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Abstract: This paper presents an integrative demand response (DR) mechanism for energy
management of appliances, an energy storage system and an electric vehicle (EV) within a
home. The paper considers vehicle-to-home (V2H) and vehicle-to-grid (V2G) functions for energy
management of EVs and the degradation cost of the EV battery caused by the V2H/V2G operation in
developing the proposed DR mechanism. An efficient optimization algorithm is developed based on
approximate dynamic programming, which overcomes the challenges of solving high dimensional
optimization problems for the integrative home energy system. To investigate how the participation
of different home appliances affects the DR efficiency, several DR scenarios are designed. Then,
a detailed simulation study is conducted to investigate and compare home energy management
efficiency under different scenarios.

Keywords: demand response; home energy management system; approximate dynamic programming;
vehicle-to-home; vehicle-to-grid

1. Introduction

As a key feature of the smart grid, demand response (DR) brings reliability and efficiency to
the electric system through reducing or shifting peak demand for energy [1]. Smart homes that can
monitor and control their usage of electricity in real time are considered to have the greatest potential
for DR [2]. Moreover, with more batteries and electric vehicles used in household environments,
the potential will be greater. To fulfill the full potential, efficient DR mechanisms and advanced
home energy management systems (HEMS) are crucial components and need to be studied and
designed carefully [3,4].

Currently, a large body of DR research on HEMS exists, and optimal operation of home appliances
considering users’ electricity cost or comfort in response to a dynamic electricity price is a major
concern. For example, in [5], a learning-based optimal DR policy for a heating ventilation and air
conditioning system (HVAC) is developed to minimize the electricity cost. In [6], an end-users’
comfort-oriented DR strategy for residential HVAC aggregation scheduling is investigated. In [7], the
DR capability of electrical water heaters (EWH) is evaluated for load-shifting and balancing reserve.
In [8], coordination control of multiple batteries for optimal HEMS is studied. However, these DR
strategies focus on scheduling of only a single type of appliance.

Normally, different types of DR appliances and ESS could be properly scheduled to coordinate
one another and improve user’s benefits. Moreover, a V2H/V2G-enabled EV with bi-directional power
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flow could also create synergies with smart appliances and ESS. Therefore, it is necessary to study
the optimal DR strategy from an integrative perspective considering different operating features of all
kinds of home appliances, ESS and V2H/V2G-enabled EV.

Although some pioneering research works about integrative DR have been performed, few
provide a fully-integrated solution for an optimal DR covering all kinds of home appliances, ESS and
EV. For example, in [9], coordinated control of several types of home appliances is implemented in
an optimization-based DR controller, but ESS and EV are not considered. In [10], the joint operation
management of different home appliances, micro-CHP and an energy storage device is optimized,
but EV is not considered. In [11], various home appliances are classified into five different categories
according to their operation characteristics, and an integration of the five types of home appliances for
DR scheduling is investigated; however, the model of ESS and EV is highly simplified by neglecting
their energy level constraints. In [12], a dynamic energy management framework considering all
types of home appliances and EV is proposed, but ESS and the V2H/V2G functions of the EV are not
considered. In [13], an optimal DR strategy considering the collaborative operation of an ESS and an EV
with V2H/V2G functions is presented, but the DR potential of smart appliances is not exploited. In [14],
different types of home appliances and an EV with V2H capability are optimally scheduled, but the
coordination control between ESS and the EV battery is not presented. In the latest research [15],
interestingly, the collaboration of all types of appliances, ESS and V2H/V2G-enabled EV is evaluated
using a mixed-integer linear programming (MILP) DR model, which provides a meaningful reference
for study in this aspect.

Nevertheless, the aforementioned studies on the integrative DR strategy only consider
the consumer’s electricity cost or thermal comfort and neglect the degradation cost of the EV battery.
More frequent charging and discharging cycles caused by the V2H/V2G operation accelerate battery
degradation and increase the wear cost [16], which has remained as a main barrier to the integration of
V2H/V2G-enabled EV with household DR [17]. Therefore, whether the V2H/V2G services will help
end-users save enough electricity cost to offset the additional degradation of the EV battery would
have to be carefully evaluated in an integrative DR scheme.

On the other hand, a solution problem arises in developing an optimal integrative DR strategy.
As more smart appliances participant in household DR and more detailed scheduling in a short
time-slot framework becomes entailed, an exponentially larger optimization model is needed.
The significant growth in dimension combined with complex objectives and various constraints
of the appliances makes the integrative DR optimization problem very difficult to solve in limited
time. However, most existing DR research works focus on the modeling process in the framework of
MILP [15,18], MINLP[10], a game [19], etc., and ignores the solution problem by tailoring the model to
suit a certain commercial solver. Other research on the DR algorithm [4] has also not been found to
involve the discussion about how to handle the rapid growth in dimensions with the increase of the
number of controllable appliances.

Approximate dynamic programming (ADP) [20] is a powerful tool for high dimensional function
optimization problems, which has been examined by some previous works [8,21–24]. For example,
in [8,23,24], ADP is used to solve the optimal battery management and multi-battery coordination
control problem in smart home environments. However, the integrated optimization of all kinds
of smart home appliances, the energy storage system and EV, which includes high dimensional
continuous and integer variables in the framework of ADP, has not been found in the literature.

In this paper, an integrative DR study on optimal scheduling of different types of appliances,
ESS and a V2H/V2G-enabled EV considering the battery degradation cost of the EV is presented.
A solution method based on ADP is developed for the integrative DR optimization problem. In the
developed method, a polynomial function for optimal value function approximation is designed to suit
the problem. The contributions of the paper include: (1) the formulation of a joint optimization of all
types of residential appliances, ESS and EV considering the electricity consumption cost, user’s thermal
comfort and battery degradation of the EV; (2) a solution method based on the design of ADP for the
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integrative DR scheduling to overcome the difficulty of solving the high dimensional optimization
problem due to the increasing number of DR-capable appliances; (3) detailed comparative analysis
about how the integration of different home appliances affects the DR efficiency.

The rest of the paper is organized as follows. Section 2 gives the framework of the HEMS
and models of appliances, energy storage system and EV for DR optimization in different scenarios.
In Section 3, the proposed optimization algorithm is presented. The case studies are given in Section 4.
Section 5 draws the conclusions.

2. Modeling of the Integrative DR Strategy

In this section, the integrative DR problem is formulated aiming for optimal day-ahead scheduling
of all DR appliances within a home. A suitable cyber infrastructure is presumptively equipped to
collect appliances’ parameters, end-user’s preferences and to receive day-ahead hourly electricity price
signals from the utility. Weather information about ambient temperature and solar radiation is accessed
through the Internet or forecasted through a local forecasting system in the HEMS. Other parameters
such as arrival/departure time of the EV, hot water usage and critical appliances’ consumption are
considered to be known by occupants’ habit statistics.

2.1. Models and Constraints of Home Appliances

In an existing home, primary home appliances include the heating/cooling, ventilation and
air conditioning system (HVAC), electric water heating (EWH), clothes washing (CW) machine,
clothes dryer (CD), dishwasher (DW), cooking, lighting, entertainments, etc. Typically, these appliances
are classified into three categories: critical appliances, shiftable appliances and adjustable appliances
(Figure 1). Critical appliances are DR incapable. Shiftable appliances can be shifted, but cannot be
regulated. Adjustable appliances can be fully controlled and adjusted. In general, the HVAC and
the EWH are adjustable appliances. The CW, CD and DW are shiftable appliances, and the rest are
considered as critical. For a future home, additional main home appliances would include an energy
storage system (ESS), photovoltaic (PV) panels and electric vehicles. Next, the operating constraints
associated with these home appliances are formulated for the integrative DR problem.

Smart grid

Smart  meter

EWHHVAC

Adjustable  Appliances EV

Critical  Appliances

CW CDDW

Shiftable Appliances

ESS

DR 
Controller

HVAC

Critical  Appli

CW CDDW

ESS

DR 
ControllerControllerController

Energy flow

Information flow

PV

Figure 1. Categories of home appliances. DR, demand response; DW, dishwasher; CW, clothes washer;
CD, clothes drier; EWH, electric water heater.

2.1.1. Adjustable Appliances

Adjustable appliances include HVAC and EWH, whose power consumption is flexibly controlled
to provide thermal comfort to the occupants.
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For the HVAC, the indoor temperature is maintained at a comfortable level according to
the occupants’ preference setting. Temperature deviation is allowed if the occupants are willing
to sacrifice their comfort for a lower electricity bill. A thermal model from [25] is adopted to describe
the dynamics of the indoor temperature as given below:

THVAC
i+1,in = δ · THVAC

i,in + (1− δ)(THVAC
i,out − ηHVAC ·

PHVAC
i · ∆t

A
) (1)

THVAC
set − ∆THVAC ≤ THVAC

i,in ≤ THVAC
set + ∆THVAC (2)

0 ≤ PHVAC
i ≤ PHVAC

max (3)

where in (1), THVAC
i,in is the indoor temperature in time slot i, THVAC

i,out is the outdoor temperature in time
slot i, δ is the inertia factor, η is the efficiency of the HVAC and A is the thermal conductivity (kW/◦F)
of the house. In (2), THVAC

set denotes the temperature setting, and ∆THVAC is the allowable deviation.
The average power (kW) drawn by the HVAC in time slot i is denoted as PHVAC

i , which is constrained
by its upper limit PHVAC

max (kW).
Similarly, the EWH regulates its power consumption to keep the water temperature within

a comfortable range. Considering the inlet cold water replenished into the EWH and the heat exchange
with the indoor air, a thermal model from [26] is used to describe the dynamics of the hot water
temperature as shown in (4). The operational constraints of the EWH are given below.

TEWH
i+1,in = e−(

∆t
R′ ·K ) · TEWH

i,in + (1− e−(
∆t

R′ ·K )) · [G · THVAC
i,in + Bi · TEWH

cold + QEWH
i ] · R′ (4)

G =
SA
R

, Bi = dwater × Fi × Cp, R′ =
1

G + Bi
(5)

K = volumn× dwater × Cp, QEWH
i = 3412.1× PEWH

i × ∆t (6)

TEWH
set − ∆TEWH ≤ TEWH

i,in ≤ TEWH
set + ∆TEWH (7)

0 ≤ PEWH
i ≤ PEWH

max (8)

where in (4)–(6), TEWH
i,in denotes the hot water temperature (◦F) in time slot i, TEWH

cold is the inlet
cold water temperature (◦F), SA is the tank surface area (ft2), R is the tank insulation thermal
resistance (hour·ft2·◦F/BTU), dwater is the density of water (8.34 lbs/gallon), Fi is the hot water flow
rate (gallons/hour) in time slot i, Cp is the specific heat of water (1.00 BTU/(lbs·◦F)), volumn is
the capacity of the tank (gallons) and G, Bi, R′, K and QEWH

i are intermediate variables. In (7), TEWH
set

is the temperature setting, and ∆TEWH is the allowable tolerance. In (8), the average power PEWH
i in

time slot i is constrained by its upper limit PEWH
max .

2.1.2. Shiftable Appliances

Considered shiftable appliances include CW, CD and DW. Taking the CW as an example,
the constraints of shiftable appliances are modeled below.

Assume that a CW requires continuous operation of JCW time slots to fulfill its task, and it must
be finished in a time interval [iCW

α , iCW
α + KCW − 1] with KCW(KCW > JCW) time slots. Let sCW

i indicate
the status of the CW in time slot i, which equals one if the CW is ON, whereas zero if the CW is OFF.
Then, we have,

sCW
i = 0, i /∈ [iCW

α , iCW
α + KCW − 1] (9)

sCW
i = 1, if sCW

i−1 = 1 and ∑i sCW
i−1 < JCW (10)

∑
i

sCW
i = JCW , i ∈ [iCW

α , iCW
α + KCW − 1] (11)
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where (9) constrains the operation time of the CW, (10) keeps the CW running continuously and (11)
ensures that the task of the CW is fulfilled.

The power consumption PCW
i of the CW in time slot i is determined by its status sCW

i and power
patterns. Let PCW

(j) be the power pattern of the CW at a specific operating sequence j ∈ {1, 2, . . . , JCW},
then PCW

i can be obtained as below.

PCW
i =

0, sCW
i = 0;

PCW
(j) , ∑i sCW

i = j and sCW
i 6= 0;

(12)

The models of CD and DW can be obtained in a similar way.

2.1.3. Energy Storage

Let the power of the ESS be positive if the ESS is charging and negative if the ESS is discharging.
Therefore, the model of the ESS can be described using the state of charge (SOC) as below,

SOCESS
i =


SOCESS

i−1 +
PESS

i ·∆t
EESS

max
· ηESS

ch , PESS
i ≥ 0;

SOCESS
i−1 +

PESS
i ·∆t
EESS

max
· 1

ηESS
dis

, PESS
i < 0.

(13)

− PESS
dis,max ≤ PESS

i ≤ PESS
ch,max (14)

SOCESS
min ≤ SOCESS

i ≤ SOCESS
max (15)

where SOCESS
i is the SOC of the ESS at the end of the time slot i and PESS

i is the power of the ESS (kW)
in time slot i, which is limited by the maximum discharging power PESS

dis,max and maximum charging
power PESS

ch,max of the ESS; EESS
max is the maximum capacity of the ESS (kWh), and ηESS

ch and ηESS
dis are

the charging and discharging efficiency of the ESS, respectively; the SOC of the ESS is constrained
between the allowable minimum SOCESS

min and the allowable maximum SOCESS
max .

2.1.4. Electric Vehicle

In modeling of an EV, the enhanced V2G and V2H functions of the EV are considered.
These functions are active only when the EV is at home. Similar to the ESS, let the EV power be
positive if it is charging and negative if it is discharging. The model of the EV is described in (16)–(18).

SOCEV
i =


SOCEV

i−1 +
PEV

i ·∆t
EEV

max
· ηEV

ch , PEV
i ≥ 0;

SOCEV
i−1 +

PEV
i ·∆t
EEV

max
· 1

ηEV
dis

, PEV
i < 0.

(16)

− PEV
d_max ≤ PEV

i ≤ PEV
ch_max (17)

SOCEV
min ≤ SOCEV

i ≤ SOCEV
max (18)

The meanings of the terms in (16)–(18) are similar to those of the ESS model (Equations (13)–(15)).
Moreover, the EV has to be fully charged before it leaves home. Assume the EV arrives home at

the beginning of the time slot iEV
α and is available at home during the time interval [iEV

α , iEV
β ], so the SOC

of the EV should meet the constraints,

SOCEV
iEV
α −1 = SOCEV

max −
EEV

driven/ηEV
dis

EEV
max

(19)

SOCEV
iEV
β

= SOCEV
max (20)
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where EEV
driven = dd/ηEV

driven is the total energy consumption for driving the car, dd is the driven distance
that is assumed to be predictable and ηEV

driven is the driving efficiency representing energy needed to
drive an EV per mile.

2.2. DR Optimization Scenarios

To investigate how the integration of different home appliances affects the DR efficiency, four DR
optimization scenarios are designed.

2.2.1. Optimal DR for Adjustable Appliances

The first scenario assumes that only the adjustable appliances, i.e., the HVAC and EWH,
participant in the DR scheme and that the other appliances act as critical appliances. The ESS and PV
system are not available. Then, the DR model for this scenario is formulated as below,

(P1) min J1 =
I

∑
i=1

pricei · Ptotal
i · ∆t

s.t. Ptotal
i = Padj

i + Pshi
i + Pcri

i + PEV
i

Padj
i = PHVAC

i + PEWH
i

Pshi
i = PCW

i + PCD
i + PDW

i

and (1)–(8)

(21)

where pricei is the electricity price in time slot i and Ptotal
i is the total power consumption,

which equals the sum of the power consumption of adjustable appliances Padj
i , shiftable appliances

Pshi
i , critical appliances Pcri

i and EV PEV
i .

Based on the assumption in this scenario, the power consumptions of shiftable appliances,
critical appliances and EV are all constant, so removing them from the objective function makes no
difference for the optimal solution. Therefore, the problem (P1) can be simplified as (22).

min
I

∑
i=1

pricei · (PHVAC
i + PEWH

i ) · ∆t

s.t. (1)–(8)

(22)

2.2.2. Optimal DR Policy Considering Shiftable Appliances

Second, we consider the scenario that shiftable appliances also participate in DR along with
adjustable appliances. In this scenario, additional discrete variables need to be solved to determine
the status of the CD, CW and DW; therefore, a mixed integer programming problem (P2) is formed
and can be expressed in an equivalent format as shown in (23).

(P2) min J2 =
I

∑
i=1

pricei · Ptotal
i · ∆t

s.t. Ptotal
i = Padj

i + Pshi
i + Pcri

i + PEV
i

⇐⇒ min
I

∑
i=1

pricei · (Padj
i + Pshi

i ) · ∆t

s.t. (1)–(12)

(23)
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2.2.3. Optimal DR Policy Combining ESS and PV

Third, we consider the scenario that the energy storage system and PV panels are available.
The DR optimization problem for this scenario can be modeled as (P3).

(P3) min J3 =
I

∑
i=1

pricei · Ptotal
i · ∆t

s.t. Ptotal
i + Ppv

i = Papplis
i + PESS

i + PEV
i

Papplis
i = Padj

i + Pshi
i + Pcri

i

and (1)–(15)

(24)

where Ppv
i is the power production of PV in time slot i.

2.2.4. Integrative Optimal DR Policy

In the last scenario, the V2H/V2G applications of the EV are enabled. Since the V2H/V2G
operation may accelerate battery aging and shorten the cycle life, the degradation cost of the EV battery
is considered in the formulation. To develop an integrative optimal DR policy for this scenario, a mixed
integer nonlinear programming model is needed,

(P4) min J4 =
I

∑
i=1

(pricei · Ptotal
i + CEV

i,deg · |P
EV
i,dis|) · ∆t

s.t. Ptotal
i + Ppv

i = Papplis
i + PESS

i + PEV
i

Papplis
i = Padj

i + Pshi
i + Pcri

i

and (1)–(20)

(25)

where PEV
i,dis denotes the power discharged from the EV battery to the home appliances or to the grid,

CEV
i,deg represents the degradation cost of the EV in the time slot i due to the V2G/V2H operation,

which can be modeled as a function of the actual battery cycle life as below,

CEV
i,deg =

CEV
capital

LEV
i,E

(26)

where CEV
i,capital is the capital cost of the EV battery ($/kWh) and LEV

i,E is the battery life of the EV
throughput energy (kWh). The battery life (kWh) can be expressed as below,

LEV
i,E = EEV

max · LEV
i,N = EEV

max · f (DoDEV
i ) (27)

where LEV
i,N represents the battery life in number of cycles, which is a function of the depth of discharging

(DoD) depending on the type of the battery. In our study, a linear function relationship between cycle
life and DoD is used as below [27],

f (DoDEV
i ) = a · DoDEV

i + b (28)

where a = −4775 and b = 4995. The DoD of the EV battery in time slot i can be estimated as below [27],

DoDEV
i =

EEV
driven + (∑i(|PEV

i,dis| · ∆t)/ηEV
dis )

EEV
max

(29)
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3. Approximate Dynamic Programming

Solving the integrative DR optimization problem faces some challenges. First, it is a complex
MINLP problem. Second, the dimension of decision variables grows rapidly as more DR-capable
appliances are integrated, such as from (P1)–(P4). Third, the growth in dimension is multiplied as the
time granularity gets reduced. In this section, the ADP technique is introduced to the integrative DR
optimization problem to overcome the challenges. In particular, a polynomial function architecture is
designed to approximate the optimal value function. Then, using the approximate optimistic policy
iteration (AOPI), an optimal DR policy is derived.

3.1. Problem Reformulation

We reformulate the optimization problems in the DP term and show the reformulation process
with respect to the problem (P4) for the explanation. Let Si = (THVAC

i,in , TEWH
i,in , SOCESS

i , SOCEV
i , ∑i sCW

i ,

∑i sCD
i , ∑i sDW

i )T be the system state at the end of time slot i, which is a vector including indoor
temperature THVAC

i,in , hot water temperature TEWH
i,in , the SOC of ESS SOCESS

i , the SOC of EV SOCEV
i

and how many time slots the CW, the CD and the DW have been powered, denoted by ∑i sCW
i , ∑i sCD

i
and ∑i sDW

i , respectively. Let xi = (PHVAC
i , PEWH

i , PESS
i , PEV

i , sCW
i , sCD

i , sDW
i )T be the decision vector in

time slot i, where PHVAC
i , PEWH

i , PESS
i , PEV

i are continuous variables and sCW
i , sCD

i , sDW
i are discrete ones.

Si and xi take values in their feasible sets S and Xi, respectively, which are defined by the constraints in
(P4). Let ai : Si → xi+1, ai ∈ Ai be a mapping from the current state to a decision, where Ai is the set of
all feasible mappings while in Si. Let Ci+1(Si, ai) be the cost applying ai while in Si and Vi+1(Si+1) be
the total minimum cost for the residual time slots in Si+1 (Figure 2) and VI(SI) ≡ 0. For convenience,
we redefine i ∈ {0, 1, . . . , I − 1}, and the initial system state is denoted by S0. The system evolves via
transition function Si+1 = S(Si, ai(Si)), which can be obtained from the models in Section 2. Based on
Bellman’s principle of optimality [28], the optimal decisions of (P4) can be obtained by solving the
following Bellman equations recursively.

Vi(Si) = min
ai∈Ai
{Ci+1(Si, ai) + Vi+1(Si+1)}, ∀ i

J4 = V0(S0)
(30)

In this way, we avoid solving a large optimization problem. However, the classical DP algorithm,
which requires finding Vi(Si) at every Si, and thus, suffers from the curse of dimensionality when
a system includes large or continuous state and action spaces, cannot be used in our problems.

S0 S1
  slot 1 slot i+1

Si Si+1
  

xi+1

Ci+1 (Si, ai) Vi+1 (Si+1)

Vi (Si)

SI

ai (Si)

Figure 2. Relationship among notations and time slots.

3.2. ADP for the Integrative DR

To overcome the challenge, ADP is introduced to the integrative DR optimization problem.
ADP breaks the curse of dimensionality by using an approximation Ṽi to the value function
(or cost-to-go function) Vi, which only requires values of Vi(Si) at some states for regression. It proceeds
in an iterative way and forward through time. For the formulated problems, an ADP algorithm based
on approximate optimistic policy iteration (AOPI) is designed.

Assume that we start with a policy π(n) = {a(n)0 , a(n)1 , . . . , a(n)I−1}, ∀a(n)i ∈ Ai (n ∈ N, here n = 0),

and we evaluate the corresponding value function V(n)
i using a parametric approximator Ṽi(Si|θi) for
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all i, where Ṽ is the approximation architecture and θ is a parameter vector. This process is called policy
evaluation. Once θ is determined, we can obtain an approximating value function Ṽi(Si|θ

(n)
i ) for all i

with respect to policy π(n). Then, we use Ṽi(Si|θ
(n)
i ) to obtain an improved policy π(n+1) = {a(n+1)

0 ,

a(n+1)
1 , . . . , a(n+1)

I−1 } by computing the Bellman functions as below.

a(n+1)
i = arg min

ai∈Ai
{Ci+1(Si, ai) + Ṽi+1(Si+1|θ

(n)
i+1)} (31)

After that, the corresponding value function Ṽi(Si|θ
(n+1)
i ) is evaluated again, and we repeat

the procedure until a converged parameter sequence {θ(0)i , θ
(1)
i , . . . } 7→ θ

(∗)
i is found for all i.

Next, we show the process of policy evaluation. First, in each iteration n, we initialize
the parameter vector with θ

(n,0)
i (for n ≥ 1, θ

(n,0)
i = θ

(n−1)
i ). Then, we choose a start state S0

and calculate one period cost Ci+1(Si, a(n)i ) for all i forward in time based on the transform function

Si+1 = S(Si, a(n)i (Si)). After that, we calculate the cumulative cost to obtain an observation of the value

function vi = ∑I−1
i Ci+1(Si, a(n)i ) for all i. With the pair of (Si, vi), we compute the new parameter

vector θ
(n,1)
i for all i via some learning algorithm. Repeat the procedure a certain number of times, say

M, and then, we assign θ
(n,M)
i to θ

(n)
i for approximating value function Ṽi(Si|θ

(n)
i ) for all i.

3.3. Approximating Functions’ Design

Obviously, the approximation architecture and learning algorithm are significant for
the convergence and performance of the algorithm. In this study, a linear parameter architecture-based
multivariate polynomial is designed for the value function approximation as shown in (32),

Ṽi(Si|θi) = θi,0 +
7

∑
k=1

θi,kSi(k) +
Q

∑
r=2

(
7

∑
k=1

θi,kr Si(k)r +
r−1

∑
q=1

6

∑
k=1

7

∑
l=k+1

θi,kr−q lq Si(k)r−qSi(l)q) (32)

where θi = (θi,1, θi,2, . . . , θi,F)
T is the parameter vector to be estimated, Si(k) is the k-th element of

the state vector Si and r, q ∈ N are nonnegative integer powers; here, Q is the degree of the polynomial.
The polynomial function is adopted for the value function approximation because of its many

merits. First, it is a linear parameter architecture that is easy to train and has fast convergence
speed. Second, it can approximate closely to any nonlinear function on a finite interval according
to the Weierstrass approximation theorem [29]. Third, it is differentiable and simple, which reduces
the complexity of policy evaluation and the proposed method in general. In this study, via trial
and error, a cubic polynomial containing 1, 2, 3 power-terms of each state variable, two-degree
cross-terms and a constant term is chosen to approximate the value function as shown in (33).

Ṽi(Si|θi) =
7

∑
k=1

3

∑
n=1

θi,kr Si(k)r +
7

∑
k=1

7

∑
l=k+1

θi,klSi(k)Si(l) + θi,0 (33)

Given the approximation architecture, the recursive least squares algorithm (RLS) [30], which is
a quickly-converged learning algorithm for the linear regression problem, is applied to update the
parameter vector in each policy evaluation step. It should be noted that the policy improvement step
in (31) also plays an important role in the performance of the algorithm. In fact, it is hard to obtain the
improved policy exactly because it involves solving a mixed integer nonlinear optimization problem.
The pseudo-code of AOPI is shown in Algorithms 1 and 2.
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Algorithm 1. AOPI.

Input:
1. Approximate function Ṽi(Si|θi);
2. Initial policy π(0) = {a(0)0 , a(0)1 , . . . , a(0)I−1}, ∀a(0)i ∈ Ai;
3. n← 0;

Output: Optimal parameter vector θ∗i for all i; optimal decision policy π(∗);
4. while ∑I

i ‖θ
(n)
i − θ

(n−1)
i ‖ < ε(n > 1) do

5. Algorithm 2 Policy evaluation;
6. Obtain parameter vector θ

(n)
i for all i;

7. Solve (31);
8. end while;
9. return θ

(∗)
i for all i.

Algorithm 2. Policy evaluation.

Input: n, π, θ
(n−1)
i for all i;

Output: θ
(n)
i for all i;

1. Initialization: θ
(n,0)
i ← θ

(n−1)
i (if n = 0, θ

(n,0)
i ← 0)

2. for m = 1 to M do
3. Sample an initial state S(m)

0 ;
4. for i = 0 to I − 1 do
5. Compute C(m)

i+1(S
(m)
i , a(n)i );

6. Compute S(m)
i+1 = TS(S(m)

i , a(n)i );
7. end for
8. for i = 0 to I − 1 do
9. Compute v(m)

i = ∑I−1
i Ci+1(S

(m)
i , a(n)i );

10. Update θ
(n,m−1)
i to θ

(n,m)
i by RLS;

11. end for
12. end for;
13. return θ

(n)
i = θ

(n,M)
i .

4. Case Studies

4.1. Parameters

In this section, numerical simulation is implemented to test the optimal DR policies
and the proposed ADP algorithm. Table 1 summarizes all appliance parameters and characteristics.
The real outdoor temperature on a hot day [31] in June 2014 in the U.S. state of Illinois and the statistical
hot water flow rate [32] and aggregated critical loads [33] on the same date are adopted. The PV
production data from [33] and the Ameren Illinois’ DAPtariffs [34] on a high DAP day in June 2014 are
used in the simulation. Figure 3 depicts the used data. We assume the DR policy starts from 8:00 a.m.
and runs for 24 h with 15-min intervals. Choose the convergence tolerance ε = 10−3. The simulations
platform is MATLAB 2014a in an Intel(R) Core(TM) i5-3475S, 2.90-GHz personal computer with 8 GB
RAM memory.

The developed integrative DR optimization model is a non-convex MINLP and belongs to a class
of NP-hard problems, and no algorithm guarantees a global optimum solution in polynomial time.
In order to examine the effectiveness of the designed ADP algorithm, we compare it with two existing
non-convex MINLP technologies: one is a standard integer branch and bound algorithm developed
by the YALMIP Optimization toolbox BNB solver [35], in which the associated relaxed problem is
solved by the MATLAB build-in nonlinear constrained optimization solver ‘fmincon’; the other is
genetic algorithm (GA) provided by the Global Optimization Toolbox in MATLAB. For GA, we choose
the population size to be 50; choose the elite population to be 0.05-times the population size and
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the crossover fraction to be 0.8; default selection and mutation operators in MATLAB are used; the
algorithm stops when the average relative change in the best fitness function value generations is less
than or equal to 10−20; the maximum generation is set to be 100-times the number of populations.
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Figure 3. Data: (a) DAPtariffs. (b) Outdoor temperature. (c) Hot water flow. (d) Critical load and
PV production.

Table 1. Parameters of the residential appliances.

HVAC

THVAC
set ∆THVAC THVAC

0,in PHVAC
max δ η A

73 ◦F 2 ◦F 73 ◦F 4 kW 0.95 3 0.25

EWH

TEWH
set ∆TEWH TEWH

0,in TEWH
cold PEWH

max SA A volumn
125 ◦F 5 ◦F 125 ◦F 60 ◦F 4.5 kW 24.1 ft2 15 40 gal

ESS

EESS
max SOCESS

0 SOCESS
max SOCESS

min PESS
ch/d_max ηESS

ch/d
5 kWh 0.6 1 0.2 1 kW/1kW 0.95/0.95

EV

EEV
max SOCESS

max SOCESS
min PESS

ch_max PESS
ch_max

21.6 kWh 1 0.15 3 kW 3 kW
ηESS

ch/d [iEV
α , iEV

β ] CEV
capital ηEV

driven dd

0.95 [46,96] 211.9$/kWh 5.6 miles/kWh 25.68 miles

CW/DW/CD

{PCW
(1) , . . . , PCW

(JCW )
} [iCW

α , iCW
α + KCW − 1]

{0.5 kW, 0.5 kW, 0.5 kW, 0.5 kW} [5, 40]→ 9:00 a.m.–6:00 p.m.
{PDW

(1) , . . . , PDW
(JDW )

} [iDW
α , iDW

α + KDW − 1]
{1 kW, 1 kW, 1 kW, 1 kW} [7, 36]→ 9:30 a.m.–5:00 p.m.
{PCD

(1) , . . . , PCD
(JCD)
} [iCD

α , iCD
α + KCD − 1]

{4 kW, 4 kW, 4 kW, 4 kW, 4 kW, 4 kW} [41, 96]→ 6:00 p.m.–8:00 p.m.

Figure 4 shows the comparison of the daily cost and running time by using the three algorithms
under different DR scenarios. The detailed comparison results are listed in Table 2.
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Figure 4. Comparison among different algorithms under Scenarios 1, 2, 3 and 4. ADP, approximate
dynamic programming.

Table 2. Comparison of the total cost and CPU time with different solvers for the residential
DR problems.

P1 P2 P3 P4

cost ($) time (s) cost ($) time (s) cost ($) time (s) cost ($) time (s)

BNB 7.7333 0.4 7.4176 0.4 5.3708 22734 - -
1-9 GA * 7.8293 5109 7.8633 7431 6.0596 19,104 5.5741 20,174

ADP 7.7497 808 7.4304 4032 5.3807 10,142 4.9773 12,481

* Mean value of 10 runs.

It can be seen from Figure 4 that for the S1 and S2 DR scenarios, the BNB algorithm performs
the best in terms of both the running time and total electricity cost, and the GA performs the worst;
the ADP algorithm obtains a comparable result to the BNB algorithm in terms of the total cost, but
consumes much more computational time. This is because the optimization models associated with
the S1 and S2 DR scenarios are simple, which are a linear model for S1 and a mixed integer linear
model for S2, and have a relatively small number of variables. Therefore, the BNB algorithm is able
to find the global optimal minimum within a very short time. However, the ADP algorithm needs to
solve the Bellman equation at each iteration and do regression to approximate the value function, so it
requires more time for calculation and obtains a sub-optimal solution due to the approximation error.

Nevertheless, for more integrative DR scenarios, i.e., S3 and S4, the advantage of the ADP
algorithm appears. From Figure 4, it can be seen that the ADP algorithm obtains a close or relatively
low total electricity cost in a shorter time for the S3 and S4 DR scenarios compared to the BNB and
GA algorithms. Notice that the scenarios S3 and S4 complicate the DR optimization model by not
only enlarging its size with more continuous and integer variables, but also introducing a large
number of nonlinear equality and inequality constraints, including the SOC dynamics equation of
the ESS and EV charging demand constraints. This significantly burdens the BNB algorithm in the
branch process due to the large number of integer variables and the bound process due to the serious
nonlinearity of the relaxed problem. As a result, it fails to give feasible results after running 24 h.
These complex constraints also give rise to a problem for the GA algorithm in searching feasible
and better solutions wile evolving from generation to generation. Although the ADP algorithm also
encounters these problems, it breaks the large nonlinear mixed integer programming model into
many small optimization problems by approximating the value function, which are easy and fast to
solve. Therefore, the growth in computational time of the ADP is not as fast as the BNB and the GA
algorithms. Observation of the comparison suggests that the proposed ADP algorithm is effective
and has special strength for complicated high dimensional optimization problems.
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Figure 5 shows the optimal DR solutions of problem S4 by using the ADP algorithm. As can be
seen, for the HVAC and EWH, there is a clear pre-cooling and preheating operation respectively during
low price hours to reduce power consumption in high price hours, but there is still oscillating power
consumption by the EWH during peak hours from 3 p.m.–10 p.m. matching the fluctuation in the usage
of hot water as shown in Figure 3c in order to keep the hot water temperature at a comfortable level;
the energy usages of CW, CD and DW are also shifted to the time when the price is low; the ESS is
controlled to charge up from the PV or the grid in low price hours and discharge to power the loads
in high price hours; the EV battery also supplies power to home appliances during peak load hours
9 p.m.–11 p.m. via the V2G/V2H operation.
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Figure 5. Optimal DR solutions of appliances under S4 based on the ADP.

4.2. Different Choices of Approximating Functions

This subsection evaluates how the choice of the approximating function affects the performance
of the ADP algorithm. Except for the cubic polynomial in Equation (33) shown in Section 3.3,
two additional polynomials of degree two and degree five and two RBF (radial basis function)-based
approximating functions are evaluated and compared.

The two additional polynomials are designed as follows. The quadratic polynomial consists
of 1, 2 power-terms of each state variable, two-degree cross-terms and a constant term. The quintic
polynomial consists of 1–5 power-terms of each state variable, 2, 3-degree cross-terms of any two state
variables and a constant term. For simplicity, denote the quadratic, cubic and quintic polynomial
functions as Poly-2, Poly-3 and Poly-5, respectively.

The RBF-based approximating functions are designed based on normalized kernel functions,
in which the basic functions φi, f (Si) are defined as below,

φi, f (Si) =
K(Si, s f

i )

∑F
f ′=1 K(Si, s f ′

i )
for all f ∈ F (34)
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where K(Si, s f
i ) is the kernel function and s f

i is the center of the f -th kernel. The kernel function is
normally a local weighting function, whose value declines as the query point goes away from its
center. This enables an approximating function not only to characterize the local features of the value
function in the neighborhood of every kernel center, but also to offer a proper fit for ‘the middle area’
through the linear combination of multiple normalized kernel functions. Clearly, the more kernel
functions are used, the better the approximation that can be obtained. To show this relationship,
two kernel-based approximating functions with different numbers of kernels are implemented.

For both approximating functions, the Gaussian kernels given by K(Si, s f
i ) = e−

1
2 [Si−s f

i ]
′B−1

f [Si−s f
i ],

which are often referred to as radial basis functions (RBFs), are applied, where B f is the width
matrix. Denote the first approximating function as RBF-1 and the second one as RBFs-2. For RBFs-1,
the centers of the RBFs are arranged on a 2× 1× 2× 1× 2× 2× 2 grid over the state space, i.e.,
s f

i = {72, 74} × {125} × {0.4, 0.8} × {0.6} × {1, 3} × {2, 4} × {1, 3}, so there are 25 = 32 RBFs in
total. The width matrices are set to be B f = diag(2, 5, 0.4, 0.5, 2, 2, 2) for all f ∈ F. For RBFs-2,
the centers of the RBFs are arranged on a 2× 2× 2× 2× 2× 2× 2 grid over the state space, i.e.,
s f

i = {72, 74}× {123, 127}× {0.4, 0.8}× {0.4, 0.8}× {1, 3}× {2, 4} ×{1, 3}, so there are 27 = 128 RBFs
in total. The width matrices are set to be B f = diag(2, 4, 0.4, 0.4, 2, 2, 2) for all f ∈ F.

Figure 6 shows the comparison using different approximating functions. For the polynomial-based
approximating functions, the comparison suggests that as the degree of the polynomial goes up,
the obtained total electricity cost reduces, but the CPU time increases quickly. Similar properties can be
seen for the RBF-based approximating functions. This is due to the fact that a good performance relies
on a good approximation, which generally contains a large number of parameters to learn, which is
time consuming. In practice, a balance between the performance and the running time is needed no
matter which approximating function is adopted. However, the RBF-based approximation functions
require much more running time than the polynomial approximators and hence are not proper for
the integrative DR problem. In addition, compared to Poly-2 and Poly-5, Poly-3 offers a good balance
between the total energy cost and the CPU time according to the comparison shown in Figure 6b.
Therefore, Poly-3 is an appropriate approximating function for the integrative DR problem.
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consumption power at each time step; (b) total electricity cost and running time
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4.3. Comparison of Different Scenarios

Figure 7 compares the total power consumption in each time slot and the cumulative cost under
different scenarios to show how the participation of different appliances affects the DR efficiency.
In the figure, None stands for the scenario without DR. In this scenario, the HVAC turns ON when
the indoor temperature increases above THVAC

set + ∆THVAC and turns off when it decreases below
THVAC

set − ∆THVAC. The operation of EWH is similar to the HVAC. The operation times of the CW,
CD and DW are fixed between 5:00 p.m.–6:00 p.m., 6:00 p.m.–7:30 p.m. and 9:30 p.m.–10:30 p.m.
respectively. The PV panels and the ESS are not available. The EV serves as a load and is charged
immediately after arriving home.

As can be seen in the figure, under all DR scenarios, the peak load in high price hours 3 p.m.–9 p.m.
and the total electricity cost are reduced compared to the scenario without DR. Specifically, the
reduction becomes larger and larger as more appliances participate in DR from S1–S4. Moreover,
a sharp reduction in cost happens between S2 and S3. It is obvious that the ESS and PV make a great
contribution to reducing the electricity cost.
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Figure 7. (a) Power exchange between the household and grid under different scenarios.
(b) Cumulative cost under different scenarios.

In order to investigate how the degradation cost of the EV battery affects the V2H/V2G operation,
we make a comparison for different EV battery capital cost settings of $0, $400 and $800. The simulation
results are depicted in Figure 8. As can be seen, when the capital cost is $0, the SOC of the EV battery
decreases to its lowest level after it arrives home, which means it deliveries the most power to the
home. However, when the capital cost goes up, the SOC of the EV battery does not decrease as much.
From the results, it is concluded that higher capital cost leads to less energy discharged to supply the
home appliances (V2H) or to sell to the grid (V2G).

4.4. Discussion and Future Work

In developing the integrative DR strategy, we only consider from the users’ perspective
and assume that the bidding process has already cleared. However, it is worth mentioning that when
a significant fraction of households takes the developed DR strategy and selfishly minimizes their
own bills, the local demand may shift to the low price hours and form a new load peak. This certainly
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would require the electric utilities to adjust their dynamic price structures by considering all kinds
of loads, including residential, industry and commercial loads until a new balance between the
utilities and energy consumers is achieved. This is a significant issue worth discussion from a more
systemic perspective. Pioneering studies on DR pricing problems can be found in [36–40], and we refer
the interesting readers to these publications. For now, we leave this problem for our future research.
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Figure 8. Comparison of the EV battery SOC and degradation cost for different capital cost settings.

5. Conclusions

This paper presents an integrative DR study for the optimal operation of home appliances,
ESS and the V2G/V2H-enabled EV based on the proposed ADP algorithm. Based on the simulation
results, we have the following conclusions: (1) the proposed ADP algorithm is effective and has
special strength for complicated high-dimensional optimization problems; (2) more participation
of smart home appliances in DR program brings more benefits to the customers via energy cost
reduction and peak load shifting; (3) the ESS makes the greatest contribution to reducing the energy
cost by charging from the PV or the grid and discharging to power the loads in high price hours;
(4) the V2G/V2H applications of the EV can offer a more economically-efficient usage of electricity,
but the degradation of the EV battery must be evaluated carefully.
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Nomenclature

P Power (kW)
T Temperature (◦F)
E Energy level of battery (kWh)
SOC Battery state of charge (kWh)
∆T Allowable deviation of temperature (◦F)
η Efficiency
δ Inertia factor of air in the house
A thermal conductivity of the house (kW/◦F)
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SA Tank surface area of EWH (ft2)
R Tank insulation thermal resistance of EWH (hour·ft2·◦F/BTU)
dwater Density of water (8.34 lbs/gallon)
F Hot water flow rate (gallons/hour)
Cp Specific heat of water (1.00 BTU/(lbs·◦F))
volumn Capacity of the EWH tank (gallons)
s On/off status of a shiftable appliance
L EV battery life
DOD Battery depth of discharge
price Electricity price ($/kWh)
C Cost ($)
V Value function
S State vector
a Action vector
A Set of all feasible actions
π DR control policy
θ Regression parameters of the value function approximator
∆t Duration of a time slot
Superscripts:
HVAC Heating, ventilation and air conditioning
EWH Electric water heater
CW Cloth washer
CD Cloth dryer
DW Dish washer
ESS Energy storage system
EV Electric vehicle
PV Photovoltaics
adj Adjustable appliances
shi Shiftable appliances
cri Critical appliances
(n) Index of iteration for approximate optimistic policy iteration (AOPI) algorithm
(n, m) Index of iteration for policy evaluation in the n-th iteration of AOPI
∗ Optimum
Subscripts:
i Index of time slot
in Indoor
out Outdoor
set Setting value by users
max Maximum value
min Minimum value
cold Cold water
ch Charging
dis Discharging
deg Degradation of the battery
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