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Abstract: We improved the CASA model based on differences in the types of land use, the values 
of the maximum light use efficiency, and the calculation methods of solar radiation. Then, the 
parameters of the model were examined and recombined into 16 cases. We estimated the net 
primary productivity (NPP) using the NDVI3g dataset, meteorological data, and vegetation 
classification data from the Greater Khingan Mountain region, China. We assessed the accuracy and 
temporal-spatial distribution characteristics of NPP in the Greater Khingan Mountain region from 
1982 to 2013. Based on a comparison of the results of the 16 cases, we found that different values of 
maximum light use efficiency affect the estimation more than differences in the fraction of 
photosynthetically active radiation (FPAR). However, the FPARmax and the constant Tε2 values did 
not show marked effects. Different schemes were used to assess different model combinations. 
Models using a combination of parameters established by scholars from China and the United States 
produced different results and had large errors. These ideas are meaningful references for the 
estimation of NPP in other regions. The results reveal that the annual average NPP in the Greater 
Khingan Mountain region was 760 g C/m2·a in 1982–2013 and that the inter-annual fluctuations were 
not dramatic. The NPP estimation results of the 16 cases exhibit an increasing trend. In terms of the 
spatial distribution of the changes, the model indicated that the values in 75% of this area seldom 
or never increased. Prominent growth occurred in the areas of Taipingling, Genhe, and the Oroqen 
Autonomous Banner. Notably, NPP decreased in the southeastern region of the Greater Khingan 
Mountains, the Hulunbuir Pasture Land, and Holingol. 

Keywords: NPP; CASA; GIMMS3g; remote sensing; Greater Khingan Mountain 
 

1. Introduction 

Vegetation is the main component of the terrestrial biosphere, and it plays a critical role in 
mediating the global carbon balance, mitigating the rise of CO2 concentrations in the atmosphere, and 
controlling global climate change. Net primary productivity (NPP) refers to the total amount of 
organic matter produced by photosynthesis per unit area in a unit of time after the deduction of 
autotrophic respiration and is also known as net primary productive forces. NPP is the basis of 
material and energy interactions in the ecosystem. This parameter not only quantitatively describes 
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the energy input of the biosphere and the amount of CO2 assimilation, but also reflects the cyclic 
process of carbon flux in the atmosphere, terrestrial ecosystems, and soil. Moreover, it can be used as 
the main assessment factor in investigations of the regional carbon flux and the regulation of 
ecological processes [1]. 

While NPP cannot be measured directly at regional or global scales, it has become an important 
tool in the estimation of vegetation productivity using computers and models. Based on different 
application conditions and input data, scholars around the world have established a number of 
vegetation productivity estimation models driven by remote sensing data [2–5]. These achievements 
provide the basis and methods for further terrestrial ecosystem productivity research.  

After nearly half a century, dozens of global models exist for estimating NPP, and they can be 
divided into statistical models, parameter models, and process models according to the modeling 
mechanism [2]. The Carnegie-Ames-Stanford Approach (CASA) is a light use efficiency (LUE) 
process model that fully considers environmental conditions and vegetation characteristics [6–8], and 
it has been widely used in terrestrial ecosystem NPP estimations [7,9,10]. However, the CASA has 
been rarely applied to the Greater Khingan Mountains, and no studies have discussed the relevant 
parameter settings. An accurate estimation of light use efficiency is one of the key factors in the 
simulation of productivity using the CASA model. The model developers believed that, under ideal 
conditions, vegetation exhibits a maximum light use efficiency and set this monthly value to 0.389 g 
C/MJ [6,8] for all vegetation types. Running et al. [11] assigned the maximum light use efficiency 
according to the photosynthetic characteristics of different vegetation types when estimating the 
global terrestrial NPP. Li et al. [12] estimated the monthly NPP of Shenzhen using the MODIS-
derived normalized difference vegetation index (NDVI) data and explored the effects of extreme 
weather on NPP. Li modified the fraction of photosynthetically active radiation (FPAR) model 
according to the NASA-MOD15 algorithm [13] and the characteristics of vegetation in Shenzhen. Zhu 
et al. [14] introduced the vegetation classification accuracy into simulations of the maximum light use 
efficiency of typical vegetation in China. Their result is between the values calculated in the Potter 
and Running studies. In addition, Zhu estimated the NPP of terrestrial ecosystem vegetation in China 
by modifying the FPAR model using the relationships among FPAR, NDVI, and the simple ratio (SR). 
Questions regarding whether the modification of these parameters based on different objects and 
scales is applicable to NPP estimation in mid-latitude mountain ecosystems and how to select these 
parameters in future estimations should be discussed. In fact, significant differences in light use 
efficiency exist among different vegetation types [15], and because light use efficiency is notably 
affected by temperature, moisture, soil, and individual plant growth, treating it as a constant for all 
regions on Earth will produce considerable error. Above all, it is necessary to amend the parameters 
before applying the model to other regions. 

Scholars in China who pay attention to the NPP of the mountain system almost always use the 
ecological process model or MODIS data, and they do little research on mid-latitude mountains [16–
18]. As for other mountains in the same latitude around the world, most of researchers value the NPP 
by monitoring the growth of plants [19]. 

This study focuses on different types of land use, the values of the maximum light use efficiency, 
calculation methods for solar radiation, combined cases, and the modification of parameters. Taking 
the Greater Khingan Mountain region as an example and combining a time series of remote sensing 
data, we use the CASA to improve the NPP estimation model for mountain ecosystems. The goal is 
to improve the NPP estimation accuracy for mountain ecosystems and provide a basis for the 
estimation of carbon sources and sinks in a mountain forest ecosystem. 

2. Materials and Methods 

2.1. Study Area 

The Greater Khingan Mountain region (40°52′–53°33′ N, 116°25′–125°42′ E) is located in the 
northernmost region of China, one of the most sensitive areas to global climate change [20,21]. 
Estimating the net productivity of vegetation in this region is helpful in understanding the carbon 



Sustainability 2017, 9, 1213  3 of 16 

sequestration capacity of the forest system in this area and understanding the climate change 
response mechanism. Thus, we can better predict the future trend of vegetation productivity and its 
impact on the carbon cycle, as it can be a reference for ecological compensation policy and sustainable 
forest development. For these reasons, we chose the Greater Khingan Mountain region as the study 
area and estimated the NPP with the purpose of verifying the applicability and accuracy of this 
model. The boundary of the Greater Khingan Mountain is defined by the eco-geographical region 
map of China [22], which divides the Greater Khingan Mountain region into four ecological regions: 
(I) the northern deciduous coniferous forest region; (II) the western side of the northern forest steppe 
region; (III) the middle steppe forest region; and (IV) the southern steppe region (Figure 1). 

 

Figure 1. Study area. 
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2.2. Methodology 

2.2.1. CASA Model 

The CASA is one of the process models for the NPP estimation that uses remote sensing data, 
and it reflects the influence of natural factors, such as temperature, precipitation, and radiation, on 
NPP. The specific calculation method and parameter settings are described in Section 3. 

2.2.2. Statistical Analysis Method 

The data of all the models calculated in this paper are verified with the data obtained from the 
ground survey via linear correlation analysis. 

2.2.3. Trend Analysis Method 

The spatial trends of NPP in each pixel were analyzed using the slope of the linear regression 
equation. The formula is as follows: 

a = (n×∑ × − ∑ ∑ )/[n×∑ − ∑ 2] (1) 

where a represents the inter-annual variation trend for NPP in the Greater Khingan Mountain; n is 
the time series; and 		 represents the NPP value in the jth year. When a > 0, NPP exhibits an 
increasing trend; when a < 0, it exhibits a decreasing trend. 

2.3. Data 

2.3.1. GIMMS Dataset 

The NDVI data in this paper is the third generation NOAA/AVHRR NDVI data from the Global 
Inventory Modelling and Mapping Studies (http://ecocast.arc.nasa.gov/data/pub/gimms/3g.v0/, 
GIMMS NDVI3g). This version of the Global Vegetation Index, released by the National Aeronautics 
and Space Administration (NASA), provides higher quality data for phenological research at high 
latitudes. The dataset in this study is in the ENVI standard format, the projection is ALBERS, the time 
resolution is 15d, the spatial resolution is 8 km, and the time span is from January 1982 to December 
2013. 

The dataset has been preprocessed with radiation correction, geometric correction, and image 
enhancement, and the monthly maximum value of NDVI was obtained by the maximum value 
composite (MVC), which reduces the effects caused by the atmosphere, sensor angle, and solar height 
angle. 

2.3.2. Meteorological Data 

The meteorological dataset is derived from data recorded at 97 meteorological stations between 
1982 and 2013. 

In this paper, the solar radiation data for each site were calculated using the climatic empirical 
model. According to the geographical coordinates of each site in the dataset, solar radiation, monthly 
average temperature, and precipitation data were interpolated into a raster dataset using the ordinary 
kriging method at a spatial resolution of 8 km to match the GIMMS NDVI3g data. 

2.3.3. Vegetation Type Dataset 

The vegetation type data were obtained from China’s 1:1,000,000 vegetation dataset. However, 
the differences in vegetation types used by different researchers were considered when setting values 
for SR, NDVI, and εmax. The comparison with the original vegetation types can be found in the 
following discussion. 
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2.3.4. Field Data 

More than 4000 forest inventory data points for five forest types (larch, birch, pine, spruce, and 
aspen) were collected, including the quadrat location, quadrat area, volume, tree species, stand age, 
and diameter at breast height. The NPP was estimated using Equation (2) [23]: 

PP = BaA + bB (2) 

where NPP is in units of Mg ha−1 yr−1 and A is the stand age (year); a and b are constants for a specific 
forest type. B represents the stand biomass (Mg ha−1) and was calculated using Equation (3) [24]: 

B = Vc + dV (3) 

where B and V are the stand biomass (Mg ha−1) and stand volume (m3/ha), respectively, and c and d 
are constants based on the specific forest type. 

Finally, the mean NPP data in 8 km pixels are calculated to match the remote sensing data. 

3. NPP Estimation  

3.1. General Framework 

The basic principle of the CASA model is that a linear relationship exists between the net 
primary productivity and the absorbed photosynthetically active radiation (APAR) and actual light 
use efficiency (ε): NPP(x, t) = APAR(x, t) × ε(x, t) (4) 

where APAR(x, t) represents the photosynthetically active radiation absorbed by pixel x in month t, 
and ε(x, t) represents the actual light use efficiency of cell x in month t; the unit for both terms is g 
C/MJ. 

The APAR of plants depends on the total solar radiation and the FPAR of photosynthetically 
active radiation (PAR) and can be described using Equation (5): APAR(x, t) = SOL(x, t) × FPAR(x, t) × 0.5 (5) 

where SOL(x, t) is the total solar radiation (unit: MJ/m2) at pixel x in month t; FPAR(x, t) is the ratio 
of photosynthetically active radiation absorbed by the vegetation layer (unitless); and 0.5 represents 
the ratio of solar active radiation to total solar radiation that can be used by vegetation. 

Potter considered that a maximum light use efficiency exists for plants under ideal conditions 
and that the maximum light use efficiency under actual conditions is mainly affected by temperature 
and moisture. This relationship can be expressed using Equation (6): ε	(x, t) = 	T (x, t) × T (x, t) ×W (x, t) × ε  (6) 

where Tε1(x, t) and Tε2(x, t) denote the effect of temperature stress (unitless), Wε(x, t) denotes the effect 
of water stress (unitless), and εmax is the maximum light use efficiency under ideal conditions (Unit: 
g C/MJ). 

By combining Equations (5) and (6), we obtain Equation (7): NPP(x, t) = SOL(x, t) × FPAR(x, t) × 0.5 × T (x, t) × T (x, t) ×W (x, t) × ε  (7) 
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3.2. SOL Algorithm 

Taking the basic time scale of this study into account, the monthly total solar radiation can be 
calculated using the daily solar radiation. The daily total solar radiation can be determined via 
Equation (8): 

S = TIπρ2 × (ω sin(φ)sin(δ) + cos(φ)cos(δ)sin(ω )) (8) 

where S0 is the atmospheric external solar radiation (unit: MJ/m2·d); T is the period; I0 is the solar 
constant; φ is the geographical latitude; and ρ, ω0, and δ are the relative distance between the sun 
and the Earth, the solar hour angle, and the solar declination as calculated by Equations (9)–(11), 
respectively: ρ = 	Sqrt{1/[1 + 0.033 × cos(2πJ/365)]}  (9) 

where J represents the day of the year. ω = arcos(−tanφtanδ) (10) δ	 = 	0.409 × sin(0.0172J − 1.39)  (11) 

The daily total solar radiation can be calculated using the relationship between the solar 
radiation and sunshine percentage, as shown in Equation (12): 

	SOL = a + b × × S  (12) 

where SOLd is the daily total solar radiation (unit: MJ/m2·d), n is the actual sunshine duration, N is 
the maximum sunshine duration, the units are hours, and the ratio is the sunshine percentage. The 
terms a and b are two constants and, according to previous research experience and the situation of 
the study area, are assigned values of 0.207 and 0.725, respectively [25]. 

3.3. FPAR Algorithm 

In this paper, we discuss three kinds of FPAR models using NDVI in the calculations. 
1. FPAR model proposed by Tianhong Li [12]. 

This model is based on the relationship between NDVI and FPAR provided by the NASA-
MOD15 algorithm. 

FPAR = 0 NDVI ≤ 0.0751.054 ∗ NDVI − 0.036							0.075＜NDVI＜0.875						0.916 NDVI ≥ 0.875  (13) 

2. FPAR model proposed by Zhu [26]. 
This model is based on the research of Sellers. 

FPAR(x, t) = (NDVI(x, t) − NDVIi,min) ×（FPARmax − FPARmin）(NDVIi,max − NDVIi,min) + FPARmin	, (14) 

where NDVIi,max and NDVIi,min correspond to the NDVI maximum and minimum values of the i-th 
vegetation type, respectively. 

In this model, the accuracy of the vegetation classification is introduced, and the errors caused 
by noise in a remote sensing image are eliminated by using the lower quantile. The combined 
vegetation types, used by both Zhu and this paper, and the maximum and minimum NDVI and SR, 
are listed in Table 1. 
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Table 1. Maximum and minimum values for NDVI and SR of Wenquan Zhu’s model in this paper. 

Value Vegetation NDVImax NDVImin SRmax SRmin
2 Deciduous Broad-Leaved Forest 0.747 0.023 6.91 1.05 
4 Evergreen Coniferous Forest 0.647 0.023 4.67 1.05 
5 Deciduous Coniferous Forest 0.738 0.023 6.63 1.05 
6 Coniferous and Broad-Leaved Mixed Forest 0.738 0.023 6.63 1.05 
9 Shrub 0.636 0.023 4.49 1.05 
10 City and Water 0.634 0.023 4.46 1.05 
11 

Shrub 0.636 0.023 4.49 1.05 
12 
14 Shrub 0.636 0.023 4.49 1.05 
15 City and Water 0.634 0.023 4.46 1.05 
16 

Cultivable Land 0.634 0.023 4.46 1.05 
17 
18 Cultivable Land 0.634 0.023 4.46 1.05 
19 

City and Water 0.634 0.023 4.46 1.05 
20 

Other research shows [27] that there is a remarkably linear relationship between FPAR and SR, 
as shown in Equation (15). 

FPAR(x, t) = SR(x, t) − SR , ×（FPAR − FPAR ）(SR , − SR , ) + FPAR  (15) 

where SR(x,t) can be calculated via Equation (16) and SRi,max and SRi,min represent the 95% and 5% 
lower quantiles of i-th vegetation NDVI, respectively. 

SR(x, t) = 1 + NDVI(x, t)1 − NDVI(x, t) (16) 

These two methods are combined and the average is taken as an estimate of the FPAR (Equation 14). FPAR(x, t) = αFPAR + (1 − α)FPAR  (17) 

where FPARNDVI is the result of Equation (14), FPARSR is the result of Equation (15), and α is a constant 
with a value of 0.5. 

According to the results of previous studies and field survey data [28], the range of FPAR should 
be between 0 and 1, but since the range of FPARSR in the model cannot be found in the literature, the 
maximum of FPARSR can be determined as follows. One methods involves setting the value to 0.95 
according to the FPARSR model proposed by Potter (Equation (18)). Another method involves setting 
it to 0.90255, which is the result of putting 0.95 into Equation (12), i.e., the combined Potter and Los 
model. 
1. FPAR model proposed by Potter. 

Potter chose the NDVI and vegetation type to represent the FPAR with a maximum of no more 
than 0.95, as shown in Equation (18). 

FPAR(x, t) = min SR(x, t) − SR ,SR , − SR , ,0.95  (18) 

where SR(x, t) is the result of Equation (16); SRi,min is the SR value of bare land, with an assigned value 
of 1.08; and SRi,max is related to the vegetation type and ranges between 4.14 and 6.17. The SRmax values 
of vegetation according to the research of Seller are listed in Table 2. 
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Table 2. SR maxima for the Potter model in this paper. 

Original Values Vegetation SRmax 
2 Deciduous Broad-Leaved Forest 6.17 
4 Evergreen Coniferous Forest 5.43 
5 Deciduous Coniferous Forest 5.43 
6 Coniferous and Broad-Leaved Mixed Forest 6.17 
9 Bush and Shrub 5.13 

10 Broad-Leaved Shrubs and Bare Land 5.13 
11 Bush and Shrub 5.13 
12 Grass Land 5.13 
13 Grass Land 5.13 
14 Broad-Leaved Shrubs and Bare Land 5.13 
15 Broad-Leaved Shrubs and Bare Land 5.13 
16 Cultivable Land 5.13 
17 Cultivable Land 5.13 
18 Cultivable Land 5.13 
19 Broad-Leaved Shrubs and Bare Land 5.13 
20 Broad-Leaved Shrubs and Bare Land 5.13 

3.4. Algorithm of Tε1, Tε2 and Wε 

The terms Tε1 and Tε2 represent the temperature stress of plant photosynthesis and can be 
determined using Equations (19) and (20), respectively. T (x, t) = 	0.8	 + 0.02 × T (x)– 0.0005 × T (x)  (19) T = C/{1 + exp . × – – }/ 1 + exp . × – –  (20) 

where Topt(x) is the monthly average temperature for a region when the NDVI value is the highest; C 
is a constant (here, the values of 1.1814 and 1.1919, proposed by Potter and Tianhong Li, respectively, 
are used for comparison); T is the average monthly temperature; and W represents the moisture stress 
of plant photosynthesis and ranges from 0.5 to 1: W (x, t) 	= 0.5 + 0.5 × E(x, t)/E (x, t) (21) 

where E(x, t) is the regional actual evapotranspiration (unit: mm), which can be calculated according 
to the regional real evapotranspiration model established by Zhou and Zhang [29] (Equation (22)), 
and Ep(x, t) is the area potential evapotranspiration (unit: mm), which can be calculated according to 
Boucher’s complementary formula (Equation (23)). E(x, t) = {P(x, t) × R (x, t) × [P (x, t) + R (x, t) + P(x, t) × R (x, t)]}/{［P(x, t)+ R (x, t)］ ×［P (x, t) + R (x, t)］} (22) 

E(x, t) is the net amount of surface radiation (unit: MJ/m2) of the pixel x in month t, and P(x, t) is 
the precipitation in pixel x in t month (unit: mm), which can be obtained by the empirical formula 
established by Guangsheng Zhou and Xinshi Zhang (Equation (23)). R (	x，t	) 	= 	 [E (x, t) 	× 	P(	x，t)] . × {0.369 + 0.598 × [E (x, t) /	P(	x, t)]	 . } (23) E (x, t) = [E(x, t) + E (x, t)] /2 (24) 

where Ep0(x,t) is the potential evapotranspiration in an area (unit: mm), which can be calculated using 
the vegetation-climate model proposed by Thornthwaite (Equations (25)–(27)). E (x, t) 	= 16 × [10 × T( x，t) / I(x)] ( ) (25) 
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I(x) = [T(x, t)5 ] .  (27) 

where I(x) is the heat index from the sum of 12 months, and a(x) is a constant that differs depending 
on the location. 

3.5. The Maximum Light Use Efficiency 

The monthly maximum light use efficiency has a great influence on the NPP estimation result, 
and it varies with the vegetation type. In this paper, we compare the results of Zhu [15] and Running 
[11]. The vegetation types and their corresponding εmax values are listed in Table 3. 

Table 3. Comparison of the two types of εmax and their vegetation types. 

Original 
Value Vegetation Type by Zhu εmax by 

Zhu Vegetation Type by Running  εmax by 
Running 

2 Deciduous Broad-Leaved Forest 0.692 Deciduous Broad-Leaved Forest 1.044 
4 Evergreen Coniferous Forest 0.389 Evergreen Coniferous Forest 0.389 
5 Deciduous Coniferous Forest 0.485 Deciduous Coniferous Forest 1.103 
6 Coniferous and Broad-Leaved Mixed Forest 0.475 Coniferous and Broad-Leaved Mixed Forest 1.116 
9 Shrub 0.429 Deciduous Shrub and Savanna 0.768 
10 City and Water 0.542 City and Water 0.389 
11 Shrub 0.429 Dense Shrub 0.888 
12 Shrub 0.429 Deciduous Shrub and Savanna 0.768 
13 Grass Land 0.542 Grass Land 0.608 
14 Shrub 0.429 Sparse Shrub 0.774 
15 City and Water 0.542 City and Water 0.389 
16 Cultivable Land 0.542 Cultivable Land 0.604 
17 Cultivable Land 0.542 Cultivable Land 0.604 
18 Cultivable Land 0.542 Cultivable Land 0.604 
19 City and Water 0.542 City and Water 0.389 
20 City and Water 0.542 City and Water 0.389 

3.6. Model Implementation 

According to the above discussion, the four parameters of FPAR, FPARmax, Tε2, and εmax have 
different values and calculation methods. To find a more suitable method, all possible values of these 
four parameters are permutated and combined. We used Equation (7) and set the name of the 
parameter creator as a code to form 16 kinds of cases, each of which is listed in Table 4. 

Table 4. Parameter settings of 16 kinds of cases. 

Case Number FPAR FPARmax Tε2 εmax

1 Li 0.916 Potter Zhu 
2 Li 0.916 Potter Running 
3 Li 0.916 Li Zhu 
4 Li 0.916 Li Running 
5 Zhu 0.95 Potter Zhu 
6 Zhu 0.95 Potter Running 
7 Zhu 0.95 Li Zhu 
8 Zhu 0.95 Li Running 
9 Potter 0.95 Potter Zhu 
10 Potter 0.95 Potter Running 
11 Potter 0.95 Li Zhu 
12 Potter 0.95 Li Running 
13 Zhu 0.90255 Potter Zhu 
14 Zhu 0.90255 Potter Running 
15 Zhu 0.90255 Li Zhu 
16 Zhu 0.90255 Li Running 
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4. Results and Discussion 

4.1. Precision Verification and Evaluation 

4.1.1. Comparison with Field NPP  

In this paper, cases 2 and 4 show the strongest correlations with the ground measured data, 
while cases 5 and 7 show the weakest correlations (Table 5). 

Table 5. Correlations and parameter settings for all the cases. 

R2 Case Number FPAR FPARmax Tε2 εmax 
0.8062 2 Li 0.916 Potter Running 

 4 Li 0.916 Li Running 
0.7999 14 Zhu 0.90255 Potter Running 

 16 Zhu 0.90255 Li Running 
0.7872 6 Zhu 0.95 Potter Running 

 8 Zhu 0.95 Li Running 
0.7871 10 Potter 0.95 Potter Running 

 12 Potter 0.95 Li Running 
0.1470 1 Li 0.916 Potter Zhu 

 3 Li 0.916 Li Zhu 
0.0942 9 Potter 0.95 Potter Zhu 

 11 Potter 0.95 Li Zhu 
0.0814 13 Zhu 0.90255 Potter Zhu 

 15 Zhu 0.90255 Li Zhu 
0.0697 5 Zhu 0.95 Potter Zhu 

 7 Zhu 0.95 Li Zhu 

Changes in εmax lead to the most significant effects on the result, and the correlations of all models 
can be divided into two categories based on this parameter. The models using the εmax of Running are 
more strongly related to the field data than those using the εmax of Zhu. The following influential 
factors are FPAR and FPARmax, and they present varying levels of importance in these two 
categories. Obviously, the FPAR model proposed by Li is the best one in all the cases. Then, the next 
best combination is the εmax of Running and the FPAR of Zhu, or the εmax of Zhu and the FPAR of 
Potter. Though the FPAR of Li is based on plants in Shenzhen, the vegetation coverage and 
productivity of the plants in the Greater Khingan Mountain region are also very high during the 
growing season. Thus, the carbon capacity of the plant species is more significant than the overall 
vegetation type. Consequently, the FPARmax should be 0.916. In contrast, when using the FPAR of 
Zhu, the FPARmax should be 0.90255. Tε2 has little or no impact on the NPP estimation. 

4.1.2. Comparison with Other Researchers Who Used the Same Model 

Table 6 shows that the estimation results in this paper are similar to those of other scholars when 
using the same model. Cases 5, 7, 9, 13, and 15 are close to the minima obtained in other studies, 
whereas cases 2 and 4 are close to the maxima obtained in other studies. Moreover, cases 14 and 16 
are close to the average of field data. 
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Table 6. Comparison of other results based on the same model.  

Researcher Study Area Time Series Annual Average NPP (g C/m2·a)

This Paper Greater Khingan Mountains 1982–2013 

NPP1: 539.874 
NPP2: 869.745 
NPP3: 544.672 
NPP4: 877.475 
NPP5: 610.688 
NPP6: 970.542 
NPP7: 616.116 
NPP8: 979.168 
NPP9: 595.696 

NPP10: 952.177 
NPP11: 600.990 
NPP12: 960.640 
NPP13: 586.066 
NPP14: 930.675 
NPP15: 591.274 
NPP16: 938.947 
Mean: 760.019 

Dehua Mao [30] Northeast China 1982–2010 600–800 
Feng Zhang [31] Northeast China Transect 1982–1999 58–811 

Fujun Chen [32] 
Terrestrial Ecosystem of China 

(Forests in Northeast China) 
1981–2008 Over 600 

Field Data Greater Khingan Mountains 2015 915 

4.1.3. Accuracy Evaluation Summary 

Based on the above two methods of accuracy evaluation for the Greater Khingan Mountain 
region, the selection of εmax has the greatest impact on the estimation results, followed by FPAR and 
FPARmax, whereas Tε2 does not show a significant effect. Obviously, the FPAR model proposed by Li 
is the best one in all the cases. The next best combination is the εmax of Running and the FPAR of Zhu 
or the εmax of Zhu and the FPAR of Potter. The FPARmax should be 0.916. However, when using the 
FPAR of Zhu, the FPARmax should be 0.90255. All the results are similar to those of previous studies 
and the observed values. 

4.2. Trend of NPP 

The overall level of NPP in the Greater Khingan Mountain region increased during the 32-year 
study period. The highest NPP values occurred from 1994–2001, when the rain and heat conditions 
were conducive to vegetation growth. Extreme low values in 1983 and 2003 may be associated with 
extreme weather conditions. The Greater Khingan Mountain region experienced low temperatures 
and rainy weather in 1983 and high temperatures and drought in 2003. Both extreme weather 
conditions were highly detrimental to plant photosynthesis. In addition, two dips in approximately 
1990 and 2003 are present in Figure 2. The former may be related to the double impacts of 
precipitation and the Greater Khingan Mountain “56 large fire” that occurred in 1987. Some studies 
[30] have shown that the severe fires slowed NPP growth to a certain extent and that the forest then 
gradually recovered. The study area selected in this paper is much larger than the fire area; thus, the 
comprehensive results are consistent with the simulations. The dip in 2003 was due to the continuous 
decline in precipitation leading to successive years of drought starting in 2002.  



Sustainability 2017, 9, 1213  12 of 16 

 
Figure 2. NPP trends for 16 different cases. 

4.3. Spatial Patterns of NPP Trends 

As seen from Figure 3, the area with decreasing NPP is significantly smaller than the areas with 
constant or increasing NPP. Three main distributions of the decreasing trend exist. The first one is 
the southeastern part of the Greater Khingan Mountains, which is located at the juncture of the Inner 
Mongolia Plateau and the Northeast Plains, west of the Hunshandake Sandy Land and east of the 
Kerqin Sandy Land. The forest coverage is low, and the ecological environment is poor. Additionally, 
urban areas are concentrated in this region, and destruction due to urbanization can also lead to a 
reduced NPP. The second one is the Hulunbuir Pasture Land, where desertification, transition 
grazing, and reclamation activities have led to a decrease in NPP in this region. The third one is near 
the city of Holingol. This city is a new industrial city in the hinterland of the Kerqin grassland. The 
fragility of grassland vegetation and the destruction of the ecological environment by mining 
development may be the main reasons for the decrease in NPP in this area. 
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Figure 3. Spatial distribution of the changes in NPP in all cases.  

We divided the values into several levels: pixels with values less than 0 represented areas in 
which NPP decreased; pixels with values between 0 and 2 represented areas with little change in 
NPP; and pixels with values greater than 2 represented areas in which the NPP increased (Table 7). 

Increasing trends are also distributed in three areas, namely Genhe, the Oroqen Autonomous 
Banner, and Taipingling. These three sites are located in the foothills of the Greater Khingan 
Mountain region and feature river irrigation. There are inherent advantages to improving the forest 
cover by either artificial or natural means. Moreover, in recent years, these three cities have focused 
on ecological and environmental protection, which is also a force of NPP growth. 

Table 7. Statistics of inter-annual changes. 

Trend Level Area (km²) Area Change Rate (%) 
<0 Decreased 42,112 14.77324 

0–2 Essentially Unchanged 216,512 75.9542 
>2 Increased 26,432 9.272564 
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The ecological status of the Greater Khingan Mountain region was good. From 1982 to 2013, the 
NPP decreased in 14.77% of the study area, remained unchanged in more than half of the study area, 
and increased in 9.27% of the study area. 

5. Conclusions 

In this study, we estimated the NPP values of different vegetation in the Greater Khingan 
Mountain region from 1982 to 2013 using GIMMS3g data and 16 cases based on the CASA model 
with various parameters. By comparing our results with observed NPP data and results from other 
Chinese researchers, we reached the following conclusions. The selection of maximum light use 
efficiency, followed by FPAR and FPARmax, has the greatest impact on the estimation results, while 
Tε2 shows no significant effect on the estimation results. When applying the CASA model to other 
similar regions, the recommended parameter settings include the εmax of Running and the FPAR of 
Li. When using the FPAR model of Zhu, the best FPARmax value is 0.90255. Similar temporal and 
spatial variations in the NPP in the Greater Khingan Mountain region are presented by all cases in 
this paper, and the overall NPP level in the Greater Khingan Mountain region increased over the 32-
year study period. The northern Greater Khingan Mountain region, especially in Genhe, the Oroqen 
Autonomous Banner, and Taipingling, exhibits an increasing NPP trend. The southeastern Greater 
Khingan Mountains, Hulunbuir Pasture Land, and Holingol are characterized by decreasing NPP. 
The NPP in other areas remained unchanged. 

When applying the CASA model in other mountain areas, we should pay attention to the 
following aspects. Firstly, the εmax is more influenced by the carbon capacity of plant species than by 
the overall type of vegetation. Secondly, existing studies on NPP have emphasized the effects of 
temperature- and water-induced stress on FPAR, which vary by location. However, the key 
information provided by remote sensing models is the radiance and reflectance of plants. Therefore, 
we have to build better FPAR models to improve the accuracy of the estimation. Finally, we need 
field observation values from areas corresponding to remote sensing images in order to obtain 
higher-accuracy results. 
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