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Abstract: In recent years, developing countries, especially resource-dependent regions, have been 
facing the paradox of ensuring both emissions reduction and economic development. Thus, there is 
a strong political desire to forecast carbon emissions reduction potential and the best way to achieve 
it. This study constructs a methodology to assess carbon reduction potential in a resource-
dependent region. The Simulated Annealing Programming algorithm and the Genetic algorithm 
were introduced to create a prediction model and an optimized regional carbon intensity model, 
respectively. Shanxi Province in China, a typical resource-dependent area, is selected for the 
empirical study. Regional statistical data are collected from 1990 to 2015. The results show that the 
carbon intensity of Shanxi Province could drop 18.78% by 2020. This potential exceeds the 18% 
expectation of the Chinese Government in its ‘13th Five-Year Work Plan’ for Controlling 
Greenhouse Gas Emissions. Moreover, the carbon intensity of the province could be further reduced 
by 0.97 t per 10,000 yuan GDP. The study suggests that the carbon emissions of a resource-
dependent region can be reduced in the following ways; promoting economic restructuring, 
upgrading coal supply-side reform, perfecting the self-regulation of coal prices, accelerating the 
technical innovation of the coal industry, and establishing a flexible mechanism for reducing 
emissions. 

Keywords: resource-dependent regions; carbon reduction potential; carbon intensity; Simulated 
Annealing Programming; Shanxi Province 

 

1. Introduction 

The growing concentrations of greenhouse gases (GHGs), especially in resource-dependent 
regions, has been one of the major global challenges as it brings about environmental degradation 
and natural disasters threatening human safety and health [1]. To reduce its influence and avoid more 
dangerous long-term effects, the Intergovernmental Panel on Climate Change (IPCC) called for 
limiting the increase in average global temperature to no more than 2 °C. To this end, we may need 
to see a reduction in carbon dioxide (CO2) by at least 50% until 2050, which means that any future 
emissions leeway could become extremely constrained according to Pan et al. [2]. Consequently, there 
is a strong political desire to forecast carbon emissions reduction potential and the best means of 
achieving it [3]. Accordingly, we need to identify the factors influencing carbon reduction, 
understand in depth the mechanism of their effects, create a series of predictive models, and optimize 
carbon reduction potential. 

The existing research on carbon reduction potential mainly covers the following; carbon 
emissions measurements [4–7], carbon emissions impact factors and mechanism analysis [8–14], 
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scenario analysis, carbon emissions predictions [15–19], and policy simulations [20–22]. The key to 
establishing carbon emissions reduction policies and realizing the situation lies in the identification 
and analysis of carbon impact factors and their underlying driving mechanisms. Existing research 
shows that many factors affect carbon emissions, of which the most important ones include economic 
development, industrial structure, technological advance, energy prices, and social investment. 
Almulali et al. [23] investigate 30 Sub Saharan African countries using panel data. Their results show 
that economic development is the central driving factor behind increasing carbon emissions in the 
economies investigated. Almulali [24] investigates the major factors that influenced carbon emissions 
in 12 Middle Eastern countries and showed that social investment and GDP were the most important 
factors increasing carbon emissions in these countries. Tunc et al. [9] identified the factors that 
contribute to changes in CO2 emissions in the Turkish economy by utilizing the Log Mean Divisia 
Index (LMDI) method. The results showed that the main component in Turkey that determines 
changes in CO2 emissions is economic activity. De Freitas et al. [10] examines a decoupling of the 
growth rates of economic activity and CO2 emissions and energy consumption in Brazil from 2004 to 
2009. Their results indicate that carbon intensity and energy mix were the main determinants of 
emissions reduction in Brazil. Li et al. [25] discuss the driving forces influencing China’s CO2 
emissions based on the Path–STIRPAT model, a method combining path analysis with stochastic 
impacts by regressions on population, affluence, and technology (STIRPAT). The analysis showed 
that GDP per capita was the main factor influencing China’s carbon emissions. Yao et al.’s [26] 
studied on the factors affecting energy consumption in China and major industries recognizes that 
energy prices were the most important factor influencing abatement costs. Wu et al. [27] used several 
environmental data envelopment analysis (DEA) models with carbon emissions, showing that the 
energy efficiency improvement in China’s industrial sector is mainly driven by technological 
improvement. Li et al. [28] discuss the regional differences in impact factors on carbon emissions 
using the STIRPAT model. Their results indicate that improving technology levels produces a small 
reduction in carbon emissions in most emissions regions. Overall, the factors that affect carbon 
emissions can be summarized as economic development, industrial structure, technological advance, 
energy prices, and social investment. 

Among the existing studies, research on carbon emissions reduction potential has mainly 
focused on a global [29–31], regional [32], or national [33–35] macro scale, while studies on a small or 
medium scale (such as provincial or urban) are still relatively rare. Domestic research in China on 
factors affecting carbon emissions at the provincial and municipal levels has only recently appeared. 
From the perspective of geography, there are significant differences in population growth, household 
consumption, economic development level, energy resource advantages and technical levels among 
provinces and among the eastern, central, and western regions of China. Thus, it is important to 
reveal the multi-factor interaction mechanism of carbon emissions that may be masked by such 
regional differences.  

In terms of research methods, an economic model is the most frequently used means of 
analyzing each driving factor that has an impact on carbon emissions or the potential to reduce 
carbon emissions (specific models focus on structure or index decomposition). O’Mahony uses an 
extended Kaya identity as the scheme and applies the LMDI as the decomposition technique to 
decompose change in the carbon emissions of Ireland from 1990 to 2010 [12]. In applying the STRIPAT 
method, Liddle et al. [36] compare the carbon elasticity of income and population of Organization for 
Economic Co-operation and Development (OECD) countries with that of non-OECD countries. In 
another recent study, Wang et al. [37] analyze the influencing factors of carbon emissions in energy 
consumption in Suzhou City by using an index decomposition model. Liang and Zhang [38] analyze 
the impact factors of carbon emissions in a manufacturing industry based in the eastern coast of 
Jiangsu Province and show that reduction in energy intensity and improvement in energy 
consumption structure are key to achieving the goal of low-carbon emissions.  

In these studies, a potential assumption in either structural decomposition or exponential 
decomposition models is that the effects of the driving factors on carbon emissions are isolated and 
unrelated. However, this assumption is impractical. Wang and Yang [39] and Zhang et al. [40] study 
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the factors affecting carbon emissions in different levels in China. The results demonstrate that the 
driving factors of carbon emissions affected one another. To separate the interactions, a partial least 
squares regression and a principal component analysis are used in some studies [41,42]. However, 
the clustering process brings new problems. The loss of the original information can be inconvenient 
to subsequent policy development. Therefore, a certain methodology system needs to be constructed 
that not only takes into account the interactions among factors but also retains the information of the 
original indicators.  

This study contributes to the literature in the following ways: (1) The Simulated Annealing 
Programming (SAP) algorithm is introduced into carbon reduction research to assess carbon 
reduction potential. As a result, a new methodological system is constructed that covers gaps in 
existing studies. (2) In the case example of Shanxi province in China, this study analyzes the carbon 
reduction potential of a resource-dependent region. The results provide evidence for policy makers 
in such regions. (3) This study predicts the feasibility of the carbon reduction goals in the Chinese 
‘13th Five-Year Work Plan’ and, further, quantitatively calculates the potential of carbon reduction. 

The remainder of this paper is organized as follows. Section 2 introduces the prediction method 
for carbon intensity based on the SAP. Section 3 presents the empirical analysis and results, and 
finally Section 4 discusses targeted suggestions for the policy-making process as relevant to carbon 
reduction. 

2. Materials and Methods 

As the carbon emissions system is a typical composite system composed of a natural and an 
artificial system, it has the characteristics of openness, being away from an equilibrium state, non-
linearity, and the existence of random fluctuation. In order to study the mutual influence of each 
impact factor in the composite system, to adapt to environmental changes due to economic 
development and changes, and, ultimately, to be a reasonable state, this study uses complex system 
theory and methods, including selecting carbon intensity as the system dependent variable and the 
influencing factors as the independent variables. To solve regional carbon emissions reduction 
potential, we construct a model to capture the dynamic quantitative relationship between carbon 
intensity and the system elements and we then examine the prediction and optimization of carbon 
intensity. 

2.1. Prediction Method of Carbon Intensity Based on the Simulated Annealing Programming 

Due to the complexity of carbon emissions reduction, it is very difficult to establish a dynamic 
model that describes the evolution of the emissions reduction system. The traditional method is 
limited by the rationality of the system structure, the complexity of the parameter calculations, and 
the accuracy of the final conclusion. The SAP is a stochastic search algorithm that is suitable for 
solving large-scale combination optimization problems [43]. It can overcome nonlinear, multi-
dimensional, and complex system models and also determine the difficult structure of the equation 
[44]. The simulated annealing programming has been applied in the fields of production scheduling, 
control engineering, machine learning, neural networks, and signal processing, among others. This 
study introduces it into the field of carbon emissions prediction. 

2.1.1. Simulated Annealing Programming Algorithm 

The algorithm is derived from the enlightenment of ‘annealing’ physical phenomena in 
thermodynamics. The lower the temperature is, the lower the energy of the object is; when the 
temperature is low enough, the liquid begins to condense and crystallize. In the crystalline state, the 
system’s energy state lowers to a minimum [45].  

The SAP algorithm is based on the simulation of the solid annealing process. Using the 
Metropolis acceptance criterion, a set of parameter control algorithm processes, namely the cooling 
schedule, is established to give the algorithm an approximate optimal solution in polynomial time 
[46]. The physical image and statistical properties of the solid annealing process are the physical 
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background of the SAP. The Metropolis acceptance criterion guarantees the algorithm will escape the 
local optimal ‘trap’, and the reasonable choice of the cooling schedule is the prerequisite for the 
application of the algorithm [47]. The flow chart of the Simulated Annealing Programming Algorithm 
is shown in Figure 1. 

 
Figure 1. The flow chart of the Simulated Annealing Programming Algorithm. 

It is calculated by the initial solution and the initial value of the temperature control parameters; 
the current solution repeats the ‘new solution → calculate the objective function difference → judge 
whether to accept → accept or discard’ iteration and gradually attenuates the T value. The current 
solution at the end of the algorithm is the approximate optimal solution. The annealing process is 
controlled by the cooling schedule parameters, including the initial value of the control parameter 
and its attenuation factor, the number of iterations per value (called the length of a Markov chain), 
and the stop condition.  

The SAP has the following characteristics [48]: (1) to avoid the loss of the local optimal solution, 
we accept the worse solution with a certain probability. (2) To improve the reliability of the optimal 
solution, the SAP algorithm slowly reduces the control parameters, improving the acceptance 
criterion until the control parameters tend to zero. (3) The objective function requirements are fewer 
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and are not subject to continuous micro-constraints, under which the definition domain can be 
arbitrarily set. (4) To improve the quality and operation speed of the solution, the introduction of 
implicit parallelism is employed to solve the nonlinear problem. 

2.1.2. Theoretical Model and Variable Selection 

The theoretical model to solve the nonlinear model of regional carbon intensity and the key 
factors is as follows: 

1 2( , ... ... )t t it ntCI f X X X X   (1)

where CI is the value of regional carbon intensity, Xit is the t-th year of the i-th key factor, and f(x) is 
a non-linear function. The key influencing factors are entered into the SAP algorithm in order to find 
the quantitative relationship between regional carbon intensity and each influencing factor. 

Five influencing factors of carbon intensity, including economic development, industrial 
structure, technological advances, energy price, and social investment, are selected as independent 
variables for their significance. The mechanism of action is described as follows. 

(1) Economic Development. According to Nag and Parikh [49] and Ang [50], there is an inverted U-
shaped relationship between economic development and carbon intensity. That is, carbon 
intensity increases with growing GDP up to a threshold level beyond which carbon intensity 
drops with higher GDP. The development of the economy not only increases the total amount 
of carbon emissions, but also improves energy efficiency and reduces carbon intensity levels. 
Thus, the economy development provides the basic support for the development of technology, 
laying a strong foundation for the reduction of carbon emission. This study uses per capita GDP 
indicators to characterize the level of economic development. 

(2) Industrial Structure. Yang and Liu [51] believe that the industrial structure is an important factor 
in differences in carbon emissions levels; Gao [52] believes that the industrial structure, the level 
of industrialization, and its openness to the public have a significant impact on carbon intensity. 
This study uses the proportion of tertiary industry to GDP to characterize the impact of 
industrial structure on carbon intensity. 

(3) Technological Advances. It was generally considered that technological advances have a 
positive effect on CO2 emissions reduction [53–55]. The effect is mainly manifested in two ways. 
First, technological advances can improve the efficiency of mechanical equipment, increase the 
use of artificial proficiency, and increase output in simple ways, directly reducing carbon 
intensity. Secondly, technological advances can improve unit energy output, increase the 
efficiency of the use of social resources, and thereby reduce the social needs of products, product 
prices, and overall investment, forcing the elimination of excess capacity and the adjustment of 
the industrial structure, evenly reducing carbon intensity. In this study, total productivity 
indicators are used to characterize the impact of energy technology. 

(4) Energy Price. Greening et al. [56] believed that energy prices had a significant impact on carbon 
intensity in direct or indirect ways. Chen and Tong [55] argued that the direct impact of energy 
prices was low. As an indirect impact, energy prices have an effect mainly by adjusting the 
energy consumption structure, thereby indirectly reducing carbon intensity. As a direct impact, 
a rise in prices can encourage companies to reduce carbon intensity, reduce their quantity of use, 
and utilize clean alternative energy sources to improve efficiency. This study uses raw materials, 
fuel, and the power purchase price index as indicators to characterize energy prices. 

(5) Social Investment. Research shows that the expansion of investment levels on carbon emissions 
has bidirectional effects on carbon intensity [57,58]. On the one hand, the expansion of 
investment can increase total production scale, thus increasing carbon intensity; on the other 
hand, the investment increase can drive economic development, which plays a positive role in 
promoting technological innovation. Former studies show that a modest increase in investment 
can promote an increase in carbon intensity, but excessive growth is counterproductive. This 
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study uses total societal fixed asset investment as the indicator to characterize the level of social 
investment. 

Five indicators such as per capita GDP, the proportion of tertiary industry to GDP, total 
productivity, raw materials, fuel, power purchase price index, and total societal fixed asset 
investment were used to characterize the level of economic development, industrial structure, 
technological advances, energy price, and social investment respectively. 

2.2. Prediction Method of Carbon Emissions Reduction Potential Based on the Genetic Algorithm 

A genetic algorithm (GA) is a global optimization search algorithm proposed by a group search 
strategy and the information exchange between the individuals in the group when the adaptive 
system is established and gradually developed [59]. Its main characteristic is that it does not depend 
on gradient information and realizes the evolution of the group by iteration under the premise of 
using the initial population and genetic operation. The result avoids the local optimum, the search 
scope is wider, and carbon intensity can be optimized under a multi-target constraint scenario. 

According to national economic planning and regional economic and social situations, high 
growth scenarios, benchmark scenarios (planning scenarios), and low growth scenarios (three 
economic growth model) all set different policy scenarios, and the global parallel optimization of the 
GA based on the natural genetic mechanism can be used to optimize carbon intensity under different 
policy scenarios. The specific calculation process is shown in Figure 2 and described as follows. 

 
Figure 2. The flow chart of the Genetic Algorithm. 

(i) Coding. The problem is described as a string through the fitness calculation, wherein each 
solution corresponds to a fitness value. The project code string is (X1t, X2t, …, Xnt). 

(ii) Forming the initial group. The initial population is generated by random method, indicating 
some things such as a random chromosome, the fixed number of groups, and the project is set 
to 100. 

(iii) Calculating the fitness. The fitness is an indicator of measuring the solution (chromosome) as 
good or bad and relates to the objective function of the algorithm model. The project fitness 
calculation function is fitness = f(X1t, X2t, …, Xnt); the corresponding objective function is CIoptimization 
= Min(fitness). 
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(iv) Choice. This is the process of entering the next generation directly from the old group, choosing 
the finest individual. 

(iv) Cross. This is the process of crossing and converting some parts of chromosomes (strings). 
(v) Mutation. This is to randomly rewrite one or several genes representing a chromosome in a 

string to represent another trait so that the chromosome is updated. 
(vi) Termination. This should repeat (iii), (iv), (v), and (vi). When the optimal population reaches a 

certain requirement or the evolution of the algebra reaches a set value, it terminates. This study 
intends to stop when the evolutionary algebra reaches 20 to take the optimal value. 

Substituting the key factor control range in different scenarios into the multi-objective 
optimization program of the above-mentioned GA, we get the CIoptimization and input this value into 
Equation (1); namely, we obtain the regional carbon emissions reduction potential. In theory, if 
several factors can be reasonably regulated and balanced, the regional carbon intensity can reach the 
optimal value (lowest); that is, there is a certain emissions reduction leeway. At the same time, the 
value of the independent variables corresponding to the optimal carbon intensity represents the 
policy path that enables the regional carbon emissions reduction potential. 

3. Results 

As there are both theory and models as discussed above, it is necessary to explore the carbon 
reduction potential of resource-dependent regions in a typical region with a resource-based economy. 
Shanxi, a representative resource-dependent province, is chosen for investigation through the SAP 
model. 

3.1. Study Area 

Shanxi Province is located in the middle of the Yellow River Basin, which has a population of 
36.64 million and covers an area of 156,700 square kilometers. Shanxi is the largest coal production 
and transportation province as well as an energy and heavy chemical industry base in China. The 
total area of coal, which accounts for about 40% of the province, is 64,800 square kilometers. Relying 
on coal resources, the Shanxi economy has achieved rapid development, but, at the same time, it has 
also created the phenomenon of a ‘coal economy’. The volatility of coal prices has led to swings in 
regional economies (as shown in Figure 3). 

 
Figure 3. An overview of economic development in Shanxi Province in China. Note: the data for GDP 
and industrial value-added are obtained from the Shanxi Statistical Yearbook (1979–2015). 

At the same time, even more unsettling is that coal resources have brought about environmental 
pollution and carbon emissions, which has led to Shanxi Province becoming one of the most carbon-



Sustainability 2017, 9, 1161 8 of 17 

dense regions in China. A development model characterized as long-term and highly dependent on 
coal resources has raised a series of problems and contradictions by creating regional resource waste, 
capital outflows, the weakening of institutions, and a decrease in innovation capacity. All of this 
seriously restricts the development of the local society and economics. Thus, the study of carbon 
emissions reduction potential in Shanxi Province is a great reference point for the theory and practice 
of carbon reduction in resource-dependent areas. 

3.2. Prediction Model of Carbon Intensity for Shanxi Province  

In this section, the prediction model of carbon intensity for Shanxi Province was deduced 
through the SAP algorithm. The valuable values of the SAP algorithm were determined and the data 
required were collected. More importantly, a fit test was conducted to verify the validity of the 
prediction model. 

3.2.1. Variable Setting and Data Resources 

The carbon intensity in Shanxi Province was selected as the dependent variable, expressed as CI; 
the influence factors on carbon intensity were selected as the independent variables. X0, the per capita 
GDP, is an indicator of economic development; X1, the proportion of the tertiary industry in GDP, is 
an indicator of industrial structure; X2, the total factor productivity, is an indicator of energy 
technology; X3, the raw material, fuel, and power purchase price index, is an indicator of energy 
prices; and X4, the total societal investment in fixed assets, is an indicator of social investment. The 
values of CI and Xi are shown as Table 1. 

Table 1. The Carbon Intensity and its influence factors in Shanxi Province from 1990 to 2015. 

Years CI 
(t Carbon/10,000 Yuan) 

X0

(Yuan/Person) X1 X2 X3 
X4 

(10,000 Yuan) 
1990 11.62 1480.78 32.24 0.202 100.00 123.41 
1991 10.83 1520.40 34.31 0.200 108.01 133.04 
1992 9.40 1689.20 34.80 0.188 120.86 155.39 
1993 9.51 1888.87 34.92 0.171 164.25 193.93 
1994 9.39 2060.50 34.89 0.176 189.06 210.02 
1995 13.35 2284.24 35.04 0.188 213.82 224.31 
1996 12.32 2526.75 35.09 0.199 224.08 235.30 
1997 10.68 2784.72 35.76 0.221 228.57 238.83 
1998 10.03 3030.79 35.85 0.241 222.40 235.96 
1999 8.61 3218.80 36.63 0.264 215.72 235.25 
2000 8.23 3472.89 36.83 0.283 219.82 239.49 
2001 7.94 3796.03 37.65 0.308 223.78 243.56 
2002 8.44 4256.35 37.09 0.353 229.60 244.78 
2003 8.36 4858.86 37.30 0.400 247.51 251.87 
2004 7.98 5564.06 37.50 0.448 283.39 264.97 
2005 8.06 6277.36 37.43 0.509 306.63 272.92 
2006 7.98 7040.28 36.50 0.582 314.61 277.01 
2007 7.37 8116.32 36.63 0.661 331.28 288.37 
2008 6.56 8759.57 38.01 0.665 391.90 326.73 
2009 6.12 9194.59 40.11 0.637 378.58 320.52 
2010 5.84 10,047.33 38.61 0.753 412.65 332.38 
2011 5.78 11,280.38 37.29 0.871 446.08 350.66 
2012 5.46 12,361.70 37.32 0.924 437.60 354.87 
2013 5.21 13,391.54 37.02 0.981 417.91 356.64 
2014 5.07 13,977.79 37.80 0.996 419.33 355.21 
2015 4.87 14,278.4 38.78 1.000 439.47 348.82 
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Considering the availability of data and the difference in the statistical caliber of each year, this 
study chooses time-series data from 1990 to 2015. The original data of variables in Table 1 were 
collected from the Shanxi Statistical Yearbook (1991–2016) and the China Energy Statistical Yearbook 
(1991–2016) and were standardized to eliminate the effect of dimensions. The detailed CI calculation 
and the carbon emissions coefficients of fossil fuels are provided in Appendix A. The detailed total 
factor productivity calculations and raw data are provided in Appendix B. 

3.2.2. Prediction Model of Carbon Intensity 

The data in Table 1 are input into the SAP model given in Section 2.1. The parameters are defined 
as: initial temperature T0 = 200, termination temperature Tmin = 0, and temperature drop coefficient α 
= 0.95. The resulting fit coefficient R2 is 0.91, and the fitted equation is given as follows: 

4
0 2

3

3
1

2

99.96 0.014 395.67
95.78ˆ = 99.812 27.676

57.04

x x x
xCI xx

x


  




 
 (2)

3.2.3. Model Fit Test 

In this section, goodness of fit tests are performed to verify the superiority of the SAP, and the 
results are shown in Table 2.  

Table 2. Goodness of Fit tests for the Simulated Annealing Programming model. 

Years 

Simulated Annealing 
Programming Fit Results Years 

Simulated Annealing 
Programming Fit Results 

Fit Value CI
^

 Residual ε
^

 Fit Value CI
^

 Residual ε
^

 
1990 11.637 0.021 2003 8.169 −0.196 
1991 9.785 −1.044 2004 7.978 0.002 
1992 9.570 0.171 2005 7.740 −0.319 
1993 10.508 0.993 2006 7.706 −0.273 
1994 11.148 1.758 2007 7.210 −0.158 
1995 11.538 −1.809 2008 6.769 0.207 
1996 11.509 −0.808 2009 5.997 −0.119 
1997 10.689 0.007 2010 6.083 0.241 
1998 10.147 0.114 2011 6.007 0.230 
1999 9.333 0.722 2012 5.545 0.082 
2000 9.081 0.853 2013 5.177 −0.035 
2001 8.517 0.576 2014 4.785 −0.281 
2002 8.462 0.017 2015 4.509 −0.361 

As we can see in Table 2 and Equation (2), the maximum absolute residual of the SAP model is 
1.809 in 1995, the minimum absolute residual is 0.002 in 2004, and the fitting degree is 0.91, which is 
greater than 0.9. Thus, the advantages and feasibility of using the SAP model to construct the 
prediction model of carbon intensity can be verified. The fitting chart of the carbon intensity 
prediction model is shown as Figure 4. Obviously, the trend line of the prediction value is similar to 
that of actual value in Figure 4. 
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Figure 4. Fitting chart of the carbon intensity prediction model. 

3.3. Analysis on Reachability of Carbon Reduction Targets of 13th Five-Year Work Plan in Shanxi Province 

As already stated, according to the ‘13th Five-Year Work Plan for Controlling Greenhouse Gas 
Emissions’, Shanxi Province has had a target of carbon emissions reduction that translates to a carbon 
intensity reduction of 18% by 2020. We now estimate whether the carbon emissions reduction target 
is achievable using the following formula. Q denotes the reachability of the carbon reduction targets 
of ‘13th Five-Year Work Plan’ in Shanxi Province. 

2015 2020

2015

ˆ
= 100%CI CIQ

CI


  (3)

According to the ‘13th Five-Year Work Plan’ of Shanxi Province, the Shanxi Province 
Development and Reform Commission ‘13th Five-Year Work Plan’ and development program, the 
Shanxi Province energy development planning, and other ‘13th Five-Year’ control targets, X0 to X4 
predictions of Shanxi Province are as follows. X0 = 16,154.7 yuan/person, X1 = 38.25%, X2 = 1.15, X3 = 

440.51, X4 = 561.78 billion yuan; input them into Equation (2), the result is CI
^

2020 = 3.955 t/10,000 yuan. 
Table 1 shows the actual carbon intensity in 2015 as 4.87 (t/100,000 yuan); when input it into Equation 
(3), the result is Q = 18.78%. 

As we forecast, the carbon intensity of Shanxi Province in 2020 would be about 18.78% less than 
that in 2015. This result indicates that the target of carbon reduction, 18% declared in the new five-
year (i.e., the ‘13th-Five-Year Work Plan’) will be achieved. 

3.4. Estimation of Carbon Emissions Reduction Potential in Shanxi Province during the 13th Five-Year 
Work Plan 

The above assessment shows that the carbon emissions reduction targets in the ‘13th Five-Year 
Work Plan’ for Shanxi Province can be achieved. However, there appears to be room for additional 
reduction; we now use the GA to solve this. After taking into account the energy development trend 
in Shanxi Province, adopting the suggestions of authorities involved and targets set in the ‘13th Five-

This image cannot currently be displayed.
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Year Work Plan’, and holding expert hearings, we reached the expected value of carbon intensity in 
2020 in Shanxi Province as follows in Table 3. 

Table 3. Expected/predicted values of carbon intensity in 2020 in Shanxi Province. 

Type 
Variable 

Predicted Value in 2020 Expected Value in 2020 

X0 (yuan/person) 16,154.7 14,539.23–17,770.17 
X1 (%) 38.25 31.02–46.54 

X2 1.15 0.7–1.3 
X3 440.51 351.58–527.36 

X4 (10,000 yuan) 561.78 279.06–453.47 

After the expected value range of Table 3 is input into the GA optimization program (Figure 1), 
the results are shown in Table 4. 

Table 4. Comparison of carbon intensity prediction models before and after optimization. 

State CI
^

 X0 X1 X2 X3 X4 

Before 3.955 16,154.7 38.25 1.15 440.51 561.78 
After 2.985 17,182.56 42.66 1.28 440.66 506.29 

As can be seen in Table 4, according to the SAP model of 2020, the carbon intensity prediction 

value is CI
^

 = 3.955 t/10,000 yuan; after further optimization of influencing factors input into the GA 

program, we find a better carbon intensity value, namely, CI
^

optimization = 2.985 t/10,000 yuan; this means 
that for each additional 10,000 yuan of GDP, emissions can be reduced by 0.97 t. 

4. Discussion 

This study follows the streams of system analysis, system prediction, system optimization and 
system decision-making. As such it combines the key influencing factors on carbon emissions found 
in the literature of economic development, industrial structure, energy technology, energy price, and 
social investment, and then uses a per capita GDP, tertiary industry as a proportion of GDP, total 
factor productivity, raw materials, fuel, power purchase price index, and total society fixed assets 
investment as characterization indicators.  

(1) The study introduces a SAP algorithm to solve the quantitative relationship between carbon 
intensity and five influencing factors in Shanxi Province, and establishes a prediction model for 
carbon intensity. According to the model’s test, the fit degree is strong and the residual values 
are low. The conclusion is that the SAP algorithm is superior for the prediction of carbon 
emissions. 

(2) According to the model’s forecast, in Shanxi Province, at the end of the ‘13th Five-Year Work 
plan’, a carbon intensity of 3.955 t/10,000 yuan will be achieved, which is 18.78% lower than the 
carbon intensity level in 2015; thus, as promulgated by China in its ‘13th Five-Year Work Plan 
for Controlling Greenhouse Gas Emissions’, the Shanxi Province carbon intensity reduction task 
of 18% can be achieved.  

(3) In Shanxi Province, through the comprehensive evaluation of the policy direction, controlling 
objectives during the ‘13th Five-Year Work Plan’ and optimizing the influencing factors, the GA 
can be used to further lower the carbon intensity and thereby further reduce the carbon intensity 
in Shanxi Province by 0.97 t/10,000 yuan; this means that each additional 10,000 yuan of GDP 
can achieve a further 0.97 t reduction of emissions in Shanxi Province. 
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According to the above analysis, we suggest that several measurements are identified in 
resource-dependent regions to enable carbon reduction potential. 

(1) As a big coal region, Shanxi Province has a responsibility to the country; thus, when it 
implements a carbon emissions reduction policy, several factors should be taken into account, 
including its actual economic development, population density, and technological advancement, 
which all contribute to the establishment of a proper low-carbon industrial system. With a low-
carbon industrial system, Shanxi not only can solve its outstanding problems, but can also 
promote equilibrium between coal supply and demand in China, which will promote 
continuous and scientific development throughout its regional economy, society, and energy 
and emissions reduction. 

(2) In order to provide a big impetus for the province’s coal supply-side structural reform, which 
will promote its transformation and the upgrade of its economic structure, we should focus on 
the province’s coal industry by decreasing production capacity, inventories, leverage, and costs, 
thereby making up for any shortage. In accordance with the law, a number of coalmines have 
been closed. According to regulations, the reorganization and consolidation of a number of 
coalmines, reductions, and the withdrawal of the need for excess coal capacity can generate an 
orderly exit through a market mechanism. In 2016, Shanxi closed 25 coal mines, reducing coal 
production capacity by 23.25 million tons. By 2020, the province will reduce excess coal capacity 
by more than 100 million tons.  

(3) The coal price formation mechanism needs improvement. A coal price mechanism that can 
correctly reflect the market supply and demand, the scarcity of resources, and the cost of 
environmental damage should be explored and established. The role of industry associations 
should be fostered and a coal pricing self-discipline mechanism should be established. To 
improve such a price self-discipline mechanism, pilot programs can be established through the 
Yang Coal Group and the Shanxi Coal Group. In addition, a coal price supervision mechanism 
could be established and promoted. Further, some reforms can be extended, including reform of 
the electricity price, the power trading system, the electricity plan, and electricity side sales. To 
that end, we can cultivate the main electricity sales market, establish and improve the electricity 
market trading mechanism, and also expand the field and scope of direct supply and raise the 
electricity market scale in and out of the province. We should also innovate the coal trading 
mechanism, striving to become a national coal-trading pilot in the near future.  

(4) The pace of scientific and technological innovation in the coal industry should be increased. We 
should establish the Shanxi Coal Clean Utilization Investment Fund. Among other projects, we 
should focus on supporting coal and electricity integration, the modern coal chemical industry, 
coal bed methane (gas) extraction and utilization, and carbon trading and carbon emissions 
reduction. Moreover, to emphasize the clean and efficient use of coal, we should implement a 
group of major technology innovated coal-based and low-carbon projects. In addition, among 
other new energy industries, we should foster the development of wind power, photovoltaic 
power generation, and biomass power generation, which will hasten the development and 
utilization of new energy industrialization.  

(5) In view of our regional economic development characteristics, a flexible carbon emissions 
reduction mechanism should be built. The Chinese government, over the years, has 
implemented an extensive administrative control mechanism. Under this system, local 
government administrations utilize mandatory means to meet the required targets for carbon 
emissions. As it can directly help these regions to more readily attain these goals, the system is 
unlike any other, especially in terms of the control of industrial emissions reduction and the 
elimination of single enterprises. However, among other challenges, the system’s shortcomings 
lie in issues such as information asymmetry, the high cost of environmental management, the 
inefficiency of government decision-making, and the inefficiency of government agencies. As 
for the implementation efficiency and the carbon emissions reduction effect, selecting a 
reasonable market-based policy tool is still the key to carbon emissions reduction; market-
oriented regulatory policies are of two primary types, a price-based carbon tax regime and an 
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aggregate control-based emissions trading scheme. The lack of market-oriented regulation 
means that enterprises still follow a cost-benefit principle in their investments in carbon 
emissions reduction, which generates environmental externalities. Compared with the above 
two policies, the effect of public participation regulation is more lasting, although it is slow. The 
most important characteristic of the control mechanism is that the driving force is endogenous. 
If the public’s behavior is insufficient or irresponsible, the mechanism will fail. Only through the 
comprehensive use of these policies can a flexible mechanism of carbon emissions reduction be 
established, which will engender greater enthusiasm among the relevant subjects and ensure the 
realization of carbon emissions reduction targets. 
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Appendix A 

The detailed carbon intensity calculation and the carbon emissions coefficients of fossil fuels are 
shown as follows. 

According to the Shanxi Statistical Yearbook (1991–2016), the China Energy Statistical Yearbook 
(1991–2016), and the China Entrepreneur Investment Club (CEIC)database, carbon dioxide emissions 
are calculated using the Standard Coal Coefficient and the Carbon Emissions Coefficients based on 
the estimation of nine fuel categories (coal, coke, gasoline, crude oil, kerosene, diesel, fuel oil, natural 
gas, and electricity). At the same time, in order to eliminate the impact of price changes, 1990-based 
GDP is used; the ratio of the two is the annual value of carbon intensity in Shanxi Province. The 
formulae are shown as follows: 

2
1 1

( )
n n

i i i
i i

C CO E CEF
 

       (A1) 

CCI
GDP

  (A2) 

where i in Formula (A1) is the fossil fuel type (i = 1, …, 9), Ei is the i-th fuel terminal consumption, 
and CEFi is the carbon emissions coefficient for each of the nine fossil fuels (see Table A1). 

Table A1. The Carbon Emissions Coefficients of fossil fuels. 

Energy Type 
Standard Coal Coefficient

(kgce/kg) 
Carbon Emission Coefficient  

kg CO2/kgce 
Coal 0.7143 0.7476 
Coke 0.9714 0.1128 

Gasoline 1.4714 0.5532 
Crude oil 1.4286 0.5854 
Kerosene 1.4714 0.3416 
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Diesel 1.4571 0.5913 
Fuel oil 1.4286 0.6176 

Natural gas 1.3300 0.4479 
Electricity 0.1229 2.2132 

Note: The unit of the Standard Coal Coefficient of natural gas is kgce/m3 (IPCC). 

Appendix B 

The detailed total factor productivity calculation and raw data are shown as follows. 
The DEA method is used to measure total factor productivity. The model used is the traditional 

Charnes & Cooper & Rhodes (CCR) model and is shown as follows. 
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where Xij represents the ith input of the jth decision unit and ykj denotes the kth output (ykj > 0) of the 
jth decision unit. The CCR model can be established by aiming at the efficiency index of the decision-
making unit j0 and using the efficiency index of all decision-making units as constraints. 

In this study, the output variable is the Total Output Value of State Holding Industrial 
Enterprises (SHIE) and the inputs are the net value of the fixed assets of SHIE and the mean annual 
employees of SHIE (see Table A2). Considering the availability of data and the difference in the 
statistical caliber of each year, this study chooses time-series data from 1990 to 2015; the indicators 
are from 1990 as the base period was reduced. 

Table A2. The Total Factor Productivity of Shanxi Province from 1990 to 2015. 

Year Total Factor 
Productivity 

Total Output Value of 
SHIE  

(100 Million Yuan) 

Net Value of Fixed 
Assets of SHIE  

(100 Million Yuan) 

Mean Annual 
Employees of SHIE  

(10,000 People) 
1990 0.202  95.36 568.96 168.68 
1991 0.200  117.73 617.48 164.36 
1992 0.188  145.35 670.13 160.16 
1993 0.171  179.46 727.28 156.06 
1994 0.176  221.56 789.30 152.06 
1995 0.188  273.54 856.60 148.17 
1996 0.199  337.71 929.65 144.38 
1997 0.221  416.94 1008.92 140.68 
1998 0.241  514.76 1094.95 137.08 
1999 0.264  733.23 1186.86 133.57 
2000 0.283  837.80 1208.21 134.04 
2001 0.308  954.26 1477.74 128.42 
2002 0.353  1075.90 1565.59 119.90 
2003 0.400  1375.43 1628.87 111.47 
2004 0.448  1950.52 1768.87 119.04 
2005 0.509  2534.62 2050.57 119.84 
2006 0.582  3048.27 2455.02 117.98 
2007 0.661  4038.18 2787.29 107.79 
2008 0.665  5199.80 3454.90 114.56 
2009 0.637  5188.06 3984.60 118.35 



Sustainability 2017, 9, 1161 15 of 17 

2010 0.753  6614.18 4130.20 119.16 
2011 0.871  8207.82 5023.63 120.47 
2012 0.924  9620.06 5472.79 126.48 
2013 0.981  11,522.96 6188.69 129.35 
2014 0.996  13,802.25 7155.48 132.89 
2015 1.000  14,257.18 7599.46 136.32 
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