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Abstract: We investigate how the retailer adjusts optimal ordering policy in the presence of
cap-and-trade system and trade credit, and the corresponding changes of the retailer’s total costs and
carbon footprint. Trade credit is one of the most used short-term financing tools. Our study shows
that carbon emissions trading will shorten the ordering cycle for products that emit more carbon
dioxide during the storage stage, and therefore reduce the buying behavior stimulation effect of trade
credit on these products. Under the cap-and-trade system, the retailer’s total cost may increase or
decrease, depending on the combination of carbon cap allocated to the retailer and the carbon price.
Moreover, trade credit and the corresponding cost of capital affect the retailer’s carbon emission
reduction strategy by changing the retailers’ consolidated cost during the ordering and inventory
holding stages.
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1. Introduction

In today’s severely competitive business environment, trade credit is widely employed by supplier
to encourage the retailers to order more per time. Under this circumstance, the supplier will offer the
retailers a delay period in payment. During the period, the retailer can sell the goods and accumulate
revenue and earn interest. However, the retailer should pay the supplier an interest on the outstanding
amount if the payment is not fully paid by the end of the trade credit period. Many empirical results
show that trade credit is an important short-term financing source for retailers. For example, Petersen
and Rajan [1] estimate that 70% of small firms in the U.S. provide trade credit to their customers.
For developing countries, Ge and Qiu also show that, on average, 27% of the total sales in China are
based on trade credit [2,3].

In the last few decades, a number of studies have been published which study the inventory
model under trade credit. Goyal [4] first develop an economic order quantity (EOQ) model under
the condition of permissible delay in payments. Aggarwal and Jaggi [5] extend Goyal’s model by
taking an exponential deterioration rate into account. Furthermore, Jamal et al. [6] extend the model to
allow for shortages. Many other studies also generalize Goyal’s model by studying trade credit from a
broader perspective. Zhou et al. [3], Huang and Chung [7], Ouyang et al. [8] and many others consider
the two-part trade credit problem, i.e., the supplier not only provides a certain fixed period for settling
the account, but also offer a cash discount if the retailer makes the full payments within a given short
period. Another important issue about trade credit is that not only the supplier provides a delayed
payment period for the retailer, but also the retailer offers a credit period to customers to stimulate
their buying behavior. This type of policy is defined as two-level trade credit and is extensively studied
recently. Huang [9] first establishes an EOQ model under the two-level trade credit policy. Later, Teng
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and Goyal [10] and Teng and Chang [11] generalize the model by relaxing the assumption that the
credit period offered by the supplier is longer than that offered by retailer. Recently, Ho [12], Soni and
Patel [13], and Feng et al. [14] also consider the inventory models under two-level trade credit policy.

As the world is getting warmer, human beings and earth’s ecological system are greatly threatened.
Global warming has become a very important sustainable development issue since the 1990s [15].
The increasing carbon emissions are the main reason that results in global warming. As a result,
the problem of curbing carbon emissions has attracted more and more attentions around the world.
Recently, many carbon reduction mechanisms, such as strict carbon caps, carbon tax, cap-and-trade,
etc. are designed and widely implemented. These mechanisms cause the firms to adopt more energy
efficiency technologies or to adjust their operations to reduce carbon emissions. Though both types of
measures can reach carbon reduction, adopting high-energy efficiency technology commonly requires
a lot of investments. On the contrary, adjusting the firm’s operations is costless but has been largely
ignored until recently [16].

Many researchers explore how to adjust the firm’s operations to reduce carbon emissions recently.
Cachon [17] analyzes how the layout of retail supply chain influences the total systems operating
costs and carbon emissions. Their results imply the carbon emissions may substantially increase
if the firm exclusively focuses on minimizing operating costs, compared to the minimum level of
carbon emissions. A price on carbon is an ineffective mechanism for reducing emissions and the most
attractive option is to improve the consumer fuel efficiency. Hoen et al. [18] consider the transport
mode selection decisions under the carbon emissions regulation and find that though large emission
reductions can be obtained by switching to a different mode, the actual decision depends on the
regulation and non-monetary considerations, such as lead time variability. Chen et al. [19] utilize
an EOQ model to investigate how the retailer adjusts his/her inventory and ordering decisions to
reduce carbon emissions. It is implied by most cases that the retailer can reduce carbon emissions
without significant cost increase. Benjaafar et al. [20] also use lot-sizing models to investigate how to
integrate carbon emissions concerns into operational decisions making. The impact of operational
decisions on carbon emissions and the importance of operational models in evaluating the impact
of different regulatory policies are explicitly examined. Hua et al. [21] also use an EOQ model to
examine the how the firms manage carbon emissions in inventory management. Furthermore, Caro
and Corbett [16] explore how the supply chain coordinates to reduce carbon emissions and allocate
the carbon emissions among each individual firm.

For a retailer, the adjustment of the operations means that he/she adjusts his/her ordering cycle
and order quantity to balance the operating costs against carbon emissions. Moreover, in practice, the
retailer commonly also has to make ordering decisions in front of the trade credit policy provided by
the supplier, whereas he/she could also provide a permissible delay in payments to the consumers.
Although Hua et al. [21] have explored the retailer’s ordering adjustment by an EOQ model. no one has
integrated both the trade credit and carbon emissions concerns into the operational decisions making.
In this paper, we develop a general model to derive the optimal ordering decisions for retailers in the
presence of both trade credit and cap-and-trade system, and analyze the jointly impacts of trade credit
and carbon emissions trading on ordering decisions, carbon emissions and total cost. Thus, compared
to the model that only considers cap-and-trade system, our research provides a more realistic scenario
and we draw interesting observations and management insights from our research findings.

The rest of this paper is organized as follows. In Section 2, we give the notations and assumptions.
In Section 3, we formulate the models and derive the optimal ordering cycles under the trade credit
and the cap-and-trade system. We analyze the results with regard to the impacts of cap-and-trade
system and trade credit on ordering decisions, carbon emissions and total cost in Section 4. In Section 5,
we conclude the paper and suggest future research directions.
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2. Notations and Assumptions

2.1. Notations

The following notations are adopted throughout the paper to establish mathematical inventory
model and related carbon emission trading.

D Annual demand of the item
A Ordering cost per order
c Unit purchasing cost excluding the interest charge per unit per unit time
h The holding cost per unit the retailer keeps per unit time
M Credit period offered by the supplier to the retailer
Ik Interest charged per dollar in stocks per year by the supplier
Ie Interest earned per dollar per year
T The ordering cycle in years
e The amount of carbon emissions per order initiated
g The amount of carbon emissions per unit the retailer holds in inventory per unit time
k The amount of carbon emissions per unit purchased or produced
Z(T) Total relevant cost per year when carbon cap and trade exists
E(T) Total amount of carbon emissions per year
α The carbon cap per year
X The total amount of carbon that the retailer bought or sold in the market per year
p Carbon price per unit (ton).

2.2. Assumptions

Next, the following assumptions are made to establish the model.

1 The demand rate is known and constant with time.
2 The replenishment rate is infinite and lead-time is zero.
3 The time horizon of the inventory system is infinite.
4 Shortages are not allowed.
5 Ik ≥ Ie.
6 During the credit period (i.e., M), the retailer sells the commodities and uses the sales revenue to

earn interest at a rate of Ie. At the end of this period, the retailer pays off all purchasing cost to
the supplier and starts paying for the interest charges on the items in stock with rate Ik.

7 The total amount of carbon emissions is composed of three parts, i.e., the emissions associated
with ordering, inventory holding and production/purchasing [19].

3. Model Formulation

In this section, we formulate the model by considering a system where the supplier offers a credit
period to the retailer and the retailer determines the ordering cycle by taking both the trade credit and
carbon emissions into account. Though there are many types of emission regulations in place, such as
strict carbon caps, taxes on emissions, cap-and-trade, etc., we only consider the cap-and-trade in our
research because it is one of the most commonly used and efficient tools to manage carbon emissions.
Moreover, the other regulatory forms can also be seen as the specific cases of a cap-and-trade system,
thus our results can be easily extended to other emission regulation policy.

We first derive the carbon emissions of the retailer. Under the circumstance with a cap-and-trade
system, the retailer’s inventory policy not only is impacted by the credit period offered by the supplier,
but also needs to be adjusted according to the amount of carbon emissions, the carbon cap and carbon
price. Similar to Chen et al. [19] and Hua et al. [21], we assume the total carbon emissions are

E(T) = e/T + gDT/2 + kD (1)
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where e/T, gDT/2 and kD are the emissions associated with ordering, inventory holding, and
production/purchasing, respectively [19,21].

According to Equation (1), when T̂ =
√

2e/Dg (Letting E′(T) = 0), the retailer’s carbon emissions
reach the minimum E

(
T̂
)
=
√

2egD + kD.
Next, we derive the optimal decisions of the retailer under both the cap-and-trade system and

trade credit financing. Under the cap-and-trade system, once the retailer oversteps his/her carbon cap,
he/she should buy the corresponding carbon credit from the market. On the other hand, if the retailer
is under his/her carbon cap, he/she could sell the extra carbon credit for revenue. Therefore, we have
the following carbon balance equation.

e/T + gDT/2 + kD + X = α (2)

where X is the total amount of carbon credits that the retailer bought or sold in the market per year.
X could be negative, positive, or zero, which depends on whether the retailer oversteps his/her
carbon cap.

The retailer’s annual total relevant costs consist of the following elements.

1 The annual ordering cost is A/T.
2 The annual holding cost (excluding interest charges) equals to h times the annual average

inventory level DT/2, as Figure 1 shows. Therefore, the annual holding cost (excluding interest
charges) is hDT/2.

3 The annual purchasing cost is cD.
4 With regard to the costs of interest charges for unsold items after the credit period, according to

Assumption 6, there are two cases to be considered.
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Figure 1. The variation of the inventory level.

Case 1: T ≥ M. As the Figure 2 shows, when T ≥ M, the retailer pays off all units sold at time M,
keeps the profits, and starts paying for the interest charges on the items sold after M. As a result, the
interest payable per cycle is Ik times the area of the triangle ABE shown in Figure 2. Therefore, the
annual interest payable is cIkD(T −M)2/2T.

Case 2: T ≤ M. In this case, the retailer can pay off the supplier at time M by all the sales revenue
just as the Figure 3 shows. Therefore, the annual interest payable is 0.

5 With regard to the interest earned from sales revenue, there are also two cases to be considered.

Case 1: T ≥ M. As shown in Figure 2, because the retailer only needs to pay off the purchase cost
at time M, he/she can accumulate the revenue and earns the interest at a rate of Ie starting from time
0 through M. Therefore, the interest earned per cycle is Ie times the area of triangle OBM shown in
Figure 2. The annual interest earned is cIeDM2/2T.



Sustainability 2017, 9, 1235 5 of 14
Sustainability 2017, 9, 1235  5 of 14 

 

Figure 2. The total accumulation of interest charged and earned when ≥ . 

Case 2: ≤ . As Figure 3 shows, the retailer starts selling the product at time 0 and receives 
the total revenue at time . Moreover, he/she pays off all the purchase cost by . Consequently, 
he/she earns the interest at rate  starting from time 0 through . In this case, the interest earned 
per cycle is  times the area of trapezoid OABM shown in Figure 3. The annual interest earned is (2 − ) 2⁄ . 

 
Figure 3. The total accumulation of interest charged and earned when ≤ . 

6 The emission cost (or revenue if ≥ 0) is – . 

From the above arguments, the annual total cost for retailer is the total relevant cost (i.e., the 
sum of Assumptions 1–4 and 6) minus the interest earned. As a result, the annual total cost for the 
retailer is given by ( ) = ( ) ≥( ) ≤  (3) 

where ( ) = ⁄ + ℎ 2⁄ + + ( − ) 2⁄ − 2⁄ −  (4) ( ) = ⁄ + ℎ 2⁄ + − (2 − ) 2⁄ −  (5) 

Rearrange the terms of Equation (2) and substitute  into Equations (4) and (5), we obtain ( ) = + + ℎ +2 − + ( + ) + ( − )2 − 2  (6) 

( ) = + + ℎ +2 − + ( + ) − (2 − )2  (7) 

Figure 2. The total accumulation of interest charged and earned when T ≥ M.

Case 2: T ≤ M. As Figure 3 shows, the retailer starts selling the product at time 0 and receives
the total revenue at time T. Moreover, he/she pays off all the purchase cost by M. Consequently,
he/she earns the interest at rate Ie starting from time 0 through M. In this case, the interest earned
per cycle is Ie times the area of trapezoid OABM shown in Figure 3. The annual interest earned is
cIeD

(
2MT − T2)/2T.
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6 The emission cost (or revenue if X ≥ 0) is –pX.

From the above arguments, the annual total cost for retailer is the total relevant cost (i.e., the sum
of Assumptions 1–4 and 6) minus the interest earned. As a result, the annual total cost for the retailer
is given by

Z(T) =

{
Z1(T) i f T ≥ M
Z2(T) i f T ≤ M

(3)

where
Z1(T) = A/T + hDT/2 + cD + cIkD(T −M)2/2T − cIeDM2/2T − pX (4)

Z2(T) = A/T + hDT/2 + cD− cIeD
(

2MT − T2
)

/2T − pX (5)

Rearrange the terms of Equation (2) and substitute X into Equations (4) and (5), we obtain

Z1(T) =
A + pe

T
+

h + pg
2

DT − pα + (c + pk)D +
cIkD(T −M)2

2T
− cIeDM2

2T
(6)
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Z2(T) =
A + pe

T
+

h + pg
2

DT − pα + (c + pk)D−
cIeD

(
2MT − T2)

2T
(7)

Because Z1(M) = Z2(M), Z(T) is continuous and well defined. Both Z1(T) and Z2(T) are
defined on T > 0. By taking the first and second derivatives of Z1(T) and Z2(T), we obtain

Z′1(T) = −
(

2(A + pe) + cDM2(Ik − Ie)
)

/
(

2T2
)
+ (h + pg + cIk)D/2 (8)

Z′′1 (T) =
(

2(A + pe) + cDM2(Ik − Ie)
)

/T3 > 0 (9)

Z′2(T) = −(2(A + pe))/
(

2T2
)
+ (h + pg + cIe)D/2 (10)

Z′′2 (T) = 2(A + pe)/T3 > 0 (11)

Equations (9) and (11) imply that Z1(T) and Z2(T) are convex on T > 0. In addition, we have
Z′1(M) = Z′2(M) =

[
−2(A + pe) + (h + pg + cIe)DM2]/(2M2). Thus, Z(T) is convex on T > 0.

Let Z′1(T) = 0 for i = 1, 2, we get

T∗1 =
√
[2(A + pe) + cDM2(Ik − Ie)]/[D((h + pg) + cIk)] (12)

T∗2 =
√

2(A + pe)/[D((h + pg) + cIe)] (13)

According to the convexity of Z1(T) and Z2(T), we can get

Z′i(T) =


< 0 i f T < T∗i
= 0 i f T = T∗i
> 0 i f T > T∗i

(14)

For furthering summarizing the results, we define ∆ = −2(A + pe) + (h + pg + cIe)DM2, which
determines the sign of the derivative of Z(T) (i.e., Z1(T) and Z1(T)) at M (see Equations (8) and (10)).
Moreover, we find that ∆ can be used to determine if the retailer’s optimal ordering cycle T is larger or
smaller than M. This result is formally presented in Theorem 1.

Theorem 1. Under both the cap-and-trade system and trade credit financing, given the retailer’s annual total
cost (Equation (3)), the retailer’s optimal ordering cycle T is given by: (1) if ∆ ≤ 0, then T∗ = T∗1 and
Z(T∗) = Z1

(
T∗1
)
; and (2) if ∆ > 0, then T∗ = T∗2 and Z(T∗) = Z2(T∗2 ).

Proof. (1) If ∆ ≤ 0, then Z′1(M) = Z′2(M) ≤ 0. Equation (14) implies that Z1(T) is decreasing on[
M, T∗1

]
and increasing on

[
T∗1 , +∞

)
, Z2(T) is decreasing on (0, M]. Thus, Z(T) is decreasing on(

0, T∗1
]

and increasing on
[
T∗1 , +∞

)
. As a result, T∗ = T∗1 .

(2) If ∆ > 0, then Z′1(M) = Z′2(M) > 0. Equation (14) implies that Z2(T) is decreasing on (0, T∗2 ]
and increasing on [T∗2 , M], Z1(T) is increasing on [M, +∞). Thus, Z(T) is decreasing on (0, T∗2 ] and
increasing on [T∗2 , +∞). As a result, T∗ = T∗2 .

Theorem 1 implies that ∆ is an important term to determine if the optimal ordering cycle T∗ is
larger than credit period M. Note, if there is no cap-and-trade system, or equivalently the carbon price
p equals to 0, ∆ is degenerated to −2A + (h + cIe) DM2, which has been discussed in Huang [9] and
Chung [22]. Hence, their results are special cases of this research [9,22].

4. The Impacts of Carbon Emission Trading on the Retailer’s Ordering Policy

We investigate the joint impacts of trade credit and carbon emissions trading on the retailer’s
ordering policy, carbon emissions and total cost in this section.
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First, by investigating the expressions of T∗, we find how the retailer’s optimal ordering cycle
varies with the cost and carbon emissions, which is as the following Theorem shows.

Theorem 2. The T∗ is increasing in both A and e, and it is decreasing in both h and g.

Theorem 2 implies that the carbon emissions can be viewed as the extra costs that incurred during
the ordering and inventory holding stages. That is, under the cap-and-trade system, the costs of
the retailer that incurred during the ordering and stocking stages increase by pe and pg, respectively.
On the one hand, if the retailer incurs more cost or emits more carbon dioxide per order, he/she
inclines to order less frequently and extend the ordering cycle accordingly. On the other hand, if
the retailer incurs more cost or emits more carbon dioxide during the inventory hold stage, the best
strategy for him/her is to order less per time and shorten the ordering cycle. Under the cap-and-trade
system, the retailer adjusts his/her ordering decisions accordingly on his/her carbon emissions during
the ordering and inventory holding stages.

We next compare the costs minimizing ordering cycle with the cycle that minimizes the total
emissions. This result is as Theorem 3 shows.

Theorem 3.

(1) When ∆ > 0:

(a) if g/e = (h + cIe)/A, then T∗ = T̂;
(b) if g/e < (h + cIe)/A, then T∗ < T̂; and
(c) if g/e > (h + cIe)/A, then T∗ > T̂.

(2) When ∆ ≤ 0:

(a) if g/e = (h + cIk)/
(

A + 1/2cDM2(Ik − Ie)
)
, then T∗ = T̂;

(b) if g/e < (h + cIk)/
(

A + 1/2cDM2(Ik − Ie)
)
, then T∗ < T̂; and

(c) if g/e > (h + cIk)/
(

A + 1/2cDM2(Ik − Ie)
)
, then T∗ > T̂.

Proof. Comparing T∗ with T̂ for the cases of ∆ > 0 and ∆ ≤ 0, respectively, it is easy to prove
Theorem 3.

Theorem 3 makes a comparison between the optimal ordering cycle for the retailer under the
cap-and-trade system, and the optimal ordering cycle that minimizes the retailer’s carbon emissions.
Note that g/e is the ratio of carbon emissions that emitted during the inventory holding stage to those
emitted during the ordering stage. (h + cIe)/A and (h + cIk)/

(
A + 1/2cDM2(Ik − Ie)

)
are the ratios

of the inventory holding cost to ordering cost when the retailer’s ordering cycle is shorter or longer
than the credit period respectively. Theorem 3 implies that whether the retailer should order more
products only depends on which of these two ratios is larger.

When g/e = (h + cIe)/A (or g/e = (h + cIk)/
(

A + 1/2cDM2(Ik − Ie)
)
), the retailer’s optimal

ordering cycle also minimizes the carbon emissions. That is, in this case, there is no space to further
reduce the retailer’s carbon emissions by adjusting the retailer’s ordering and inventory decisions.
However, when g/e < (h + cIe)/A or g/e < (h + cIk)/

(
A + 1/2cDM2(Ik − Ie)

)
, it implies that the

carbon emissions during the inventory holding stages are relatively small. Thus, the retailer should
order less and shorten his/her ordering cycles, compared with the ordering cycle that minimizes the
total emissions. Therefore, T∗ is smaller than T̂ in this case, and vice versa.

Theorem 4. The retailer’s optimal ordering cycle T∗ is irrelevant to carbon cap α. Moreover, given the carbon
cap α, we have the following.
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(1) When ∆ > 0:

(a) if g/e = (h + cIe)/A, the retailer’s optimal ordering cycle T∗ is irrelevant to p;
(b) if g/e < (h + cIe)/A, the retailer’s optimal ordering cycle T∗ is increasing in p; and
(c) if g/e > (h + cIe)/A, the retailer’s optimal ordering cycle T∗ is decreasing in p.

(2) When ∆ ≤ 0:

(a) if g/e = (h + cIk)/
(

A + 1/2cDM2(Ik − Ie)
)
, the retailer’s optimal ordering cycle T∗ is

irrelevant to p;
(b) if g/e < (h + cIk)/

(
A + 1/2cDM2(Ik − Ie)

)
, the retailer’s optimal ordering cycle T∗ is

increasing in p; and
(c) if g/e > (h + cIk)/

(
A + 1/2cDM2(Ik − Ie)

)
, the retailer’s optimal ordering cycle T∗ is

decreasing in p.

Proof. By investigating the expression of T∗ (see Theorem 1), it is easy to observe that T∗ is irrelevant
to α. Moreover, differentiating T∗ with respect to p, and letting the derivative be equal to, larger or
smaller than zero, respectively, we can obtain the above conditions easily.

Theorem 4 further characterizes the varying of the retailer’s optimal ordering cycle under
trade credit with the cap-and-trade system parameters. It implies that only the carbon price
has impact on the retailer’s ordering decisions. More specifically, when g/e < (h + cIe)/A
(or g/e < (h + cIk)/

(
A + 1/2cDM2(Ik − Ie)

)
), the retailer’s optimal ordering cycle is increasing

in carbon price, and vice versa. Note that T∗ is smaller than T̂ when g/e < (h + cIe)/A (or g/e <

(h + cIk)/
(

A + 1/2cDM2(Ik − Ie)
)
), it implies the retailer will always adjust his/her ordering cycle

towards T̂, which minimize the retailer’s total carbon emissions, as the carbon price increases.
To further investigate the impact of cap-and-trade system on the retailer’s cost and carbon

emissions, we next consider the case where the price equals to zero. In this case, the retailer’s optimal
ordering decisions degenerate to the case that there are no cap-and-trade system. In particular,
we get ∆(0) = −2A + (h + cIe)DM2, T∗1 (0) =

√
[2A + cDM2(Ik − Ie)]/[D(h + cIk)], and T∗2 (0) =√

2A/[D(h + cIe)] while applying p equals to 0 to the expressions of ∆, T∗1 and T∗2 respectively. Note
the retailer’s optimal decisions, costs and emissions are all functions of carbon price, we denote this no
cap-and-trade system case with T∗(0), Z(T∗(0), 0), E(T∗(0)), accordingly.

Corollary 1: The cap-and-trade system can induce the retailer to reduce carbon emissions, i.e.,
E(T∗) < E(T∗(0)).

Proof. Omitted.

Corollary 1 implies that the cap-and-trade system can reduce the retailer’s carbon emissions as
it is anticipated. However, what interests us now is how does the retailer’s cost change under this
system, which is given in Theorem 5.

Let α′ = α− kD, ∆Z = Z(T∗)− Z(T∗(0), 0), we have Theorem 5.

Theorem 5.

(1) When ∆(0) > 0 and ∆ > 0:

(a) if α′ ≤
√

2egD, the total cost Z(T∗) ≥ Z(T∗(0), 0);
(b) if

√
2egD < α′ < (Ag + e(h + cIe))

√
D/2A(h + cIe):

(b.1) if p <
2D(Ag+e(h+cIe))−2α′

√
2A(h+cIe)D

α′2−2egD
, then Z(T∗) > Z(T∗(0), 0);
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(b.2) if p >
2D(Ag+e(h+cIe))−2α′

√
2A(h+cIe)D

α′2−2egD
, then Z(T∗) < Z(T∗(0), 0);

(b.3) if p =
2D(Ag+e(h+cIe))−2α′

√
2A(h+cIe)D

α′2−2egD
, then Z(T∗) = Z(T∗(0), 0); and

(c) if α′ ≥ (Ag + e(h + cIe))
√

D
2A(h+cIe)

, then Z(T∗) < Z(T∗(0), 0);

(2) When ∆(0) > 0 and ∆ < 0:

Let Π =

√
2
(

A + 1
2 (Ik − Ie)cDM2

)
(h + cIk)D−

√
2A(h + cIe)D− (Ik − Ie)McD

(a) if α′ ≤
√

2egD, ∆Z > Π;

(b) if
√

2egD < α′ <
(

e(h + cIk) +
(

A + 1
2 (Ik − Ie)cDM2

)
g
)√

D
2(A+ 1

2 (Ik−Ie)cDM2)(h+cIk)
:

(b.1) if p <
2D(e(h+cIk)+(A+ 1

2 (Ik−Ie)cDM2)g)−2α′
√

2(A+ 1
2 (Ik−Ie)cDM2)(h+cIk)D

α′2−2egD
, then ∆Z > Π;

(b.2) if p >
2D(e(h+cIk)+(A+ 1

2 (Ik−Ie)cDM2)g)−2α′
√

2(A+ 1
2 (Ik−Ie)cDM2)(h+cIk)D

α′2−2egD
, then ∆Z < Π;

(b.3) if p =
2D(e(h+cIk)+(A+ 1

2 (Ik−Ie)cDM2)g)−2α′
√

2(A+ 1
2 (Ik−Ie)cDM2)(h+cIk)D

α′2−2egD
, then ∆Z =

Π; and

(c) If α′ ≥
(

e(h + cIk) +
(

A + 1
2 (Ik − Ie)cDM2

)
g
)√

D
2(A+ 1

2 (Ik−Ie)cDM2)(h+cIk)
, then ∆Z < Π;

(3) When ∆(0) < 0 and ∆ > 0:

(a) if α′ ≤
√

2egD, ∆Z > −Π;
(b) if

√
2egD < α′ < (Ag + e(h + cIe))

√
D/2A(h + cIe),

(b.1) if p <
2D(Ag+e(h+cIe))−2α′

√
2A(h+cIe)D

α′2−2egD
, then ∆Z > −Π;

(b.2) if p >
2D(Ag+e(h+cIe))−2α′

√
2A(h+cIe)D

α′2−2egD
, then ∆Z < −Π;

(b.3) if p =
2D(Ag+e(h+cIe))−2α′

√
2A(h+cIe)D

α′2−2egD
, then ∆Z = −Π; and

(c) if α′ ≥ (Ag + e(h + cIe))
√

D/2A(h + cIe), then ∆Z < −Π;

(4) When ∆(0) < 0 and ∆ < 0:

(a) if α′ ≤
√

2egD, the total cost Z(T∗) ≥ Z(T∗(0), 0)

(b) if
√

2egD < α′ <
(

e(h + cIk) +
(

A + 1
2 (Ik − Ie)cDM2

)
g
)√

D
2(A+ 1

2 (Ik−Ie)cDM2)(h+cIk)
,

(b.1) if p <

(
2D(e(h+cIk)+(A+ 1

2 (Ik−Ie)cDM2)g)−2α′
√

2(A+ 1
2 (Ik−Ie)cDM2)(h+cIk)D

)
α′2−2egD

, then

Z(T∗) > Z(T∗(0), 0);

(b.2) if p >

(
2D(e(h+cIk)+(A+ 1

2 (Ik−Ie)cDM2)g)−2α′
√

2(A+ 1
2 (Ik−Ie)cDM2)(h+cIk)D

)
α′2−2egD

, then

Z(T∗) < Z(T∗(0), 0);

(b.3) if p =

(
2D(e(h+cIk)+(A+ 1

2 (Ik−Ie)cDM2)g)−2α′
√

2(A+ 1
2 (Ik−Ie)cDM2)(h+cIk)D

)
α′2−2egD

, then

Z(T∗) = Z(T∗(0), 0); and

(c) If α′ ≥
(

e(h + cIk) +
(

A + 1
2 (Ik − Ie)cDM2

)
g
)√

D
2(A+ 1

2 (Ik−Ie)cDM2)(h+cIk)
, then Z(T∗) <

Z(T∗(0), 0).
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Proof. See Appendix A.

Parts (1)–(4) of Theorem 5 are characterized with similar features. The retailer’s cost changes
in the presence of cap-and-trade system can be divided into three cases by carbon cap. Firstly, if the
carbon cap is less than the retailer’s minimum carbon emissions

√
2egD + kD (i.e., α′ ≤

√
2egD), the

carbon constraint is so tight that the retailer has to buy carbon credit from the market anyway. As a
result, the retailer’s cost will increase under common conditions, i.e., ∆Z > 0. However, this is not the
case under some extreme conditions, such as when the cap-and-trade system alters the ordering cycle
from longer than the credit period to shorter than the credit period (see Part (3) of Theorem 5). In this
case, the cost changes are composed of two parts: on the one hand, the cost will increase because the
extra carbon credit buying is needed; and, on the other hand, the cost will also decrease as the interest
payable is reduced due to the shortened ordering cycle. As a result, if the cost changes are positive is
dependent on the trade-off between these two effects.

Secondly, when the carbon cap is larger than (Ag + e(h + cIe))
√

D/[2A(h + cIe)] (or(
e(h + cIk) +

(
A + 1

2 (Ik − Ie)cDM2
)

g
)√

D
2(A+ 1

2 (Ik−Ie)cDM2)(h+cIk)
), Theorem 4 implies that the

retailer’s cost will decrease generally except when the retailer’s optimal ordering cycle alters from
shorter than credit period to longer than it under cap-and-trade system. Under this condition, because
the increased interest payable may overstep the decreased emission cost, the retailer’s cost could
increase Part (2) of Theorem 4 shows.

Finally, when the carbon cap is between the above two thresholds, Theorem 4 implies that the
retailer’s total cost changes are dependent on the carbon price. If the carbon price is low, the cost will
generally increase except the case that the retailer’s optimal ordering cycle alters from longer than
credit period to shorter than it, and vice versa. As a result, a high carbon price is highly beneficial for
reducing emissions and cost simultaneously.

Overall, compared to the modified EOQ model under cap-and-trade system that Hua et al. [21]
studied, our results show if the trade credit is considered, there is a joint impact of cap-and-trade
system and trade credit on the retailer’s cost. On the one hand, the retailer incurs emission cost under
the cap-and-trade system. On the other hand, the trade credit may also impact on the cost significantly
when the retailer’s optimal ordering cycle changes from shorter/longer than the credit period to
longer/shorter than credit period. The total cost changes are dependent on which of these two effects
is larger.

Theorem 6. There exists thresholds α1
0 and α2

0.

(1) When ∆ > 0:

(a) if α < α1
0, then the retailer should buy α1

0 − α units of carbon credit;
(b) if α > α1

0, then the retailer should sell α− α1
0 units of carbon credit; and

(c) if α = α1
0, then the retailer should neither buy nor sell carbon credit.

(2) When ∆ ≤ 0:

(a) if α < α2
0, then the retailer should buy α2

0 − α units of carbon credit;
(b) if α > α2

0, then the retailer should sell α− α2
0 units of carbon credit; and

(c) if α = α2
0, then the retailer should neither buy nor sell carbon credit.

In Theorem 6, α1
0 = e

√
(h + pg + cIe)D/[2(A + pe)] + g

√
(A + pe)D/[2(h + pg + cIe)] +

kD, and α2
0 = e

√
(h + pg + cIk)D/[2(A + pe) + cDM2(Ik − Ie)] +

g
2

√
[2(A + pe) + cDM2(Ik − Ie)]D/(h + pg + cIk) + kD, respectively.

Proof. Let X = α − (e/T∗ + gDT∗/2 + kD) < 0, X > 0, and X = 0, respectively, we can derive
Theorem 6 easily.
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Theorem 6 gives the threshold if the retailer should buy carbon credit from the carbon market.
Under the trade credit mechanism, given the carbon cap, whether the retailer should buy carbon credit
is not only determined by the ordering and holding cost of the inventory, but also determined by the
credit period, the interest earned and the interest charged by the supplier. If the given cap is lower
than the threshold α1

0 or α2
0, the retailer should buy the carbon credit, and vice versa. The key insight

here is that the retailer’s total emissions are irrelevant to the amount of carbon credits, i.e., the carbon
cap allocated to the retailer, under the cap-and-trade system. The retailer would buy the carbon credit
from the market once his/her emissions exceed the cap; otherwise, he/she would sell the extra carbon
credit to earn revenue. As a result, though carbon cap does not influence the retailer’s total emissions,
it determines how many carbon credits the retailer should buy or sell. In other words, it makes an
impact on the retailer’s total cost.

Formally, we have the following theorem about the relationships between the carbon emissions
and both the carbon cap and price.

Theorem 7. The carbon emissions are irrelevant to cap α' and decreasing in carbon price p.

This result is consistent with the fact. Moreover, the retailer’s carbon emissions are decreasing in
carbon price as expected. Because the rising carbon price will not only increase the real cost, but also
the opportunity cost of carbon emissions. The retailer has to adjust his/her ordering decisions and
reduce the carbon emissions accordingly. However, we should note that marginal effect of carbon price
on reducing the carbon emissions is decreasing as the carbon price rises. That is, when the carbon price
is very high, the retailer’s optimal decision is similar to the one that minimizes emissions. No matter
how high the carbon price is in this case, the lower bound of the emissions would never be exceeded.

Moreover, it should also be noted that the results in Theorems 6 and 7 are based on the assumption
that the carbon cap are allocated to a single retailer. In fact, the carbon price will increase if the total
carbon credits the government allocated to the system are reduced. The retailer’s ordering decisions
and carbon emissions will be influenced by the increasing carbon price. As a result, the government
could reduce the total carbon emissions by decreasing the total carbon credits allocated to the system.

Theorem 8.

(1) When ∆ > 0:

(a) if g/e < (h + cIe)/A, the carbon emissions are increasing in Ie, or else it is decreasing in Ie; and
(b) the carbon emissions are irrelevant to M and Ik − Ie.

(2) When ∆ ≤ 0:

(a) if g/e < (h + cIk)/
(

A + 1/2cDM2(Ik − Ie)
)
, the carbon emissions are increasing in Ie, and

decreasing in M and Ik − Ie; and
(b) if g/e > (h + cIk)/

(
A + 1/2cDM2(Ik − Ie)

)
, the carbon emissions are decreasing in Ie, and

increasing in M and Ik − Ie.

Proof. By investigating the expression of carbon emissions E(T), it is easily to prove Theorem 8.

Theorem 8 is composed of two cases. When the retailer’s optimal ordering cycle is shorter than
credit period, the retailer’s carbon emissions are irrelevant to credit period M and the difference
between the interests charged and earned Ik − Ie. Moreover, if g/e < (h + cIe)/A, the retailer’s carbon
emissions are increasing in Ie. , and vice versa. When the retailer’s ordering cycle is longer than credit
period and g/e < (h + cIk)/

(
A + 1/2cDM2(Ik − Ie)

)
, the retailer’s carbon emissions are increasing in

Ie, M and Ik − Ie.



Sustainability 2017, 9, 1235 12 of 14

Similar to Theorems 3 and 4, the relationships between retailer’s carbon emissions and trade
credit parameters Ie, M and Ik − Ie also depend on the relative size of the ratios g/e and (h + cIe)/A
(or g/e < (h + cIk)/

(
A + 1/2cDM2(Ik − Ie)

)
). Generally, if the retailer emits less at the inventory

holding stage relative to the ordering stage, he/she would extend the ordering cycle to decrease the
carbon emissions. However, if the interest earned is large, the retailer also inclines to shorten the
ordering cycle because he/she would earn more interest. As a result, the retailer’s carbon emissions are
increasing in Ie. The similar reasons also apply to explain the relationships between carbon emissions
and credit period M and Ik − Ie.

5. Conclusions

As global warming has become an increasingly important sustainability issue in today’s world,
we study how the retailer to adjust his/her ordering decisions to reduce carbon emissions under the
cap-and-trade system. In addition, because trade credit is a commonly used mechanism between
suppliers and retailers, we incorporate it into our study to investigate how the retailer’s ordering
policy changes under this condition. We derive the retailer’s optimal ordering cycle, as well as the
total cost and carbon emissions, and compare them to those without cap-and-trade system. The main
insights are summarized as follows.

First, the cap-and-trade system and trade credit financing jointly impact on the retailer’s ordering
decision. The retailer’s optimal ordering cycle is increasing in ordering cost and emissions during the
ordering stage. Moreover, it decreases with the cost and emissions during the storage stage. As a result,
under the cap-and-trade system, the retailer would like to shorten his/her ordering cycle and order
less products per time when he/she emits more carbon dioxide during the inventory holding stage
relative to the ordering stage, such as for the deteriorating products (which need for refrigeration and
emit more carbon dioxide during the inventory stage). On the other hand, considering one intention
of the trade credit is to stimulate the retailer to order more each time, the effect of trade credit on
stimulating the retailer to order more would be reduced in this case.

Second, our results imply the cap-and-trade system is effective in reducing the retailer’s carbon
emissions. Moreover, under the cap-and-trade system, the retailer’s total cost may increase or decrease,
depends on the carbon cap allocated to the retailer and the carbon price. Specifically, when the carbon
constraint is too tight, the retailer has to buy carbon credit from the market anyway. Therefore, the
retailer’s cost will increase except for some extreme cases. On the contrary, when the carbon cap or
carbon price is very high, the retailer can reduce the cost and emissions simultaneously. Compared to
the modified EOQ model under cap-and-trade system, which Hua et al. [21] studied, we identify a
few special cases that the cost changes oppositely to what Hua’s model predicts (such as Theorems
5(2) and 5(3) show), as a result of the joint impact of cap-and-trade system and trade credit on the
retailer’s cost.

Finally, we find that the carbon cap does not impact on the retailer’s optimal ordering decisions
and carbon emissions, but the total cost, as Theorems 4 and 7 show. Moreover, whether the carbon
emissions are increasing in the trade credit parameters, such as annual interest earned per dollar, the
difference between interest rate charged and earned, and the credit period is dependent on the relative
size of the ratio g/e and (h + cIe)/A (or g/e < (h + cIk)/

(
A + 1/2cDM2(Ik − Ie)

)
). Throughout the

paper, these ratios are key factors that determine the properties of retailer’s ordering cycle and carbon
emissions. In addition, it is observed that trade credit only impacts on the cost ratio. At last, the
retailer’s carbon emissions decrease with the carbon price, however, the marginal effect of carbon price
on reducing carbon emissions is decreasing.

Based on EOQ model and taking trade credit into account, we investigate how the retailer adjusts
his/her ordering decisions under the cap-and-trade system, and the corresponding changes of his/her
carbon emissions and total cost. Our research could be extended from many perspectives. First, we
could consider more complicate and realistic trade credit forms, such as the two-part or two-level
trade credit, and investigate how the supplier and retailer coordinate under these conditions to reduce
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carbon emissions. The impact of carbon emissions constraint on the design of trade credit contract
should be explicitly explored. Moreover, besides the cap-and-trade system, we could also examine the
adjustment of the retailer’s ordering decisions under many other carbon control mechanisms, such as
the strict carbon caps and the carbon tax, etc.
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Appendix Proof of Theorem 4

(1) If ∆(0) > 0 and ∆ > 0, then ∆Z = Z(T∗) − Z(T∗(0), 0) = Z(T∗2 ) −
Z(T∗2 (0), 0) =

√
2(A + pe)(h + pg + cIe)D −

√
2A(h + cIe)D − p(α− kD). Notice

the sgn(∆Z) = sgn
[

2(A + pe)(h + pg + cIe)D−
(√

2A(h + cIe)D + p(α− kD)
)2
]

=

sgn
[

p
((

2egD− (α− ĉD)2
)

p + 2D(Ag + e(h + cIe))− 2(α− kD)
√

2A(h + cIe)D
)]

; thus, it is
easy to derive Theorem 4(1).

(2) If ∆(0) > 0 and ∆ < 0, then ∆Z = Z(T∗) − Z(T∗(0), 0) = Z
(
T∗1
)
− Z(T∗2 (0), 0) =√

2
(

A + pe + 1
2 (Ik − Ie)cDM2

)
(h + pg + cIk)D −

√
2A(h + cIe)D − (Ik − Ie)McD − p(α− kD)

=

√
2
(

A + pe + 1
2 (Ik − Ie)cDM2

)
(h + pg + cIk)D −

√
2
(

A + 1
2 (Ik − Ie)cDM2

)
(h + cIk)D −

p(α− kD)+

√
2
(

A + 1
2 (Ik − Ie)cDM2

)
(h + cIk)D −

√
2A(h + cIe)D −(Ik − Ie)McD =

Z
(
T∗1
)
− Z

(
T∗1 (0), 0

)
+
(
Z
(
T∗1 (0), 0

)
− Z(T∗2 (0), 0)

)
.

Let Π = Z
(
T∗1 (0), 0

)
− Z(T∗2 (0), 0) =

√
2
(

A + 1
2 (Ik − Ie)cDM2

)
(h + cIk)D + (1− Ik)McD −√

2A(h + cIe)D − (1− Ie)McD =

√
2
(

A + 1
2 (Ik − Ie)cDM2

)
(h + cIk)D −

√
2A(h + cIe)D −

(Ik − Ie)McD, then

sgn(Π) = sgn
[

2
(

A + 1
2 (Ik − Ie)cDM2

)
(h + cIk)D−

(√
2A(h + cIe)D + (Ik − Ie)McD

)2
]

= sgn
[
2Ac(Ik − Ie)D− 2

√
2A(h + cIe)D(Ik − Ie)McD + (Ik − Ie)(h + cIe)cD2M2

]
= sgn

[(√
2Ac(Ik − Ie)D−

√
(Ik − Ie)(h + cIe)cDM

)2
]

Thus, Π = Z
(
T∗1 (0), 0

)
−Z(T∗2 (0), 0) ≥ 0. Besides, we can derive the sign of Z(T∗1)−Z(T∗1(0), 0)

in a similar way to Theorem 4(1). Thus, Theorem 4(2) is proven.
(3) If ∆S < 0 and ∆CET > 0, then ∆Z = Z(T∗) − Z(T∗(0), 0) = Z(T∗2 ) − Z

(
T∗1 (0), 0

)
=

Z(T∗2 )− Z(T∗2 (0), 0) +
(
Z(T∗2 (0), 0)− Z

(
T∗1 (0), 0

))
. We know Z(T∗2 (0), 0)− Z

(
T∗1 (0), 0

)
= −Π ≤

0. Moreover, we can derive the sign of Z(T∗2 )− Z(T∗2 (0), 0) is a similar way to Theorem 4(1). Thus the
Theorem 4(3) is proved.

(4) We can easily prove Theorem 4(4) in a similar way to Theorem 4(1).
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