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Abstract: Energy demand prediction plays an important role in sustainable development. The 
GM(1,1) model has drawn our attention to energy demand forecasting because it only needs a few 
data points to construct a time series model without statistical assumptions. Residual modification 
is often considered as well to improve the accuracy of predictions. Several residual modification 
models have been proposed, but they focused on residual sign estimation, whereas the FLNGM(1,1) 
model using functional-link net (FLN) can estimate the sign as well as the modification range for 
each predicted residual. However, in the original FLN, an activation function with an inner product 
assumes that criteria are independent of each other, so additivity might influence the forecasting 
performance of FLNGM(1,1). Therefore, in this study, we employ the FLN with a fuzzy integral 
instead of an inner product to propose a nonadditive FLNGM(1,1). Experimental results based on 
real energy demand cases demonstrate that the proposed grey prediction model performs well 
compared with other grey residual modification models that use sign estimation and the additive 
FLNGM(1,1). 
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1. Introduction 

Several advanced countries have worked on the green new deal to promote the development of 
green energy technology, and to achieve the ultimate goal of sustainable development. Sustainable 
development is based on three main traits, including energy security, economic development, and 
environmental protection [1]. These traits involve the amount of energy demand and supplies, 
effective use of the energy for industries, and development of new technologies for renewable energy. 
Environmental impacts due to energy consumption are inevitable because economic development is 
ongoing, and will have a significant role when devising the policy of sustainable development for 
cities or countries [2]. In the last few decades, continuous economic development and population 
increases worldwide have led to rapid growth in the demand for energy. If the current global energy 
consumption pattern continues, the global energy consumption will increase by over 50% before 2030 
[3]. In terms of the global electricity demand, the average annual growth rate was 2.6% from 1990 to 
2000 and 3.3% from 2000 to 2010. It is expected to reach 2.8% from 2010 to 2020 [4]. Since the amount 
of energy demand must be taken into account first for sustainable development, this leads to an 
important issue related to how to accurately predict energy demand. 

Many forecasting methods, including artificial intelligence techniques, multivariate regression, 
and time series analysis, have frequently been applied to energy demand forecasting [5–13]. A large 
number of samples are required for multivariate regression and time series analysis like the 
autoregressive integrated moving average (ARIMA) [14]. The performance of the above-mentioned 
methods can be significantly affected by the number and the representativeness of observations 



Sustainability 2017, 9, 1166 2 of 14 

[15,16]. However, using long-term data to build energy consumption prediction models may be 
impractical because the average annual growth rate of energy consumption is high and unstable. 
Beyond this, statistical methods usually require that the data conform to statistical assumptions, such 
as having a normal distribution [17], yet energy consumption data often do not conform to these 
usual statistical assumptions [17], limiting the forecasting capabilities of statistical methods. 
Therefore, to construct an energy demand prediction model, a forecasting method is needed that 
works well with small samples and without making any statistical assumptions [18]. One of the grey 
prediction models, GM(1,1), has drawn our attention to energy demand forecasting [2]. Indeed, how 
factors such as income and population influence the demand for energy is not clear, so energy 
demand forecasting can be regarded as a grey system problem [2,16]. 

The GM(1,1) model only needs four recent sample data points to achieve a reliable and 
acceptable accuracy of prediction [14]. Several versions have been proposed to improve the accuracy 
of its predictions [19–23]. In addition, a residual modification model built on residuals obtained from 
the original GM(1,1) may be an effective solution [24,25]. In terms of residual modification, in 
addition to residual sign estimation [17,26–28], Hu [29] proposed a new model called FLNGM(1,1) 
which uses the functional-link net (FLN) with an effective function approximation capability [30–33] 
to estimate both the sign and the modification range of the predicted residuals obtained from the 
residual GM(1,1) model. 

In the original FLNGM(1,1), the hyperbolic tangent function is considered as the activation 
function. Clearly, the output of this function uses a weighted sum of the connection weights with an 
enhanced pattern. It is assumed that the additivity property of the interaction among individual 
features results in an enhanced pattern. However, the attributes are not always independent of each 
other [34–37], so an assumption of additivity for the enhanced pattern may not be reasonable [38], 
thereby affecting the forecasting performance of FLNGM(1,1). The Choquet fuzzy integral [39–41] 
does not assume the independence of each criterion, so in this study we propose a nonadditive 
residual modification model, called nonadditive FLNGM(1,1) (N-FLNGM(1,1)) for energy demand 
forecasting, where we replace the weighted sum with the Choquet integral inside the hyperbolic 
tangent function. A genetic algorithm(GA) [42] is used to construct the proposed nonadditive 
FLNGM(1,1) model with high prediction accuracy. 

The remainder of this paper is organized as follows. Section 2 introduces the traditional GM(1,1) 
model using residual modification with sign estimation. Sections 3 and 4 present residual 
modification using FLN and the proposed N-FLNGM(1,1) model, respectively. Section 5 examines 
the energy demand forecasting performance of the N-FLNGM(1,1) model based on real energy 
demand cases in China. In Section 6, we discuss the outcomes and give our conclusions. 

2. GM(1,1) Model Using Residual Modification with Sign Estimation 

2.1. Original GM(1,1) Model 

Given an original data sequence X(°) = (
(0)
1x , …, 

(0)
nx ) made up of n samples, then a new 

sequence, X(1) = (
(1)
1x , 

(1)
2x , …, 

(1)
nx ), can be generated from 

(0)
1x  by the accumulated generating 

operation [9,25] as follows: 

(1)
kx  = 

(0)

1

k

j
j
x


 , k = 1, 2, …, n (1) 

and 
(1)
1x , 

(1)
2x , …, 

(1)
nx  can then be approximated by a first-order differential equation, 

(1)d
dt
x

 + ax(1) = b (2) 

where a and b are the developing coefficient and control variable, respectively. 



Sustainability 2017, 9, 1166 3 of 14 

The predicted value 
(1)ˆkx  can be obtained by solving the differential equation with an initial 

condition that 
(1)
1x  = 

(0)
1x : 

(1)ˆkx  = (
(0)
1x  − a

b
) e−a(k−1) + a

b
 (3) 

and thus 
(1)ˆkx  = 

(0)
1x  holds. Then, a and b can be estimated by a grey difference equation: 

(0)
kx  + a

(1)
kz  = b (4) 

where 
(1)
kz  is the background value, 

(1)
kz  = α

(1)
kx  + (1 − α)

(1)
1kx   (5) 

and α is usually specified as 0.5 for convenience. In turn, a and b can be obtained using the ordinary 
least-squares method: 

[a, b]T = (BTB)−1BTy (6) 

where 

B = 

(1)
2
(1)
3

(1)

1
1

1n

z
z

z

 
  
 
 
  

 
 (7) 

and 

y = [
(0)
2x , 

(0)
3x , …, 

(0)
nx ]T (8) 

Using the inverse accumulated generating operation, the predicted value of 
(0)
kx  is 

(0)ˆkx  = 
(1)ˆkx  − 

(1)
1ˆkx  , k = 2, 3, …, n (9) 

Therefore, 

(0)ˆkx  = (1 − ea) (
(0)
1x  − a

b
) e−a(k−1), k = 2, 3, …, n (10) 

Note that 
(1)
1̂x  =  holds. 

2.2. Residual Modification with Sign Estimation 

To build a residual modification model, the original GM(1,1) is constructed first, followed by the 

residual GM(1,1). Let 
(0)  = (

(0)
2 , 

(0)
3 , …, 

(0)
n ) denote the sequence of absolute residual values, 

where 

(0)
k  = (0) (0)ˆk kx x , k = 2, 3, …, n (11) 

Using the same construction for X(°) as the original GM(1,1) model, a residual model can be 

established for 
(0) , and the predicted residual of 

(0)
k  is 

(0)
1̂x
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(0)
k̂  = (1 − ae  )(

(0)
2  − 

b
a




) ( 1)a ke   , k = 3, 4, …, n (12) 

In the remnant GM(1,1) model with sign estimation, 
(0)ˆkx  is modified to (0)ˆ rk

x  by adding or 

subtracting 
(0)
k̂  from 

(0)ˆkx  [27]. 

(0)ˆ rk
x  = 

(0)ˆkx  + sk
(0)
k̂ , k = 2, 3, …, n (13) 

where sk denotes the positive or negative sign of 
(0)
k̂  with respect to the k-th year. Those residual 

sign estimation methods mentioned above can be used to determine sk. 

3. Residual Modification Using FLN 

A single-layer feed-forward FLN is an appropriate tool for obtaining sign and range estimations 
due to its effective function approximation ability. An enhanced pattern with respect to a single input 
denoted by t t  can be generated as (t, sin(πt), cos(πt), sin(2πt), cos(2πt)) through a functional 
link [31,32], where t denotes a specific time point, such as the t-th year. 

In the original FLNGM(1,1), the hyperbolic tangent function is used as the activation function in 
the output node, 

tanh(z) = 
z z

z z
e e
e e








 (14) 

where tanh(z) lies within the range (−1, 1). Let θ be the bias to the output node. When (t, sin(πt), 
cos(πt), sin(2πt), cos(2πt)) is presented to the net, z can be computed as follows: 

z = w1t + w2sin(πt) + w3cos(πt) + w4sin(2πt) + w5cos(2πt) + θ (15) 

The actual output value, y, is just to equal tanh(z), and y can be interpreted as the range of 

modification for 
(0)ˆkx . Let yk denote the actual output value with respect to 

(0)ˆkx . Then, yk = 1 

indicates that 
(0)ˆkx  can be modified as its tolerable upper limit, whereas yk = −1 denotes that 

(0)ˆkx  
can be modified as its tolerable lower limit. An advantage compared with residual estimation 

methods is that the modification range of the original 
(0)ˆkx  is not restricted to 

(0)
k̂ . Thus, it can be 

seen that the additivity assumption of the interaction among t, sin(πt), cos(πt), sin(2πt), and cos(2πt) 
holds; i.e., these terms are assumed to be independent of each other. 

In particular, based on the idea of three-sigma limits, which are used to set the upper and lower 

control limits in statistical quality control charts [43], the value FLN
(0)ˆ
k
x  predicted by the proposed 

model is formulated heuristically as follows. 

FLN
(0)ˆ
k
x  = (1 − ea)(

(0)
1x  − a

b
)e−a(k−1) + 3yk

(0)
k̂ , k = 2, 3, …, n (16) 

where 3
(0)
k̂  refers to data within three residuals with respect to 

(0)ˆkx  and represents the tolerable 

maximum range for modifying 
(0)ˆkx . 

4. Nonadditive Residual Modification Model 

Let (t, sin(πt), cos(πt), sin(2πt), cos(2πt)) be represented by (v1, v2, v3, v4, v5), and let X = {v1, v2, v3, 
v4, v5}, where X is called the feature space. A fuzzy measure is a nonadditive set function that can be 
used along with a fuzzy integral for aggregating information sources [36]. Among various fuzzy 
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measures, the λ-fuzzy measure has been suggested for computation of the fuzzy integral because of 
its convenience users [44–46]. The advantage is that, after determining fuzzy densities μ1, μ2, …, μ5, 
where μk denotes μ({vk}), λ can be uniquely determined from the condition μ(X) = 1. μ(Ek) can be 
computed as follows: 

μ(Ek) = 1


[
..

(1 )i
i k n




  − 1] (17) 

where Ek = {vk, vk+1, …, v5} (1 ≤ k ≤ 5). As illustrated in Figure 1, fuzzy densities can be used as 
connection weights, and they can be determined automatically by the GA. 

 
Figure 1. A functional-link net with Choquet fuzzy integral. 

Let f be a non-negative, real-valued measurable function defined on X. The element in X with 
min{f(vk)|k = 1, 2, …, 5} is renumbered as one, where f(vk) denotes the performance value of vk. In other 
words, all the elements vk are rearranged in order of descending f(vk), such that f(v1) ≤ f(v2) ≤…≤ f(v5). 

The Choquet integral (c) df u  over X of f with respect to μ is defined as follows. 

(c)  
5

1
1

d ( ) ( ) ( )k k k
k

f f v E E   


   (18) 

where μ(E6) is specified as zero. The Choquet integral illustrated in Figure 2 comprises five different 
rectangular areas. Since the assumption of additivity among features is not warranted in real 
applications, it is reasonable to use the Choquet integral with respect to aggregate t, sin(πt), cos(πt), 
sin(2πt), and cos(2πt) to form the nonadditive hyperbolic tangent function denoted by (c)tanh(z). This 
definitely differentiates N-FLNGM(1,1) from the original FLNGM(1,1) models. 

In the construction of the original FLNGM(1,1), a real-valued GA is designed to automatically 
determine the connection weights (i.e., μ1, μ2, μ3, μ4, μ5) and the bias (i.e., θ) for the N-FLNGM(1,1). 
Indeed, Rooij et al. [47] noted that GAs are appropriate tools for training perceptron-like networks. 
To construct the model with high prediction accuracy, the mean absolute percentage error (MAPE) 
for the training patterns is considered. MAPE can be treated as the benchmark, and it is more stable 
than the more commonly used mean absolute error and root mean square error [48,49]. MAPE is 
formulated as follows: 

MAPE = 
FLN

(0) (0)

(0)

ˆk k

k TS k

x x
TS x



  × 100% (19) 
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where TS denotes the training or testing data. Ref. [50] presented MAPE criteria for evaluating a 
forecasting model, where MAPE ≤ 10, 10 < MAPE ≤ 20, 20 < MAPE ≤ 50, and MAPE > 50 correspond 
to high, good, reasonable, and weak forecasting models, respectively. It is reasonable to define the 
fitness function as MAPE. Thus, the fitness of each individual is specified by a single objective in the 
combinatorial optimization problem. 

 
Figure 2. Graphical representation of Choquet fuzzy integral. 

Let nsize and nmax denote the population size and maximum number of generations, respectively, 
and Pm denote the population generated in generation m (1 ≤ m ≤ nmax). After evaluating the fitness 
value for each chromosome in Pm, selection, crossover, and mutation are applied until nsize new 
chromosomes have been generated for Pm+1. The GA can be performed until nmax generations have 
been generated. When the stopping condition has been satisfied, the algorithm is terminated, and the 
best chromosome with maximum fitness value among all successive generations serves as the desired 
solution to examine the generalization ability of the proposed N-FLNGM(1,1) model. The selection, 
crossover, and mutation operations required for N-FLNGM(1,1) are similar to those for FLNGM(1,1), 
so the details of the GA are omitted for simplicity and they can be found in [29]. 

5. Experimental Results 

In Asia, China has become increasingly influential in terms of energy production and 
consumption [4]. It is interesting to conduct experiments on real energy demand cases from China to 
compare the energy demand forecasting ability of the proposed N-FLNGM(1,1) model with that of 
the additive FLNGM(1,1) and other grey residual modification models that use sign estimation, 
including the residual modification model using multi-layer perceptron (MLPGM(1,1)) [26], genetic 
programming (GPGM(1,1)) [17], and Markov chain [27]. The prediction accuracy of different 
prediction models were demonstrated by two real cases related to the energy demand in China. To 
ensure a fair comparison with the original FLNGM(1,1), the parameter specifications used for GA 
were the same as those described by Hu (2016), including nsize = 200, nmax = 1000, probabilities for 
crossover and mutation are 0.7 and 0.01 respectively. 

5.1. Case I 

An experiment was conducted based on the historical annual energy demand data from China 
collected between 1990 and 2007. As reported by Lee and Tong [17], the data from 1990 to 2003 were 
used for model fitting, and those from 2004 to 2007 were used for ex-post testing. The forecasting 
results obtained by Lee and Tong [17] using the original GM(1,1), MLPGM(1,1), and GPGM(1,1) 
models are summarized in Table 1 and illustrated in Figure 2. 

Table 1 and Figure 3 show the prediction performance of the different forecasting models. The 
MAPE for model fitting obtained by N-FLNGM(1,1) was slightly inferior to that by the original 
FLNGM(1,1). However, we can see that N-FLNGM(1,1) outperformed the other forecasting models 
compared with the testing data. Using the testing data, in terms of MAPE, both the original 

f(v5) 

f(v4) 

f(v3) 

f(v2) 

f(v1) 

(E5) (E4) (E2) (E3) (E1) 
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FLNGM(1,1) and the proposed N-FLNGM(1,1) had good forecasting abilities, whereas the original 
GM(1,1), GPGM(1,1), MLPGM(1,1), and Markov-chain sign estimation only had reasonably fair 
forecasting abilities. A massive change occurred up to 2004, which may explain why the ex-post 
testing results were not as good as the model-fitting results. 

 

Figure 3. Predicted and actual values of different forecasting models for Case I. 

5.2. Case II 

The second experiment was conducted on the historical annual electricity demand of China, 
collected from China Statistical Yearbook 2014 [51]. As described by Zhou et al. [52], data from 1981 
to 1998 were used for model fitting, and the other data for testing. The forecasting results obtained 
by the different forecasting models are shown in Table 2 and Figure 4. We can see that the MAPE for 
the original GM(1,1), MLPGM(1,1), GPGM(1,1), Markov-chain sign estimation, original FLNGM(1,1), 
and the proposed N-FLNGM(1,1) using the training data were 2.28%, 2.03%, 1.44%, 2.31%, 0.10%, 
and 0.13%, respectively. Using the testing data, the MAPE were 7.24%, 3.90%, 3.90%, 3.90%, 1.52%, 
and 1.41%, respectively. Figure 5 illustrates the APE of the different forecasting models. Based on 
these results, it is obvious that the proposed N-FLNGM(1,1) model yielded comparable performance 
to the other forecasting models considered. Additionally, Zhou et al. [52] showed that the MAPE for 
an autoregressive integrated moving average model and trigonometric grey prediction model were 
3.25% and 2.12%, respectively, for training data, and 2.64% and 2.37% for testing data, which are 
inferior to the results obtained by the proposed N-FLNGM(1,1) model. 

0

50,000

100,000

150,000

200,000

250,000

300,000

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Actual values
Original GM(1,1)
MLPGM(1,1)
GPGM(1,1)
Markov-chain
FLNGM(1,1)
N-FLNGM(1,1)



Sustainability 2017, 9, 1166 8 of 14 

 

Table 1. Prediction accuracy obtained by different forecasting models for energy demand (unit: 104 tons of standard coal equivalent (SCE)). MAPE: mean absolute 
percentage error. 

Year Actual 
GM(1,1) MLPGM(1,1) GPGM(1,1) Markov-Chain FLNGM(1,1) N-FLNGM(1,1)

Predicted APE Predicted APE Predicted APE Predicted APE Predicted APE Predicted APE
1990 98,703 98,703 0 98,703 0 98,703 0 98,703 0 98,703 0 98,703 0 
1991 103,783 108,706.1 4.74 103,783 0 103,783 0 103,783 0 104,116.2 0.32 108,332.5 4.38 
1992 109,170 112,335.5 2.9 116,225.8 6.46 108,445.2 0.66 108,445.2 0.66 108,913.6 0.23 112,708.3 3.24 
1993 115,993 116,086.1 0.08 111,804.1 3.61 111,804.1 3.61 111,804.1 3.61 115,973.2 0.02 116,938.2 0.82 
1994 122,737 119,962 2.26 115,248.8 6.10 124,675.1 1.58 115,248.8 6.10 125,629.8 2.36 124,309.9 1.28 
1995 131,176 123,967.2 5.50 129,154.8 1.54 129,154.8 1.54 129,154.8 1.54 131,380.7 0.16 130,842 0.25 
1996 138,948 128,106.2 7.80 133,816.1 3.69 133,816.1 3.69 133,816.1 3.69 135,703.7 2.33 135,615.4 2.40 
1997 137,798 132,383.3 3.93 138,668.2 0.63 138,668.2 0.63 138,668.2 0.63 136,710.1 0.79 137,554.2 0.18 
1998 132,214 136,803.3 3.47 143,721 8.7 129,885.5 1.76 129,885.5 1.76 133,735.8 1.15 136,059.7 2.92 
1999 133,831 141,370.8 5.63 133,756.5 0.06 133,756.5 0.06 133,756.5 0.06 135,005.6 0.88 136,387.9 1.92 
2000 138,553 146,090.8 5.44 137,709.8 0.61 137,709.8 0.61 137,709.8 0.61 138,603.2 0.04 140,826.2 1.65 
2001 143,199 150,968.4 5.43 141,743.6 1.02 141,743.6 1.02 141,743.6 1.02 142,946.8 0.18 145,273.3 1.45 
2002 151,797 156,008.9 2.77 145,855.2 3.91 145,855.2 3.91 145,855.2 3.91 150,954.8 0.55 153,016.6 0.81 
2003 174,990 161,217.6 7.87 150,041.6 14.26 172,393.5 1.48 150,041.6 14.26 175,848.7 0.49 168,529.3 3.69 

MAPE   4.13  3.61  2.59  2.70  0.68  1.78 
2004 203,227 166,600.2 18.02 178,901.5 11.97 178,901.5 11.97 178,901.5 11.97 186,450.1 8.26 183,696.6 9.61 
2005 224,682 172,162.6 23.37 185,702.4 17.35 185,702.4 17.35 185,702.4 17.35 194,058.0 13.63 195,771.8 12.87 
2006 264,270 177,910.7 32.68 192,813.8 27.04 192,813.8 27.04 192,813.8 27.04 202,011.1 23.56 206,254.6 21.95 
2007 265,583 183,850.7 30.77 200,254.3 24.60 200,254.3 24.60 167,447.1 36.95 210,377.6 20.79 214,426.9 19.26 

MAPE   26.21  20.23  20.23  23.22  16.56  15.92 
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Table 2. Prediction accuracy obtained by different forecasting models for electricity demand (unit: 100 million kWh). 

Year Actual 
GM(1,1) MLPGM(1,1) GPGM(1,1) Markov-chain FLNGM(1,1) N-FLNGM(1,1)

Predicted APE Predicted APE Predicted APE Predicted APE Predicted APE Predicted APE
1981 3096 3096 0 3096 0 3096 0 3096 0 3096 0 3096 0 
1982 3280 3327.7 1.45 3280 0 3280 0 3280 0 3214.3 2.00 3374.4 2.88 
1983 3519 3611.5 2.63 3638.0 3.38 3585.0 1.88 3585.0 1.88 3548.5 0.84 3625.0 3.01 
1984 3778 3919.5 3.75 3888.3 2.92 3888.3 2.92 3888.3 2.92 3845.3 1.78 3893.6 3.06 
1985 4118 4253.9 3.30 4217.1 2.41 4217.1 2.41 4217.1 2.41 4166.4 1.18 4189.4 1.73 
1986 4507 4616.7 2.43 4573.3 1.47 4573.3 1.47 4573.3 1.47 4513.6 0.15 4523.1 0.36 
1987 4985 5010.5 0.51 4959.4 0.51 4959.4 0.51 4959.4 0.51 4889.0 1.93 4897.4 1.76 
1988 5467 5437.9 0.53 5377.6 1.63 5498.2 0.57 5377.6 1.63 5294.7 3.15 5320.3 2.68 
1989 5865 5901.7 0.63 5830.7 0.59 5830.7 0.59 5830.7 0.59 5733.0 2.25 5775.0 1.53 
1990 6230 6405.1 2.81 6321.4 1.47 6321.4 1.47 6321.4 1.47 6209.5 0.33 6276.4 0.74 
1991 6775 6951.4 2.60 6852.8 1.15 6852.8 1.15 6852.8 1.15 6777.9 0.04 6859.8 1.25 
1992 7542 7544.3 0.03 7428.1 1.51 7428.1 1.51 7428.1 1.51 7596.7 0.72 7545.1 0.04 
1993 8426.5 8187.8 2.83 8050.8 4.46 8324.8 1.21 8050.8 4.46 8425.2 0.02 8319.0 1.28 
1994 9260.4 8886.2 4.04 8724.8 5.78 9047.6 2.30 8724.8 5.78 9207.4 0.57 9144.2 1.25 
1995 10,023.4 9644.1 3.78 9834.3 1.89 9834.3 1.89 9453.9 5.68 10,000.4 0.23 10,000.1 0.23 
1996 10,764.3 10,466.7 2.76 10,690.9 0.68 10,690.9 0.68 10,242.5 4.85 10,742.7 0.20 10,685.5 0.73 
1997 11,284.4 11,359.5 0.67 11,623.7 3.01 11,095.3 1.68 11,095.3 1.68 11,273.8 0.09 11,264.8 0.17 
1998 11,598.4 12,328.4 6.29 12,017.1 3.61 12,017.1 3.61 12,017.1 3.61 11,796.7 1.71 11,866.7 2.31 

MAPE   2.28  2.03  1.44  2.31  0.10  0.13 
1999 12,305.2 13,379.9 8.73 13,013 5.75 13,013.0 5.75 13,013.0 5.75 12,581.9 2.25 12,627.3 2.62 
2000 13,471.4 14,521.2 7.79 14,088.8 4.58 14,088.8 4.58 14,088.8 4.58 13,535.1 0.47 13,565.9 0.70 
2001 14,633.5 15,759.8 7.70 15,250.3 4.21 15,250.3 4.21 15,250.3 4.21 14,598.4 0.24 14,710.7 0.53 
2002 16,331.5 17,104 4.73 16,503.6 1.05 16,503.5 1.05 16,503.5 1.05 15,821.4 3.12 16,040.2 1.78 

MAPE   7.24  3.90  3.90  3.90  1.52  1.41 
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6. Discussion and Conclusions 

The GM(1,1) model is the most frequently used grey prediction model, and it has played an 
important role in energy demand forecasting because it only requires a limited number of samples to 
construct a prediction model without statistical assumptions. In this paper, the proposed N-
FLNGM(1,1) is built on the original FLNGM(1,1) model, which uses FLN to estimate the sign and 
modification range for each predicted residual simultaneously by using the predicted value obtained 
from the GM(1,1) model. We performed experiments to validate the effectiveness of the proposed N-
FLNGM(1,1) model for energy demand forecasting. Experimental results demonstrate that the 
proposed nonadditive grey prediction model performs well compared with the additive 
FLNGM(1,1). In addition to grey prediction models, we further examine the prediction performance 
of a frequently-used prediction model—multi-layer perceptron (MLP) with backpropagation 
learning. MLP here has one input node, one hidden layer with two neurons, and one output layer 
with one neuron, training with 10,000 iterations, and learning rate of 0.8. The forecasting results 
obtained by MLP for case I and II are summarized in Tables 3 and 4, respectively. It can be seen that 
the proposed N-FLNGM(1,1) outperforms MLP. 
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Table 3. Prediction accuracy obtained by multi-layer perceptron (MLP) and autoregressive integrated 
moving average (ARIMA) for case I. 

Year Actual 
MLP N-FLNGM(1,1)

Predicted APE Predicted APE
1990 98,703 93,012.6 5.77 987,03 0 
1991 103,783 107,674.6 3.75 108,332.5 4.38 
1992 109,170 116,921.0 7.10 112,708.3 3.24 
1993 115,993 122,130.4 5.29 116,938.2 0.82 
1994 122,737 125,034.6 1.87 124,309.9 1.28 
1995 131,176 126,861.3 3.29 130,842 0.25 
1996 138,948 128,373.0 7.61 135,615.4 2.40 
1997 137,798 130,080.1 5.60 137,554.2 0.18 
1998 132,214 132,407.0 0.15 136,059.7 2.92 
1999 133,831 135,788.9 1.46 136,387.9 1.92 
2000 138,553 140,696.7 1.55 140,826.2 1.65 
2001 143,199 147,565.7 3.05 145,273.3 1.45 
2002 151,797 156,595.8 3.16 153,016.6 0.81 
2003 174,990 167,469.6 4.30 168,529.3 3.69 

MAPE   3.85  1.78 
2004 203,227 179,212.1 11.82 183,696.6 9.61 
2005 224,682 190,465.4 15.23 195,771.8 12.87 
2006 264,270 200,083.0 24.29 206,254.6 21.95 
2007 265,583 207,546.2 21.85 214,426.9 19.26 

MAPE   18.30  15.92 

The proposed N-FLNGM(1,1) model is totally different from the original FLNGM(1,1), 
MLPGM(1,1), GPGM(1,1), and Markov-chain sign estimation. First, when the Choquet fuzzy integral 
with respect to a λ-fuzzy measure is incorporated into the FLN to consider the interaction among 
features in the enhanced pattern, the testing results obtained by the additive FLNGM(1,1) can be 
further improved by the proposed N-FLNGM(1,1). Second, MLPGM(1,1), GPGM(1,1), and Markov-
chain sign estimation contributed to estimate residual sign sk in Equation (13) to improve the 
prediction accuracy of the original GM(1,1) model. The common characteristic of these three models 

is that 
(0)ˆkx  can be adjusted by either 

(0)
k̂ or −

(0)
k̂ . This is too tight a restriction for the 

modification range. In contrast, originating from the idea of three-sigma limits, N-FLNGM(1,1) 

presents a novel updated rule for 
(0)ˆkx  by FLN, where the adjustment of 

(0)ˆkx  ranges between −3
(0)
k̂  and 3

(0)
k̂ . It can be seen that N-FLNGM(1,1) outperformed MLPGM(1,1), GPGM(1,1), and 

Markov-chain sign estimation compared with data used for model fitting and ex-post testing. It 
should be noted that in a perceptron-like net, it is not easy to explain the meaning of the connection 
weights [53]. However, an advantage of the proposed N-FLNGM(1,1) compared with the original 
FLNGM(1,1) is that μk can be interpreted as the degree of importance of vk. 

Table 4. Prediction accuracy obtained by MLP and ARIMA for case II. 

Year Actual 
MLP N-FLNGM(1,1)

Predicted APE Predicted APE
1981 3096 2947.5 4.80 3096 0 
1982 3280 3255.4 0.75 3374.4 2.88 
1983 3519 3573.7 1.55 3625.0 3.01 
1984 3778 3900.4 3.24 3893.6 3.06 
1985 4118 4234.9 2.84 4189.4 1.73 
1986 4507 4579.0 1.60 4523.1 0.36 
1987 4985 4938.1 0.94 4897.4 1.76 
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1988 5467 5323.1 2.63 5320.3 2.68 
1989 5865 5752.7 1.91 5775.0 1.53 
1990 6230 6253.5 0.38 6276.4 0.74 
1991 6775 6855.1 1.18 6859.8 1.25 
1992 7542 7575.5 0.44 7545.1 0.04 
1993 8426.5 8396.8 0.35 8319.0 1.28 
1994 9260.4 9252.6 0.08 9144.2 1.25 
1995 10,023.4 10,051.4 0.28 10,000.1 0.23 
1996 10,764.3 10,724.4 0.37 10,685.5 0.73 
1997 11,284.4 11,250.6 0.30 11,264.8 0.17 
1998 11,598.4 11,646.4 0.41 11,866.7 2.31 

MAPE   1.34  0.13 
1999 12,305.2 11,942.1 2.95 12,627.3 2.62 
2000 13,471.4 12,166.3 9.69 13,565.9 0.70 
2001 14,633.5 12,341.1 15.67 14,710.7 0.53 
2002 16,331.5 12,481.5 23.57 16,040.2 1.78 

MAPE   12.97  1.41 

Over the next two decades, coal, natural gas, and crude oil can be the main energy supplies 
driving the world economy. It is expected that the growth of the crude oil demand will mainly come 
from emerging markets from 2015 to 2035, and one half of the growth will be in China [54]. As a 
matter of fact, energy consumption in China has been mainly provided by coal and crude oil. For 
instance, the China Statistical Yearbook 2014 [51] showed that approximately two-thirds of the total 
energy consumed was provided by coal and 18% by oil in 2013. This leads to inevitable environmental 
impacts on China. Undoubtedly, energy demand prediction has become increasingly important 
when devising sustainable development plans for China [16]. The proposed N-FLNGM(1,1) has 
demonstrated its potential for energy demand forecasting. 

When it comes to fuzzy integrals, the Sugeno integral is the other most commonly used fuzzy 
integral. However, only the maximum and minimum operators are involved in the Sugeno integral, 
so the Choquet integral is preferable to the Sugeno integral for many decision problems [36], which 
is why we use the Choquet integral rather than the Sugeno integral. In order to perform a soft 
aggregation, two special ordered weighted averaging (OWA) operators—S-OWA-OR and S-OWA-
AND—can be employed to replace the maximum and minimum operators, respectively [55]. In 
future research, it would be interesting to examine the forecasting ability of a nonadditive prediction 
model using the Sugeno integral combined with OWA operators. 

In this study, both the original and the residual GM(1,1) models use the least squares method to 
obtain the developing coefficient and control variable, which depend on the background value. 
However, it is not easy to determine the background value. Hu et al. [56] presented a novel neural-
network-based GM(1,1) model (NNGM(1,1)) to resolve this troublesome problem by automatically 
determining the developing coefficient and control variable. Thus, it would be interesting to examine 
whether incorporating NNGM(1,1) into N-FLNGM(1,1) instead of the traditional GM(1,1) model 
might affect the prediction performance of N-FLNGM(1,1) in energy demand forecasting. 
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