robustness and reliability of the model outputs.

6. Conclusions and Future Suggestions

As mentioned earlier, one of the main objectives of urban planning is to protect the city against
a variety of hazards. One of the ways to protect the city against hazards is preparedness. One type
of information necessary for this preparedness is awareness of the degree of city vulnerability to
these hazards. In this study, the vulnerability maps could provide this awareness under different risk
conditions and scenarios. It is very important that the governor, city council, and other authorities
are aware of the city under their management, and by using vulnerability maps, they can adopt good
policies toward ensuring a safe and sustainable city.

Vulnerability analysis is essential for enhancing the capacity of communities to plan and prepare
for disruptive events. This study evaluated the physical vulnerability of buildings in District 6 of
Tehran to intentional disruptions. The vulnerability maps produced in this study can be used to identify
those areas that are in need of improvement and to prioritize allocation of the limited management
resources. The maps can also be used for other purposes such as site planning, land-use planning
and determining the optimum per-capita land-use standards. As the city is constantly changing, new
plans with different applications can lead to increasing or decreasing vulnerability. Before deciding to
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implement a plan, by using a vulnerability model (like the one developed in this study), the impact
of the plan on increasing or decreasing the city’s vulnerability can be determined; this can then
influence the decision of the authorities regarding implementation, non-implementation, or changes
in the project. In addition to the applications mentioned, physical vulnerability maps can be used
in the vulnerability assessment of social, economic and environmental aspects. For example, by
identifying the demographics of residents of each building at risk, the best place for building a shelter
can be determined.

Results of the vulnerability analysis indicate that, even in the most optimistic scenario (minimum
risk), about 50% of the buildings in the district are highly vulnerable to potential risk. Obviously,
if optimal preparation for disaster risks reduction is to be provided, the most pessimistic scenario
(highest risk) should be taken into account. Urban planning with the most pessimistic scenario in mind
is vital for minimizing risk and achieving a safe building environment.

The case study area is located in the center of the city and hosts a wide array of critical facilities
such as ministry buildings, embassies, public/private enterprises, etc. Therefore, appropriate measures
need to be taken to minimize its physical vulnerability as much as possible. Principles of passive
design can guide planners and local authorities on how to develop strategies for reducing physical
vulnerability and improving disaster resilience in the district. Some specific strategies that can be
applied are as follows: raising awareness of urban authorities of the extent of physical vulnerability
and developing integrated management strategies for reducing urban vulnerability, improving
control over construction activities and enhancing enforcement of building regulations, preventing
building construction above the approved floor-area ratios, revitalizing decaying urban neighborhoods,
improving the quality of street and pedestrian networks, (e.g., connectivity, accessibility, etc.),
providing open spaces that can be used as shelters, and reducing the concentration of critical facilities
in the district. Providing details about such strategies is beyond the scope of this study but should be
prioritized in future research.

Research on modelling the vulnerability of buildings to intentional attacks (explosions) is still
scarce and the issue warrants further investigation. It is suggested that other elements of the built
environment, such as street networks and critical infrastructure, should also be included in future
modelling studies. Furthermore, socio-economic and environmental dimensions of vulnerability to
explosion-related risks are also important and should be considered in future research. Since criteria
extraction, one of the most essential steps of the research, is conducted based on expert opinions,
group decision-making techniques can be utilized for reducing subjectivity/uncertainty and achieving
better and more realistic results. Further research is needed for better understanding of the uncertainty
involved in multi-criteria decision-making processes. For instance, over the past decades major
developments have occurred in the field of fuzzy logic, and new concepts such as type-2 fuzzy sets
and intuitionistic fuzzy sets have been introduced. These new developments can be employed in order
to further reduce uncertainties involved in the decision-making process.
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