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Abstract: The quick and accurate extraction of information on woodland resources and distributions
using remote sensing technology is a key step in the management, protection, and sustainable use of
woodlands. This paper presents a low-cost and high-precision extraction method for large woodland
areas based on the fractal features of the Moderate Resolution Imaging Spectroradiometer (MODIS)
normalized difference vegetation index (NDVI) time series data for Beijing, China. The blanket
method was used for computing the upper and lower fractal signals of each pixel in the NDVI time
series images. The fractal signals of woodlands and other land use/land cover types at corresponding
scales were analyzed and compared, and the attributes of woodlands were enhanced at the fifth
lower fractal signal. The spatial distributions of woodlands were extracted using the Iterative
Self-Organizing Data Analysis technique (ISODATA), and an accuracy assessment of the extracted
results was conducted using the China Land Use and Land Cover Data Set (CLUCDS) from the same
period. The results showed that the overall accuracy, kappa coefficient, and error coefficient were
90.54%, 0.74, and 8.17%, respectively. Compared with the extracted results for woodlands using
the MODIS NDVI time series only, the average error coefficient decreased from 30.2 to 7.38% because
of these fractal features. The method developed in this study can rapidly and effectively extract
information on woodlands from low spatial resolution remote sensing data and provide a robust
operational tool for use in further research.
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1. Introduction

Land use and land cover change (LUCC) is an important element in the global climate change
and global environmental change fields [1–3]. It serves as a link between human socioeconomic
activities and natural ecological processes [4] and is the most direct manifestation of the effects of
human activity on the natural ecosystems on the land surface [5]. Woodlands are a key component of
terrestrial ecosystems and play an important role in global climate change mitigation, the maintenance
of ecological balance, and improvements in the ecological environment [6]. As the capital of China,
Beijing is densely-populated and is a dynamic region with intense human activities. Many projects
have been implemented in the study area by the Chinese/Beijing government over the past two
decades, for example, the Grain for Green Project (since 1999) [7], the Beijing–Tianjin Sandstorm
Source Controlling Project (since 2000) [8,9], and the Beijing Plain Afforestation Project (since 2012) [10].
The overall ecological effects of these projects are beneficial [11], and forest coverage in Beijing rose
to 41.6% in 2015. However, woodlands have changed markedly due to frequent human activities,
which hinders our ability to gauge the effectiveness of these projects and woodland management
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practices. Therefore, it is important to have a rapid and effective information extraction method to
support woodland management and sustainable use.

The management objectives of woodlands vary at different scales. Global, intercontinental,
and national scale studies mainly focus on long-term monitoring and integrated research on the major
problems affecting woodland to support decision-making for ecological restoration, environmental
protection, and policy needs, for example, the effect of large-scale afforestation on land surface
temperature [12] and the response to ecosystem degradation from rapid economic development
in China [13]. Regional and provincial scale research mainly concentrates on key ecological engineering
and environmental issues related to forestry and the ecological elements or mechanistic studies of
woodland systems, for example, the ecological effects of government projects [11]. Studies of specific
applications of woodland monitoring methods are considered at city or county scales, and most of these
address technical methods [14]. Traditional woodland parameters are usually obtained by field surveys
and investigations based on monitoring stations or standard samples, and the process is expensive,
time-consuming, labor-intensive, and lacks timeliness. Remote sensing technology with a large
coverage, short revisit time, and low cost can rapidly and accurately detect the type, distribution,
area, structure, quality, and status of woodlands over time. Remote sensing data (e.g., MODIS
(250-m), the Landsat or HuanJing (HJ) satellites (30-m)) have been widely used in several fields of
woodland research, for example, resource investigations [15,16], type identification [17], vegetation
mapping [18–21], and change monitoring [22–24]. Currently, remote sensing has become the primary
approach for global and regional woodland surveys. Moderate and high spatial resolution remote
sensing data are gradually being applied to large-scale studies, for example, global land cover mapping
at 30-m resolution [25]. Remote sensing data sources and resolutions are selected to meet different
research aims and correspond to the relevant scales of woodland information required. However,
both high spatial and temporal resolution remote sensing data are hard to achieve in reality. Therefore,
numerous models and algorithms have been developed for remote sensing image enhancement
and time series reconstruction; for example, fractal analysis [26], principal component analysis [27],
and wavelet analysis [28] have been adopted to identify target features through image enhancement.

Compared with other image enhancement methods, fractal characteristics are to some extent
stable and independent of the resolution and perspective. They are consistent and can be used for
target information extraction and feature classification. Since Mandelbrot [29] introduced the notion
of fractals in the 1970s, fractal analysis has been used in the image segmentation [30,31] and texture
analysis [32] of remote sensing data. Numerous studies have been developed to process and interpret
remote sensing imagery [33–35]. The main studies are grouped into two key issues: the calculation
of fractal dimension of remote sensing imagery [36] and the application of fractal analysis to remote
sensing images [37]. In this study, we present an information extraction method for woodlands based
on the fractal features of MODIS NDVI time series at a provincial scale. The specific objectives were:
(1) to analyze and compare the fractal features of different targets and select the fractal feature scale of
woodlands; (2) to extract the spatial distributions of woodlands and assess the accuracy; and (3) to set
up comparative experiments to analyze the main contributions of fractal feature. Finally, we discuss
the theoretical assumptions, significance of the fractal parameters, and the potential of this method in
LUCC detection and the evaluation of major forestry and ecological projects in China.

2. Materials and Methods

2.1. Study Area

The study area is Beijing, which is located in the northwest of the North China Plain between
longitudes 115◦25′–117◦30′ E and latitudes 39◦28′–41◦05′ N (Figure 1). The area is 16,411 km2, and there
are 16 districts. The city is characterized by alluvial plains in the south and east accounting for 38% of
the total area, and hills and mountains in the north, northwest, and west accounting for 62% of the total.
The average elevation of Beijing is 43.5 m. The area has a warm, temperate, semi-humid continental
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monsoon climate with an average annual temperature of 12.5 ◦C and an average precipitation of
566.1 mm. In 2015, Beijing’s gross domestic product (GDP) topped 2.301 trillion Yuan, and its
population was 21.71 million [38].
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The primary land use and land cover types in the area can be divided into six general categories:
cropland, woodland, grassland, water body, built-up land, and unused land (including sandy land,
bare soil, and rock). Woodlands include forests, plantations, shrubs, and others (e.g., orchards).
The main tree species [39] in this area are Platycladus orientalis, Pinus tabulaeformis, Larix gmelinii,
Quercus spp., Populus davidiana, Robinia pseudoacacia, and Prunus persica.

2.2. Data and Data Processing

The vegetation index products MOD13Q1 Collection 6 contain 12 layers at a 250-m spatial resolution,
of which the Normalized Difference Vegetation Index (NDVI) layer is used in this study [40]. The 16-day
composites as a gridded level-3 product in the Sinusoidal projection from the National Aeronautics and
Space Administration (NASA) MODIS data product website (http://modis.gsfc.nasa.gov) have been
derived from the atmospherically-corrected 8-day composite products (MxD09A1) [41]. The study
area is covered by two MOD13Q1 scenes (h26v04 and h26v05), and a set of 23 time-phase images
covered the full year of 2010. Data processing was supported by ENVI 5.1 (Environment for Visualizing
Images). The downloaded MOD13Q1 datasets for the study area were first converted by file formatting,
mosaicked, and re-projected into the UTM Zone 50N projection with the WGS 84 datum using nearest
neighbor resampling. The NDVI time series datasets were smoothed using a Savitzky-Golay filter [42].
A seven-point quadratic smooth was adopted in this study and convolution weights for quadratic
smoothing and differentiation were shown in [43]. A spatial subset was extracted based on the Beijing
boundary with a size of 776 rows and 770 columns.

http://modis.gsfc.nasa.gov
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The China Land Use and Land Cover Data Set (CLUCDS) for 2010 was provided by the Data
Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) [22,44].
The dataset included six classes (provincial and national cropland, woodland, grassland, water body,
built-up land, and unused land) and 25 subclasses of land use and land cover based on visual
interpretation and digitalization with technical support from Intergraph MGE (Modular GIS
Environment) software of the Landsat Thematic Mapper (TM) and HJ-1 data at a 30-m spatial
resolution [45]. The accuracy of the six classes of land use/cover was above 94.3%, and the overall
accuracy of the 25 subclasses was above 91.2% in 2010 [22]. This level of accuracy is acceptable for
this study.

2.3. Methods

The information extraction method for woodlands in this study has three main parts, including
data and preprocessing, fractal feature analysis, and woodland information extraction and extraction
accuracy assessment. A flowchart of the information extraction process for woodlands is given in
Figure 2. The blanket method and Iterative Self-Organizing Data Analysis technique (ISODATA) tool
were adopted for fractal processing of the NDVI time series and the extraction of information on
woodlands, respectively. A confusion matrix and error coefficient were employed to assess the accuracy
of the extracted results. Fractal computer programs were developed using IDL (Interactive Data
Language). The ISODATA analysis and accuracy assessment were performed in the ENVI 5.1 and
ArcGIS 9.3 software.
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Comparative experiments on the fractal-based and NDVI-based groups were set up to analyze
the main contributions of fractal feature. The methods for the information extraction and accuracy
assessment in both groups were the same.

2.3.1. Blanket Method

The blanket method was proposed by Peleg et al. [26] to compute the spatial fractal dimension of
remote sensing images. Fractal analysis is beneficial in pattern recognition, texture analysis, and image
classification. The essence of the method is that a curve (e.g., a spectral curve or time series curve) is
developed using different mathematical transformations to select suitable characteristic values for
different targets from the perspective of statistics or signal analysis. The principle of this method is
that a remote sensing image is treated as a 3-D topography, and the gray of each pixel equates to
the height. The terrain surface is then enveloped by two blankets, one on each side, with a distance of ε,
and the fractal dimension of the image can be computed by the relationship between the area of
the blankets and the volume of the space enveloped by the two blankets. Currently, fractals are mainly
used to calculate the spatial fractal dimension of each band in image space, and the process is repeated.
This calculation is time-consuming. A fractal dimension calculating the time series curve for each pixel
was adopted in this study. The specific method and formula are shown in [26,46]. Both methods were
adopted and modified to compute the fractal dimension of the MODIS NDVI time series curves in
this study.

A MODIS NDVI time series curve g(i) (i = 1, 2, 3, . . . , m, where m is the number of samples in
NDVI time series), can be enveloped by two curves with a width of 2ε (ε = 1, 2, 3, . . . , n), where ε is
a defined measured unit. The enveloping curves are called upper profiles uε (i) and lower profiles bε (i).

uε(i) = max{uε−1(i) + 1, max
|j−i≤1|

uε−1(i)} (1)

bε(i) = max{bε−1(i) + 1, min
|j−i≤1|

bε−1(i)} (2)

where j is an immediate neighbor of i.
The area of the region enveloped by the upper and lower profiles is calculated using:

sε(i) = ∑
i
(uε(i)− bε(i)) (3)

The length of the curve is defined as:

A(ε) =
(sε − sε−1)

2
(4)

According to Mandelbrot’s definition, the length of the fractal curve can be expressed as:

A(ε) = Fε2−D (5)

where F is a constant, ε is the measured unit, and D is a parameter related to fractal dimension. For each
ε (ε = 2, 3, 4, . . . , n), three points (log(ε − 1), log(A(ε − 1))), (log(ε), log(A(ε))), (log(ε + 1), log(A(ε + 1)))
are adopted to fit a line, and the slope of the fitted line is defined as the fractal signal S(ε) corresponding
to the ε.

The complex shape of the real curve results in an asymmetrical length measured under different
scales. The curve is measured from the upper side and lower side; thus, Equation (3) becomes:

s+ε (i) = ∑
i
(uε(i)− g(i)) (6)
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s−ε (i) = ∑
i
(g(i)− bε(i)) (7)

Correspondingly, the upper length A+(ε) and lower length A−(ε) are defined as:

A+(ε) = S+
ε − S+

ε−1 = ∑
i
(uε(i)− g(i))−∑

i
(uε−1(i)− g(i)) = ∑

i
(uε(i)− uε−1(i)) (8)

A−(ε) = S−ε − S−ε−1 = ∑
i
(g(i)− bε(i))−∑

i
(g(i)− bε−1(i)) = ∑

i
(bε−1(i)− bε(i)) (9)

The fractal signals obtained from Equations (8) and (9) are the upper fractal signal and lower
fractal signal, respectively.

2.3.2. Accuracy Assessment

In this study, the China Land Use and Land Cover Data Set (CLUCDS) for Beijing in 2010
was adopted as the reference data and the results of woodlands based on fractal extraction were
selected to evaluate. The two classes in this evaluation were woodland and non-woodland. The total
samples of CLUCDS were used for accuracy assessment based on the Confusion Matrix tool and this
process was performed in the ENVI 5.1 and ArcGIS 9.3 software. The accuracy indices [47] selected to
assess the extracted results were overall accuracy (OA), producer accuracy (PA), user accuracy (UA),
kappa coefficient (Kappa), and error coefficient (Error). These indices are defined as follows:

OA =

n
∑

i=1
pii

N
(10)

PA =
pii
p+i

(11)

UA =
pii
pi+

(12)

Kappa =

N
n
∑

i=1
pii −

n
∑

i=1
p+i pi+

N2 −
n
∑

i=1
p+i pi+

(13)

Error =
∣∣∣∣Si+ − S+i

S+i

∣∣∣∣× 100% (14)

where N is the total number of pixels; i is the class (woodland and non-woodland); pii refers to
the number of pixels that were correctly classified; pi+ is the number of pixels in the extracted results
based on the MODIS NDVI time series; p+i stands for the number of pixels in the CLUCDS for Beijing;
Si+ is the total area of the extracted results for woodlands; S+i stands for the area of woodlands in
the CLUCDS. The evaluation data and reference data have much better consistency when the value of
the calculated error coefficient is smaller.

3. Results

3.1. Fractal Features and Analysis

Fractal profile and signal images were obtained after fractal processing. The pixel signal value in
each fractal image reflects the complexity of the variation in the NDVI time series curve for a certain
measurement unit. The fractal signal value was much higher when the shape of the NDVI time series
curve had a more complex variation. The scale with the highest signal value and the most obvious
distinction from the other targets in a fractal image was defined as the fractal feature scale of the target.
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Five typical targets were selected for reference to their NDVI time series curves and CLUCDS
in order to analyze the fractal features of different targets: woodland, cropland, grassland, built-up
land, and water body. Six pixels were randomly selected for each target, and their average was taken
as the fractal profile of the given target. Figures 3 and 4 are the upper and lower fractal profiles of
the different targets with measure units ε (ε = 2, 3, 4, . . . , 20), respectively. In the figures, the x-axis
“scale” n denotes the nth iteration based on Equations (1) and (2).
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The fractal features of the different targets were analyzed based on the fractal profile and signal
images, and the results were as follows:

(1) The upper and lower fractal profiles and signal images were different. The upper fractal signals
of different targets were mainly concentrated at measure units ε 6 to 14 and the lower fractal
signals were mainly located at ε 2 to 8.

(2) Both the upper and lower fractal signal values of different targets were different at the same
measure unit, and the fractal signal value of the same object had a clear distinction at the different
measure units.
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(3) Four typical targets, woodland, cropland, grassland, and water body, could be clearly identified
at the upper fractal profiles and signal images. Woodland and grassland were also different from
other classes at lower fractal profiles and signal images. The fractal profiles and signal images of
built-up land had no obvious variation at the upper and lower fractal. The fractal results were
decided by the shape or complexity of the NDVI time series curves for the given target.

(4) Woodland was reflected at upper fractal profiles of ε = 8 and lower fractal profiles of ε = 5. The size
of the fractal signal value and its difference from other targets were taken into account to choose
the fifth scale of the lower fractal as the defining fractal feature scale of woodland. Figure 5 is
the lower fractal signal image of ε = 5. The image is expressed with color to increase the visual
contrast and separability, and woodland is displayed in red in the image.

(5) The results show that fractals can reveal clear separations of different targets at different scales,
and a higher precision of information extraction or classification may be expected based on
fractal features.
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3.2. Information Extraction and Accuracy Assessment

The fifth scale of the lower fractal profile proved to be the fractal feature scale of woodland,
and a fractal signal image was selected to extract information for woodlands. The ISODATA tool
in ENVI 5.1 was used for this process. The spatial distribution of woodlands is shown in green in
Figure 6. The CLUCDS-based spatial distribution of woodlands is shown in Figure 7, also in green. The
results of fractal extraction were highlighted by means of subsets, as depicted in Figure 8. Two typical
subsets were selected and analyzed. The first subregion (Row 1 in Figure 8), located in the north of
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Mentougou district, was mainly dominated by woodlands and the results showed that the fractal
method in this study could accurately and effectively extract woodland information. The second
subregion (Row 2 in Figure 8), located in the west of Huairou district, was covered by woodland
and non-woodland and the fractal method could not reveal clear separations of different targets. The
spatial distribution of woodlands based on fractal extraction (Figure 6, Row 2 in Figure 8) had a higher
density than woodlands in the CLUCDS dataset (Figure 7, Row 2 in Figure 8). This may be due to
the spatial resolution of the remote sensing data that were used. The results of Figures 6 and 7 were
based on 250-m and 30-m spatial resolution, respectively (Figure 8). Some other fragmented land cover
types may have been falsely classified as woodland in the low spatial resolution remote sensing data,
as depicted in Figure 8 (Row 2).

An accuracy assessment of the results was conducted using the 2010 CLUCDS dataset. OA,
PA, UA, Kappa, and Error were used to quantitatively evaluate the results. The two classes in this
evaluation were woodland and non-woodland. The total area was computed as the product of
pixel numbers and per pixel area. The total extracted fractal area of woodland was 7984.712 km2,
and the total area of woodlands in Beijing from the CLUCDS dataset was 7381.399 km2 in 2010.
The accuracy assessment of woodlands based on the fractal extraction is shown in Table 1. Compared
with the woodland results in CLUCDS, the OA, Kappa, and Error of the results based on fractal
extraction were 90.54%, 0.74, and 8.17%, respectively.
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Table 1. Accuracy assessment of woodlands based on fractal extraction compared with the China Land
Use and Land Cover Data Set (CLUCDS) for Beijing in 2010.

Indices PA, % UA, % OA, % Kappa Error, %

Woodlands 83.54 77.21 90.54 0.74 8.17

PA, producer accuracy; UA, user accuracy; OA, overall accuracy; Kappa, kappa coefficient; Error, error coefficient.

3.3. Comparative Analysis of the Extracted Results and Accuracy Assessment

3.3.1. Comparison with Related Studies

A comparative analysis of this study and related studies was performed. The examined studies
included five land cover datasets and one survey statistics dataset. Five land cover datasets were
selected, including the China Land Use and Land Cover Data Set (CLUCDS) of the RESDC [22,44];
the GlobeLand30 datasets of the National Geomatics Center of China (NGCC) [25,48]; the GlobCover
dataset from the European Space Agency [49]; the MODIS land cover type product MCD12Q1
(International Geosphere Biosphere Programme (IGBP)), and the University of Maryland (UMD)
land cover types from NASA [50]. The Beijing Statistical Yearbook (BSY) was chosen for survey
statistics data [38]. Only the area and error coefficient (Error) of the extracted results were selected for
comparison and analysis because of the limitations of the data formats, data sources, and spatial
resolution of the seven datasets chosen. There were two groups, the fractal-based group and
the NDVI-based group. The fractal-based group was detailed in this study, whereas woodlands
were directly extracted based on using MODIS NDVI time series data only in the NDVI-based group
(Section 3.3.2). The results of the comparative analysis are shown in Table 2, and the error coefficients
of the fractal-based and NDVI-based groups are shown in Figure 9.

The total extracted area of woodlands in Beijing for the fractal-based group, NDVI-based group,
and the related studies in Table 2 were 7984.712 km2, 9682.340 km2, and 7329.068–7583.750 km2,
respectively. The error coefficient of the extracted results based on fractal features ranged from
8.95 to 5.29%, and the average was 7.38% (the red dotted line in Figure 9). The error coefficient in
the NDVI-based group ranged from 32.11 to 27.67%, and the average was 30.2% (the blue dotted line in
Figure 9). Compared with the extracted results for woodlands in the NDVI-based group, the average
error coefficient decreased from 30.2 to 7.38% based on the fractal features of the MODIS NDVI time
series (difference of 22.82%, Figure 9).
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Table 2. Comparative analysis of this study and related studies in Beijing.

Datasets Data Sources SR Year Woodland Area, km2 Error, %

Fractal-Based NDVI-Based

MOD13Q1 MODIS/TERRA 250 m 2010 7984.712, 9682.340 / /
CLUCDS Landsat/TM, HJ/CCD 30 m 2010 7381.399 8.17 31.17

GlobeLand30 Landsat/TM, HJ/CCD 30 m 2010 7329.068 8.95 32.11
GlobCover ENVISAT/MERIS 300 m 2009 7385.670 8.11 31.10

MCD12Q1-IGBP MODIS/TERRA 500 m 2010 7523.750 6.13 28.69
MCD12Q1-UMD MODIS/TERRA 500 m 2010 7583.750 5.29 27.67

Beijing Statistical Yearbook (BSY) Survey Statistics / 2010 7420.185 7.61 30.49

SR, Spatial Resolution; Error, error coefficient; MOD13Q1, adopted in this study; Fractal-based, 7984.712 km2;
NDVI-based, 9682.340 km2; CLUCDS, China Land Use and Land Cover Data Set; “/” means no data.

3.3.2. Fractal-Based and NDVI-Based Comparative Experiments

Comparative experiments were set up to evaluate the information extraction method for
woodlands based on the fractal feature of the MODIS NDVI time series in this study. In the NDVI-based
group, the same method was adopted to extract the spatial distribution of woodlands using
the ISODATA tool in ENVI 5.1, and the extracted results are shown in Figure 10. The total extracted
area of woodlands was 9682.340 km2. The same method of accuracy assessment was selected to
assess the extracted results of the NDVI-based group using the CLUCDS 2010 dataset for Beijing, and
the results are shown in Table 3. Compared with the spatial distribution of woodlands in CLUCDS
(Figure 7), woodlands were significantly overestimated for the NDVI-based group, especially in Shunyi
and Tongzhou districts in Figure 10. This was mainly caused by the method confusing woodland and
cropland. In Table 3, the accuracy of the fractal-based group was better than that of the NDVI-based
group except for the PA. The fractal features of woodlands in particular contributed to the Error
reduction from 31.17 to 8.17%.
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Table 3. Comparative analysis of the extracted results and accuracy assessment of the fractal-based
and NDVI-based groups compared with the China Land Use and Land Cover Data Set (CLUCDS).

Woodlands Area, km2 PA, % UA, % OA, % Kappa Error, %

Fractal-based 7984.712 83.54 77.21 90.54 0.74 8.17
NDVI-based 9682.340 92.73 70.68 89.48 0.73 31.17

PA, producer accuracy; UA, user accuracy; OA, overall accuracy; Kappa, kappa coefficient; Error, error coefficient.

4. Discussion

4.1. Theoretical Assumptions

Fractal objects have two basic characteristics [29,51]: (1) infinite detail at every point, and (2) self-
similarity between the whole and part of the object. Remote sensing data contain fractal features [37,52].
First, multi-level sequence characteristics obtained at temporal, spatial, or spectral resolutions of remote
sensing subjects can be analyzed and interpreted by multiresolution analysis (MRA), which is based
on fractal theory. Second, many objects and phenomena in nature show statistical self-similarity,
and these are often research targets for remote sensing. When the spatial or temporal scale is changed,
the target structure remains the same, and the change reflects enlargement or reduction, with infinite
nesting from the whole to the part. Finally, remote sensing images are projections in two-dimensions
of a three-dimensional space, and the tonal surface of the two-dimensional image is also a fractal
Brownian surface. Thus, the fractal dimension of the image reflects the fractal characteristics of
the target ground surface.

Existing research has shown that fractals can reveal obvious separation of different targets at
certain scales [46,53,54]. The fractal feature scales of different targets are related to the sample numbers
of the initial curve, the shape or complexity of the curve, and difference between the targets in
the study area. The influencing factors are positively correlated with the fractal feature, and curves
with more samples, complex variation and separability can identify the fractal features of different
targets. The blanket method is suitable for the analysis of time series or hyperspectral remote sensing
data. The number of samples in time series remote sensing data in per-year intervals are mainly
12 (per month composite, e.g., TM or MODIS), 23 (16-day composite, e.g., TM or MODIS), 46 (8-day
composite, e.g., MODIS), and 73 (5-day composite, e.g., Sentinel-2A/B). Hyperspectral remote sensing
data have several hundred spectral bands; for example, Earth Observing-1 (EO-1) Hyperion data
have 242 bands. The impact of a curve’s shape or complexity is embodied in the fractal calculation
process. The maximum operation (upper curve) tends toward a gradually narrowing trough and
smoothing peak, while the inverse is true for the minimum operation (lower curve). The ability to
show targets by their fractal feature depends on the shape of their curve or the shape characteristics
of the troughs and peaks. Information extraction or classification is easier to implement when there
are clear differences between land use and land cover types and classes, for example, vegetation and
water or single-cropping and double cropping cropland.

4.2. Applicability of Fractal Method and Significance of Fractal Parameters

The achieved accuracies of the extracted results based on fractal features for Beijing are promising.
The comparative analysis results also show that the method developed in this study can accurately
and effectively extract woodland information. Good applicability of this method is confirmed
by the regional characteristics of woodlands for Beijing and the processes and factors influencing
the method developed in this study. The study area has a warm, temperate, semi-humid continental
monsoon climate, and the woodland vegetation is mainly deciduous. Deciduous trees cycles can
be divided into growing and dormant seasons, and their NDVI time series curves have unique
characteristics. Deciduous trees have more complex NDVI time series curves than evergreen trees,
and the convergence speed of the fractal calculation for deciduous trees is faster.
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The use of phenological information as classification input features has been proven to improve
land cover classification [55,56]. Wohlfart et al. [57] presented a classification procedure using spectral,
phenology-based metrics and ancillary information, particularly for regions comprising complex
and heterogeneous environmental conditions. This study demonstrates that fractal parameters are
also effective for classification and the method based on the fractal features has broad potential in
LUCC detection and the evaluation of major forestry and ecological projects, especially for the rapid
identification of woodland expansion and potential damage from natural disasters. Fractals are key
indicators that are significant for related research on woodlands, especially for the identification of
woodland change. The mutation of fractal features arises mainly from the morphological changes of
the woodland NDVI time series curve using the same remote sensing data source and a single target.
The combinations of morphological and phenological characteristics and the time nodes of the curve
were used to identify abnormal areas and nodes of woodland. It is important to accurately know
the location and time of woodland events, which may include afforestation, planting, fire, deforestation,
diseases, and insect attacks. Specific research and analysis should be developed to determine event
attributes, and this should be combined with auxiliary knowledge and information.

4.3. Support for Government Projects Using the Information Extraction Method for Woodlands

The Chinese/Beijing government launched many ecological restoration projects to alleviate
environmental degradation, for example, the Grain for Green Project, the Beijing–Tianjin Sandstorm
Source Controlling Project, and the Beijing Plain Afforestation Project. Evidence from remote
sensing and statistics data showed that vegetation cover has largely improved, and forest coverage
increased [11,38]. Major conservation policies have improved environmental and ecological conditions
in this region. Land cover modification was frequently caused by human activities, so we presented
a rapid and effective information extraction method to support woodland management and sustainable
use. The method developed in this study can be used for feature analysis, information extraction,
pattern recognition, and image classification. It is both a low-cost and high-precision method, especially
for low spatial resolution remote sensing data and large-scale studies. This method is being applied
to extract woodland information for spatial and temporal analysis to evaluate the effectiveness and
sustainability of Chinese/Beijing government projects. Thus, this method may have potential in LUCC
detection and the evaluation of major ecological forestry projects in China.

5. Conclusions

This paper proposed a low-cost and high-precision information extraction method for woodlands
based on fractal features. The results show that fractals can reveal clear separations of different targets
at different scales, and the fifth scale of the lower fractal signal was selected as the fractal feature scale
for woodlands. The overall accuracy, kappa coefficient, and error coefficient of the extracted results
were 90.54%, 0.74, and 8.17%, respectively. Compared with the extracted results for woodlands based
only on the MODIS NDVI time series, the average error coefficient decreased from 30.2 to 7.38% based
on the fractal features of the MODIS NDVI time series. The results specifically highlighted differences
between woodlands and other land use and land cover types.

The method developed in this study is effective for information extraction, pattern recognition,
and image classification of woodlands and is being applied to extract data on woodlands for the
analysis of spatial and temporal variation to evaluate the effects of Chinese/Beijing government
reforestation projects. This method is simple and efficient and has broad potential in LUCC detection
and the evaluation of major forestry and ecological projects in China, especially for the rapid
identification of woodland expansion and potential damage from natural disasters. This study can
enhance understanding of current conditions and provide essential information to support decision-
making for woodland management and sustainable use.
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