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Abstract: The increasing concern on global warming is prompting transportation sector to take
into account more sustainable operation strategies. Among them, intermodal transportation (IT)
has already been regarded as one of the most effective measures on carbon reductions. This paper
focuses on the model and algorithm for a certain kind of IT, namely multi-objective multi-sourcing
intermodal transportation network design problem (MO_MITNDP), in which carbon emission factors
are specially considered. The MO_MITNDP is concerned with determining optimal transportation
routes and modes for a series of freight provided by multiple sourcing places to find good balance
between the total costs and time efficiencies. First, we establish a multi-objective integer programming
model to formulate the MO_MITNDP with total cost (TTC) and maximum flow time (MFT) criteria.
Specifically, carbon emission costs distinguished by the different transportation mode and route are
included in the cost function. Second, to solve the MO_MITNDP, a hybrid estimation of distribution
algorithm (HEDA) combined with a heterogeneous marginal distribution and a multi-objective local
search is proposed, in which the from the Pareto dominance scenario. Finally, based on randomly
generated data and a real-life case study of Jilin Petrochemical Company (JPC), China, simulation
experiments and comparisons are carried out to demonstrate the effectiveness and application value
of the proposed HEDA.

Keywords: multi-objective optimization; intermodal transportation network design; hybrid
estimation of distribution algorithm; carbon reduction; Pareto dominance

1. Introduction

As one of the most important logistics activities, freight transportation which happens throughout
the whole production circulation process from material purchase to finished product sale is crucial to
the economic growth and market trade. With the rapid growth of global purchasing, transportation
has played an increasingly important role in world resource integrations. On the other hand, due
to the downsides such as energy consuming and air pollution, transportation is always located at
the crossroads of economic and environmental concerns. For example, as pointed by Environmental
Protection Agency (USA), transportation is the second largest contributor of carbon emission, causing
about 28% of the total emissions in US in the past years [1]. Accumulation of greenhouse gas in
the atmosphere, especially CO2, has been a main source of global warming and attracts increasing
concerns by different sectors [2]. For example, the European Commission announced that the major
objective corresponds to transportation sector is to reduce the carbon emissions at least 60% of
1990 levels by 2050 [3]. In the past years, carbon emissions from other transportation modes have
experienced a relatively slight decreasing while the road transportation is keeping a rapid growth. Road
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transportation is still the dominant mode in inland freight transportation system, and meanwhile it is
also a carbon intensive mode which contributes two-thirds of total carbon emissions in transportation
sector [4]. With the growth of transportation volume and economic, Zheng and Wang 2010 has
forecasted that carbon emissions from the road freight transportation will keep a continual increase
by 2020 globally [5]. In China, the current energy structure is dominated by coal (about 64%) and oil
(about 18%) [2], which also has been seen as the hardest obstacle to the low-carbon transportation.
In view of these, different measures and regulations have been established, such as developing new
energy technologies, prompting green transportation equipment, issuing relevant laws, etc. According
to Benjaafar et al., 2013 [6], mode selection and route design are of great importance for low-carbon
transportation systems, which might be more significant than policies, regulations, laws established
by national governments at different levels or international organizations. In this regard, intermodal
transportation (IT) has been put on the agenda by many countries and regions, as well as been
promoted as a highly desirable measure with respect to improving the resource, environment and
ecology sustainability.

Unlike other conventional transportation patterns, in which the transportation modes are
independently operated without any coordination, IT aims at integrating more than one mode together
such that it can provide more flexible “door to door” service according to the personalized requirements
of customers [7]. The optimization of IT is essentially to provide a satisfied solution for the intermodal
transportation company with reducing transportation cost, transportation time and carbon emissions
simultaneously. For carbon emissions reduction, it might be explained that the heavier emission modes
are replaced by the lighter ones [8,9]. In general, there are three kinds of modes in IT, i.e., waterway,
railway and road, and the former two usually contribute less carbon emissions than the latter. However,
intermodal transportation systems have an intractable drawback that it is more likely to result in
a larger transportation distance than under a single transportation mode [10]. Since the costs and
carbon emissions are mainly from the transportation process, the increased transportation distance
(under intermodal transportation situation) may not actually benefit the optimization of the whole
transportation systems. Moreover, with the development of the diversified market, the transportation
companies are faced with new challenges to meet different preferences as some customers expect a
lower cost while some others focus on a fast delivery. In view of the aforementioned observations,
the operating decision of IT is in fact a very complex issue. The complex transportation system and
resource of freight, the preference of the customers and environmental sustainability (low carbon
emissions) ought to be considered to some extent.

This paper focuses on the multi-objective multi-sourcing intermodal transportation network
design problem (MO_MITNDP) with the aim to find a good trade-off between the transportation
cost (TC), maximum flow time (MFT), and carbon emissions (CE). Among them, TC, MFT and CE
are associated with economic, efficiency, and societal factors respectively. Furthermore, we have
taken in account two kinds of technique constraints, i.e., constraints of transportation modes and
constraints of each node’s capacity which are realistic existing to make our model closer to the real-life
intermodal transportation situations. Besides, the constraint for each node’s capacity is also a strategy
to balance the transportation pressure among the stations, leading to a better sustainability of the
transportation system.

To formulate the MO_MITNDP, several sourcing places and a single destination are considered.
Indeed, this framework is inspired by the well-known complexity of supply chains in the increasing
global purchasing and manufacturing environments [11], which has been widely used in many practical
transportation systems, such as petrochemical, steel, pharmaceutical industries, etc. The freight
transportation company has acted as a freight integrator to transport freights from the sourcing places
to the purchasing destination. On the whole, the overall intermodal transportation network is divided
into several stages that consist of stations, ports or logistic centers, which are particularly grounded on
the geographical characteristics and real intermodal infrastructure construction, such as business types
and service radiant scopes. Meanwhile, it is assumed that the freights are irreversibly transported
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from the current stage to the following one without dismounting, which is also a typical assumption
in the intermodal transportation problem (Steadieseifi et al., 2014) [12]. The crossing logistics are
considered as the business handling capacity constraints for each node of a certain stage when different
freights from the corresponding sourcing places are assembled in the same node in a period of time.
These constraints are quite close to the real-life situations and significant for balancing the logistics
pressures among the stations, as well as reducing the idle transportation resources. In other words,
such constraints can disperse the transportation pressure in the station of high-density traffic to
the others belong to the same stage, which will further alleviate the city’s traffic congestion and air
pollution. The aim of this paper is to determine both the route and mode selection for freight derived
from different sourcing places. The main contributions of this paper are listed as follows.

Firstly, the MO_MSITNDP is formulated as a multi-objective integer programming model. As for
the network structure, the entire intermodal transportation network is divided into several stages
according to the geography and social factors. Meanwhile, the capacity constrain of each intermediate
node is considered to make the solution reliable in practice and balance the logistics pressure.

Secondly, a modified estimation of distribution algorithm (EDA), namely hybrid EDA (HEDA) is
proposed to address the mathematical model, which is the first time to apply EDA-based meta-heuristic
for MO_MITNDP. Based on the features of MO_MITNDP, we specially design the improvement
strategies to enhance the effectiveness and robustness of the proposed method in multi-objective
handling capacity.

Thirdly, we perform a series of numerous experiments and comparisons based on randomly
generated instances to evaluate the effectiveness of HEDA. To further demonstrate the potential
application value of HEDA, a case study of Jilin Petrochemical Company (JPC), China, is carried out
such that we can obtain the related management insights from the real-world perspectives.

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature.
In Section 3, the mathematical model of MO_MITNDP is described in detail. Following a detailed
description of the proposed HEDA in Section 4, we conduct numerous experiments and comparisons
with other algorithms in Section 5, and a case study analysis is performed as well. Finally, conclusions
together with future works are presented in Section 6.

2. Literature Review

Over the past decades, the IT has attracted many attentions as a cost-effectiveness and
environment sustainability alternatives. The existing works can be classified as strategy planning
level (Meng and Wang, 2011 [13]; Limbourg and Jourquin, 2009 [14]), tactical planning level (Lam
and Gu, 2016 [7]; Verma et al., 2012 [15]), and operational planning level (Francesco et al., 2013 [16];
Bandeira et al., 2009 [17]) according to the decision horizon of the planning problems, and more works
can refers to SteadieSeifi et al., 2014 [12]. A majority of the works on ITs consider the cost or time
as the single objective and discuss cost-saving or time-efficiency ability compared to the unimodal
freight transportation (Bouchery and Fransoo, 2014 [3]). However, the published works regarding
cost and time as the bi-objective optimization problem or multiple objectives are limited. Yang et al.,
2011 [18] presented a multi-objective optimization model considering the total cost, transportation
time and time variability to elevate the competitiveness of 36 candidate routes from China to Indian
Ocean. Resat and Turkay, 2015 [19] established a bi-objective mixed-integer programming model with
minimizing the total cost and time to determine the transportation modes in the designed intermodal
network. Domuta et al., 2012 [20] proposed a modified bi-objective Martines’ Algorithm to find the
optimal route in the intermodal transportation network with the time window and the objective is to
minimize the travel time and cost. Lam and Gu, 2016 [7] formulated the port hinterland intermodal
transportation network design as a bi-objective optimization problem with minimizing the transit cost
and time.

In view of the green logistics, carbon emissions have been an increasing concern in the
transportation sector [7]. Nevertheless, few current studies consider carbon emissions in the field of
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intermodal transportation network. In order to estimate the trade-offs between the transportation cost
and carbon emission in the intermodal network and show the modification of the mode and route
choice with the changing of the trade-offs, Namseok et al., 2009 [21] developed a decision-support
method using the multi-objective optimization. Rudi et al., 2016 [22] established a multi-commodity
intermodal network flow model considering the in-transit inventory to make route choices. The carbon
emission factor is considered in the objective function which is to minimize the total truckload with the
transportation cost, time and carbon emission criteria. Demir et al., 2015 [23] used the sample average
approximation method to solve the stochastic intermodal network design problem. The method is
applied to provide solutions with the different combination of weights corresponding to the direct
transportation, carbon emission-related and time-related cost in the objective function. Considering
the cost and carbon emission optimization situations, Bouchery and Fransoo, 2014 [3] presented
an intermodal network optimization model to provide decisions for both the terminal location and
allocation while Lam and Gu, 2016 [7] studied the carbon emissions in the green intermodal network
as a constraint with variable levels.

In fact, comparing with single objective, multi-objective optimization can made trade-offs for
conflict sub-objectives to satisfy practical fields, which has received wider applications in decision
making (Zheng et al., 2015) [2]. In addition, the increasing concerns on the environmental sustainability
have promoted it a hotspot to reduce the carbon emission in transportation sector (Lee et al., 2017) [24].
In that regard, The MO_MITNDP considers the cost and time as the objectives, which could help to
provide flexible solutions for the decision makers to satisfy the diversified market.

The generation of optimal routes is a crucial part of the intermodal transportation network and
efficient routes can achieve great resources saving and improve the service quality (Kılıç and Gök,
2014) [25]. According to Verma and Verter, 2010 [26], the main contribution of rail-truck intermodal
transportation is the reliability embodied in on-time delivery. The authors make the first attempt to
develop a framework of rail-truck intermodal transportation for hazardous goods, in which the route
selection is driven by the lead time from diversified customers. Considering the cooperation of inland
terminals simulated by a discrete event model, An et al., 2010 [27] designed a service network for the
intermodal barge transportation to select the best route with the goal to saving cost. Similarly, Braekers
et al., 2013 [28] presented a decision support model for intermodal barge transportation network
which involves a major seaport and several hinterland ports to determine the optimal shipping routes
aiming to improving the overall profits. Ishfaq and Sox, 2012 [29] integrated an operation model and
a location-allocation model for intermodal hub. In their designed hub logistics network, arcs that
represent different transportation modes are alternative to increase cost benefits. In this paper, the
intermediate nodes in the network are the first time to be divided into several stages grounded on the
geographical characteristic and real intermodal infrastructure construction.

The ITs faced by the freight integrator is generally a NP-hard problem in which the routes selection,
modes combination, terminal location or container scheduling are involved (Li et al., 2015) [30]
and huge computational efforts are needed. The meta-heuristic algorithms have an outstanding
performance in the combinatorial optimization and have been successfully used in the intermodal
freight transportation optimization. Kılıç and Gök, 2014 [25] formulated the problem as an initial
route programming for urban transportation network, and a route generation algorithm is designed to
find solutions with objectives reflecting the interests of stakeholders. To handle the inland container
transportation problem considering hard time constraints, Sterzik and Kopfer, 2013 [31] established
a comprehensive model which contains vehicle routing and empty repositioning and a Tabu Search
heuristic is used to minimizing the total operation time. Nossack and Pesch, 2013 [32] addressed a
truck scheduling problem with time window in intermodal container transportation by a two-stage
heuristic. The first stage is route construction heuristic which determines a feasible initial solution for
the problem; the second stage is route improvement heuristic which improves solution quality by a
neighborhood operator. Genetic algorithm is used in Zhang et al., 2015 [33] to effectively save time
and cost.
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As a novel swarm intelligence algorithm based on probability model, EDA has been a research
hotspot in the area of intelligent computing (Wang et al., 2012 [34]; Wang et al., 2016 [35]). Contrast
with genetic algorithm, there is no mutation and crossover operators for EDA, whereas a competitive
mechanism is adopted in EDA to estimate the probability model according to excellent individuals
found in the search process. Thereafter, the new population can be generated through sampling the
estimated probability model. Although EDA has been successfully used in various combinatorial
optimization problems, there is no research works on EDA for ITs. Essentially, using EDA-based
methods to solve MO_MSITNDP is equivalent to confirming the matching probability of the
transportation modes and intermediate nodes associated with given freight. Finally, the optimal
or approximate optimal relationship will be found. In this regard, this paper engages in raising the
EDA-based solution method for dealing with MO_MSITNDP.

3. Problem Description and Model Formulation

3.1. Formulation of Proposed Mathematical Model

MO_MSITNDP considers multiple sourcing places and a single purchasing destination. Denote N
the total number of sourcing places and M the total number of stages, then the scale of MO_MSITNDP
can be defined as N×M. As shown in Figure 1, there are totally M + 1 predefined transportation stages
(i.e., stage 0, stage 1, . . . , stage M) in the network, where stage 0 is a virtual point without intermediate
nodes. The transport request A1, . . . , AN deriving from the corresponding sourcing places 1, . . . , N
will be responded by transporting the freights from segment 1 to M (i.e., destination B). During the
transportation process, the transport requests Ai (i = 1, . . . N) are processed independently without
dismounting or consolidation. In this case, there exist crossing logistics in the intermediate nodes
owing to the share of intermodal terminal, and the capacity constraint of each node must be considered.
All the freights must be irreversibly transported from the stage 1 to M in sequence. The changes
of transportation modes only occur on the stages rather than transportation process. Next, we will
propose the multi-objective integer programming model of MO_MSITNDP.
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Figure 1. Structure of multi-sourcing intermodal transportation network.

In our model, the objective functions to be minimized consist of the total cost (TTC) and maximum
flow time (MFT). Furthermore, the TTC includes three parts, i.e., transportation cost, transfer cost of
transportation mode and carbon emissions cost, thus our solutions can reflect the economic benefit, time
efficiency and environmental sustainability (society) criteria. The MFT is the maximum completion
time of all freights, so a lower MFT indicates a higher efficiency of the whole systems. Accordingly,



Sustainability 2017, 9, 1133 6 of 24

our ultimate objective is to find a good trade-off among the economy, efficient and sustainability
sub-objectives, and these three criteria are usually in conflict with each other. The optimization of IT is
essentially to provide a satisfied solution for the intermodal transportation company with reducing
the transportation cost, transportation time and carbon emissions simultaneously.

Parameters:

M : An infinite number;
Qi : Amount of freight from sourcing place i, i ∈ {1, . . . , N};
Rj : Set of available nodes of stage j, j ∈ {1, . . . , M− 1};
R0 : Available nodes of stage 0 and |R0|=N;
RM : Available node of stage M and |RM|=1;
Sj : Set of available transportation modes of stage j, j ∈ {1, . . . , M};

Wkj :
The handling capacity for the kth node of stage j, j ∈ {1, . . . , M− 1} ,

k ∈
{

1, . . . ,
∣∣∣Rj

∣∣∣}, W10, W20, . . . , WN0, and W1M =M;

ew
i (j− 1, j, l, h) :

Carbon emission cost of freight i from the lth node in stage j− 1 to the hth node in
stage j under the transportation mode w, i ∈ {1, . . . , N}, w ∈ Sj, l ∈ Rj−1, h ∈ Rj;

Cw
i (j− 1, j, l, h) :

Transportation cost of freight i from the lth node in stage j− 1 to the hth node in
stage j under the transportation mode w, i ∈ {1, . . . , N}, w ∈ Sj, l ∈ Rj−1, h ∈ Rj;

Tw
i (j− 1, j, l, h) :

Transportation time of freight i from the lth node in stage j− 1 to the hth node in
stage j under the transportation mode w, i ∈ {1, . . . , N}, j ∈ {1, . . . , M}, w ∈ Sj,
l ∈ Rj−1, h ∈ Rj;

ξw,v
i (j, k) :

Switch cost of freight i from transportation mode w to v for the kth node of stage j,
i ∈ {1, . . . , N}, j ∈ {1, . . . , M− 1}, w ∈ Sj, v ∈ Sj+1, k = 1, . . . ,

∣∣∣Rj

∣∣∣;
τw,v

i (j, k) :
Switch time of freight i from transportation mode w to v for the kth node of stage

j, i ∈ {1, . . . , N}, j ∈ {1, . . . , M− 1}, w ∈ Sj, v ∈ Sj+1, k = 1, . . . ,
∣∣∣Rj

∣∣∣; and

Uw(j− 1, j) =

{
1if transportation mode w exists between stage j− 1 and stage j
0 otherwise

.

Decision variables:

xw
i (j− 1, j, l, h) =


1 if transportation mode w is selected for freight i

from the lth tnode in stage j− 1 to the hth node in stage j
0 otherwise

;

yw,v
i (j, k) =


1 if transportation mode is transfered from w to v

for freight i in the kth node of stage j
0 otherwise

;

stij the start time at the stage j for freight i; and
ctij the leave time at the stage j for freight i.

Based on the aforementioned definitions, we detail the mathematical model of MO_MSITNDP
as follows.

min f1 = ∑
i∈{1,...,N}

∑


∑

j∈{1,...,M}

(
∑

w∈Sj

∑
l∈Rj−1

∑
h∈Rj

(
Cw

i (j− 1, j, l, h) · xw
i (j− 1, j, l, h)

+ew
i (j− 1, j, l, h) · xw

i (j− 1, j, l, h)

))
+ ∑

j∈{1,...,M−1}
∑

k∈Rj

∑
w∈Sj

∑
v∈Sj+1

ξw,v
i (j, k) · yw,v

i (j, k)

; (1)

min f2 = max
i∈N


∑

j∈{1,...,M}
∑

w∈Sj

∑
l∈Rj−1

∑
h∈Rj

Tw
i (j− 1, j, l, h) · xw

i (j− 1, j, l, h)

+ ∑
j∈{1,...,M−1}

∑
k∈Rj

∑
w∈Sj

∑
v∈Sj+1

τw,v
i (j, k) · yw,v

i (j, k)

; (2)
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s. t.

∑
j∈{1,...,M}

∑
w∈Sj

∑
l∈Rj−1

∑
h∈Rj

xw
i (j− 1, j, l, h) = 1; ∀ i ∈ {1, . . . , N}; (3)

∑
k∈Rj

∑
w∈Sj

∑
v∈Sj+1

yw,v
i (j, k) = 1; ∀ i ∈ {1, . . . , N}, j ∈ {1, . . . , M− 1}; (4)

∑
i∈{1,...,N}

∑
w∈Sj

∑
l∈Rj−1

xw
i (j− 1, j, l, h)Qi ≤Whj; ∀ j ∈ {1, . . . , M− 1}, h ∈ Rj; (5)

xw
i (j, j + 1, g, l) + xv

i (j + 1, j + 2, l, h) ≥ 2yw,v
i (j + 1, k);∀i ∈ {1, . . . , N}, j ∈ {0, . . . , M− 2},

k ∈ Rj+1, w ∈ Sj+1, v ∈ Sj+2;
(6)

xw
i (j, j + 1, l, h) ≤ Uw(j, j + 1); ∀i ∈ {1, . . . , N}; j ∈ {0, . . . , M− 1} , w ∈ Sj+1; (7)

stij = cti,j−1 + ∑
w∈Sj

∑
l∈Rj−1

∑
h∈Rj

Tw
k (j− 1, j, l, h)xw

i (j− 1, j, l, h); ∀i ∈ {1, . . . , N}, j ∈ {1, . . . , M},k ∈ Rj; (8)

ctij = stij + ∑
k∈Rj

∑
w∈Sj

∑
v∈Sj+1

τw,v
i (j, l) · yw,v

i (j, k); ∀i ∈ {1, . . . , N}, j ∈ {1, . . . , M− 1}; (9)

stij ≥ cti,j−1; ∀i ∈ {1, . . . , N}, j ∈ {1, . . . , M}; (10)

xw
i (j− 1, j, l, h) ∈ {0, 1}; ∀i ∈ {1, . . . , N}, j ∈ {1, . . . , M}, l ∈ Rj−1, h ∈ Rj, w ∈ Sj; (11)

yw,v
i (j, k) ∈ {0, 1}; ∀i ∈ {1, . . . , N}, j ∈ {1, . . . , M− 1}, k ∈ Rj, w ∈ Sj, v ∈ Sj+1; (12)

zijk ∈ {0, 1}; ∀i ∈ {1, . . . , N}, j ∈ {0, . . . , M− 1}, k ∈ Rj; (13)

stij ≥ 0;∀i ∈ {1, . . . , N}, j ∈ {1, . . . , M}; (14)

ctij ≥ 0;∀i ∈ {1, . . . , N}, j ∈ {0, . . . , M− 1}. (15)

Equations (1) and (2) are the objective functions. Equation (1) is to minimize the TTC which
includes transportation cost, transfer cost of transportation mode, and carbon emission cost, whereas
Equation (2) minimizes the MFT. Constraint (3) ensures that only one transportation mode can be
chosen for two adjacent stages. Constraint (4) ensures the mode transferring only can be executed at
the intermodal terminal. Constraint (5) represents the capacity restrictions for each node with respect
to given stage. Constraint (6) is the transportation continuity constraints for all routes. Constraint (7) is
the transportation mode constraints between two adjacent stages associated with given freight and
nodes. Equations (8) and (9) are the definitions of arriving times and departing times with regard
to given freight, stages, and selected nodes. Constraint (10) implies that the overall structure of
MO_MSITNDP is a directed acyclic graph from the time perspective. Constraints (11)–(15) are the
ranges of values for variables.

3.2. Modification of Established Model

In view of the aforementioned model, the MO_MSITNDP is essentially a bi-objective optimization
problem with capacity constraints, i.e., Constraint (5). Thus, we should introduce relevant constraints
handling techniques into HEDA to realize its global search. Unlike single objective optimization
problem, the traditional penalty function method may be unusable for multi-objective optimization
scenario. In addition, since the solution representation of MO_MSITNDP is a matrix which combines
transportation modes with intermediate nodes together, the repair-based constraints handling
techniques are more likely to result in a lower efficiency of computation, especially for large scale
or strong constraints conditions. Owing to such intractability, we apply the multi-objective-based
constraints handling approach [36,37], in which the degree of constraint violation is regarded as
an additional objective function. In this regard, the Constraints (5) can be transformed to the third
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objective function, which denotes the total degree of constraint violation with regard to all intermediate
nodes as shown by Equation (16):

min f3 = ∑
j∈{1,...,M−1}

max
h∈Rj

 ∑
i∈{1,...,N}

∑
w∈Sj

∑
l∈Rj−1

xw
i (j− 1, j, l, h)Qi −Whj, 0


; (16)

Afterwards, the modification of the established model can be given as follows:

min{ f1, f2, f3}. (17)

where the first objective functions f1 and f2 are the same as Equations (1) and (2). Except for removing
Constraint (5), other constraints of this modified version keep unchanged as the previous model.

In this work, HEDA deals with the modified version model in scene of the Pareto dominance.
The criteria f1 and f2 are the ultimate optimization objective associated with the MO_MSITNDP,
whereas the additionally introduced objective function f3 is utilized to guide the search direction from
the feasibility perspectives.

4. HEDA for MO_MSITNDP

4.1. Solution Representation

Since the intermediate nodes and transportation modes need to be determined simultaneously,
we specially design a matrix π =

[
πij
]
(i = 1, . . . , N; j = 1, . . . , 2M− 1) to represent MO_MSITNDP

with the scale N ×M, in which the element πij denotes the index of selected node (if jmod2 = 0) or
transportation mode (if jmod2 6= 0) of the ith sourcing place. In addition, since freight i (i = 1, . . . , N)
need to undergo M nodes and M segments in turns after departing from its sourcing places, the sourcing
places (i.e., stage 0) and the common destination (i.e., stage M) are not necessary to be considered.
Obviously, if jmod2 = 0∩ πij ≤

∣∣∣Rdj/2e

∣∣∣, then πij denotes the selected intermediate node of freight i in
stage dj/2e, for i = 1, . . . , N; j = 1, . . . , 2M− 1. Similarly, πij denotes the selected transportation mode

of freight i in segment d(j + 1)/2e, if jmod2 6= 0∩ πij ≤
∣∣∣Sd(j+1)/2e

∣∣∣, for i = 1, . . . , N; j = 1, . . . , 2M− 1.
Here, we take a simple example with the size N ×M = 4× 5 to illustrate this solution representation
approach. Considering the matrix
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which indicates that freight 1 selects the transportation mode 1, 2, 1, 1 and 2 from segment 1 to 5 
(marked by circles) and selects the intermediate node 3, 4, 3 and 1 in terms of stage 1 to 4, and so on. 

4.2. Multi-Objective Handling Method 

To store the non-dominated solutions (i.e., approximate Pareto set), a Pareto archive ( PA) is 
introduced. For a multi-objective optimization problem with K criteria, if we say that 

1 2 π πdominates  (i.e., 1 2π π ) then both of the following conditions should be satisfied 
simultaneously: [38] (1) 1 2( ) ( )k kf fπ π≤ , for 1,...,k K= , and (2) it has at least one {1,..., }l K∈  that 

1 2( ) ( )l lf fπ π< . Let PS  denote the population size of HEDA, ( )i genΝπ ( 1, 2,..., )i PS=  the ith 

individual in current population at generation gen, ( )AC gen  the length of PA at generation gen, 

( )i genPπ ( 1,..., ( ))i AC gen= the ith  non-dominated solution of PA at generation gen. The newly 

generated individual ( )i genΝπ ( 1, 2,..., )i PS=  will be added to PA if and only if it can dominate at 

which indicates that freight 1 selects the transportation mode 1, 2, 1, 1 and 2 from segment 1 to 5
(marked by circles) and selects the intermediate node 3, 4, 3 and 1 in terms of stage 1 to 4, and so on.

4.2. Multi-Objective Handling Method

To store the non-dominated solutions (i.e., approximate Pareto set), a Pareto archive (PA) is
introduced. For a multi-objective optimization problem with K criteria, if we say that π1 dominatesπ2

(i.e., π1 ≺ π2) then both of the following conditions should be satisfied simultaneously: [38] (1)
fk(π1) ≤ fk(π2), for k = 1, . . . , K, and (2) it has at least one l ∈ {1, . . . , K} that fl(π1) < fl(π2).
Let PS denote the population size of HEDA, Nπi(gen)(i = 1, 2, . . . , PS) the ith individual in
current population at generation gen, AC(gen) the length of PA at generation gen, Pπi(gen)(i =

1, . . . , AC(gen))the ith non-dominated solution of PA at generation gen. The newly generated
individual Nπi(gen)(i = 1, 2, . . . , PS) will be added to PA if and only if it can dominate at least
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one solution in current PA, and, meanwhile, the solution that is dominated by newly generated
individual will be removed from PA. Here, we propose the update procedure of PA as shown in
Figure 2.
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probability of transportation mode s to be selected in the jth  segment for the ith  freight at 

generation gen, and ( )i
rjr gen  is the probability of selecting the rth  node in stage j for the ith 

freight at generation gen.  
Since there exists transportation mode constraint between stage 1j   and j  (for 1,...,j M ), 

the relate probability should be set to 0 if ( 1, )wu j j =0 (for 1,...,j M , 1,...,w maxS ). Therefore, 
the probability model can be initialized as follows: 

Figure 2. The procedure of updating the Pareto archive.

4.3. The Proposed Heterogeneous Probability Model and Update Mechanism

When using EDA to solve the discrete combinatorial optimization problems, the probability
model is generally described as joint probability distribution function with independent random
variables. Considering the inherent features of MO_MSITNDP, a heterogeneous marginal distribution
law (HMDL) is put forward for serving as HEDA’s probability model, which is utilized to represent
the distribution of promising solution regions. The probability model pr(gen) can be formulated
as follows:
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where 
{1,..., }
max {| |}j

j M
maxS S


  is the maximum value of transportation modes, ( )i

sjp gen  is the 

probability of transportation mode s to be selected in the jth  segment for the ith  freight at 

generation gen, and ( )i
rjr gen  is the probability of selecting the rth  node in stage j for the ith 

freight at generation gen.  
Since there exists transportation mode constraint between stage 1j   and j  (for 1,...,j M ), 

the relate probability should be set to 0 if ( 1, )wu j j =0 (for 1,...,j M , 1,...,w maxS ). Therefore, 
the probability model can be initialized as follows: 

where maxS = max
j∈{1,...,M}

{∣∣Sj
∣∣} is the maximum value of transportation modes, pi

sj(gen) is the

probability of transportation mode s to be selected in the jth segment for the ith freight at generation
gen, and ri

rj(gen) is the probability of selecting the rth node in stage j for the ith freight at generation gen.
Since there exists transportation mode constraint between stage j− 1 and j (for j = 1, . . . , M), the

relate probability should be set to 0 if uw(j− 1, j)=0 (for j = 1, . . . , M, w = 1, . . . , maxS). Therefore, the
probability model can be initialized as follows:
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Pi(0) =


u1(0, 1)
u1(1, 2)

...
u1(M− 1, M)

. . .

. . .

. . .

. . .

umaxS(0, 1)
umaxS(1, 2)

...
umaxS(M− 1, M)

 ·


1/|S1|
1/|S1|

...
1/|S1|

1/|S2|
1/|S2|

...
1/|S2|

· · ·
· · ·
· · ·
· · ·

1/|SM|
1/|SM|

...
1/|SM|


maxS×M

,

Ri(0) =


1/|R1|
1/|R1|

...
1/|R1|

1/|R2|
1/|R2|

...
1/|R2|

· · ·
· · ·
· · ·

1/|RM|
1/|RM|

...
1/|RM|

.

(19)

Probability model update is one of the crucial operators for EDA [32], which is used to accumulate
the historical information of excellent individuals found during the search process. Thereafter, the new
populations are generated by sampling the updated probability model. As mentioned above, PA is
dynamically updated by new generated individuals according to the dominance rule (see algorithm
in Figure 1), so that PA can be seen as a set of excellent individuals. In view of this, we apply the
non-dominated solutions that located in PA to update the probability model. Denote LR the learning
rate of HEDA and x, y the temporary variables, then the probability model update method is given in
Figure 3.
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03 For i:= 1 to N do
04 For j:= 1 to 2M − 1 do 
05       If mod 2 0j   then 

06          
, ,

( ) : ( )e e
ij ij

i i
x x

p gen p gen LR
 

  ;// concerned with transportation modes 

07          Normalize the probability ( )i
sxp gen  for each 1,...,s maxS ; 

08          : 1x x  ;//the next segment 
09       End 
10       Else 

11          
, ,

( ) : ( )e e
ij ij

i i
y y

r gen r gen LR
 

  ;//concerned with intermediate nodes 

12          Normalize the probability ( )i
ryr gen for each 1, ..., | |yr R ; 

13          : 1y y  ;//the next stage 
14       End;//end else 
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factors may need to be considered. That is, we tend to select a random variable in HMDL with larger 
probability for producing new individuals, whereas ones corresponding to relative smaller 
probability also have a chance to be selected. In this regard, we propose a sampling approach based 
on roulette wheel selection, for which the selection probability of a random variable is proportional 
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4.4. New Population Generation Method

HEDA generates new population by sampling the updated probability model (i.e., HMDL). In the
sampling procedure, the new generated individuals should be consistent with the HMDL to guide
HEDA’s global search direction, and, meanwhile, to keep the population diversity, relevant random
factors may need to be considered. That is, we tend to select a random variable in HMDL with
larger probability for producing new individuals, whereas ones corresponding to relative smaller
probability also have a chance to be selected. In this regard, we propose a sampling approach based
on roulette wheel selection, for which the selection probability of a random variable is proportional
to its probability in HMDL. Denote FPi

j(gen) =[FPi
1,j(gen), . . . , FPi

maxS,j(gen),FPi
maxS+1,j(gen)]T(j =

1, . . . , M) the jth marginal distribution function (MDF) of probability matrix Pi at generation
gen, FRi

j(gen) = [FRi
1,j(gen), . . . , FRi

|Rj |,j
(gen), FRi

|Rj |+1,j|(gen)]T(j = 1, . . . , M − 1) the jth MDF of
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probability matrix Ri at generation gen, and x, y, rnd the temporary variables. Then, the procedure of
calculating MDF and generating new population are shown in Figures 4 and 5.
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4.5. Problem-Dependent Local Search

As mentioned above, HEDA may pay little attention to the local search during its iterative
process. Hence, it would be highly advisable to embed problem-dependent local search into HEDA to
exploit more promising solutions in relatively narrow regions of solution space. Since the solution
representation of MO_MSITNDP is a N × M matrix, traditional neighborhood structures, such as
Insert, Swap, Inverse, etc. [39], may be unsuitable. In this work, we propose a new neighborhood
structure named partially interchanged neighborhood (PIN), in which two random positions c1, c2 ∈
{1, . . . , 2M− 1}, c1 < c2 are selected first and then we interchange the partial elements between c1

and c2 associated with two randomly selected r1 and r2, r1, r2 ∈ {1, . . . , N}, r1 6= r2. The mechanism
of PIN can be illustrated by a simple example, as shown in Figure 6.
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Thereafter, we perform the PIN-based local search for all non-dominated solutions in PA, and
meanwhile the first-move rule is adopted in order to avoid excessive exploitation. That is, once a
relatively better solution is found from the neighborhood of current solution, the local search will be
terminated. Let β = `(π) denote a neighborhood solution associated with performing PIN operator
one time on π, cnt the temporary variables. Then, the proposed local search operator is given in
Figure 7.
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5. Computational Results and Comparisons

To evaluate the performance of HEDA, we first perform computational experiments and
comparisons based on randomly generated instances. Then, a real-life case study of Jilin Petrochemical
Company (JPC), China, is carried out to demonstrate the application value of the proposed HEDA.

5.1. Experimental Setup

Since there is no benchmark data for MO_MSITNDP, we consider fifteen different combinations
of N ×M that include 5× 3, 10× {3, 4, 5}, 20× {4, 5, 6, 7}, 30× {6, 7, 8, 9}, 40× {9, 11} and 50× 13
for generating test instances. For each combination, we randomly generate 10 instances such that
there is a total of 150 instances. The generation rules of these instances are listed as follows: (1) the
amount of the ith freight Qi ∈ [100, 500], for i = 1, . . . , N; (2) the number of available nodes in the jth
stage

∣∣Rj
∣∣∈ [1, 6] , for j = 2, . . . , M− 1, obviously |R0|= N and |RM|= 1 ; (3) the transportation mode

constraint uw(j− 1, j), for j = 1, . . . , M, is randomly established by assigning waterway, railway and
road in each segment with 0 or 1; (4) the carbon emission cost ew

i (j− 1, j, l, h) ∈ [1, 100], transportation
cost Cw

i (j − 1, j, l, h) ∈ [1, 100], transportation time Tw
i (j − 1, j, l, h) ∈ [1, 10], for i = 1, . . . , N, j =

1, . . . , M, w = Sj, l ∈ Rj−1; (5) the switch cost ξw,v
i (j, k) ∈ [1, 10], switch time τw,v

i (j, k) ∈ [1, 3],
for i = 1, . . . , N, j = 1, . . . , M− 1, w ∈ Sj, v ∈ Sj+1 , ]; and (6) the handling capacity is calculated as

Wkj = ∑N
i=1 Qi/r·

∣∣∣Rj

∣∣∣, r ∈ [0.1, 0.5], for j = 1, . . . , M− 1, k = 1, . . . ,
∣∣Rj
∣∣, W10, W20, . . . , WN0 and W1M

are set to be infinite values.
We independently run all algorithms 20 times, and the results are all based on the average level of

10 instances with respect to the related N ×M combinations. In the results, MIN, MAX, AVG and SD
represent the minimum, maximum, average and standard deviation, respectively, corresponding to
the related performance metrics. The unique terminated condition for all algorithms is the maximal
evaluation times of objective functions, which is set to 1000× N ×M. All algorithms are coded in C++
in Microsoft Visual Studio 2008 environment, and all the simulations are conducted on a PC with Intel
Core-i5 3.30 GHz processor with 4 GB memory.

5.2. Performance Metrics

To systematically verify the performance of HEDA, three performance metrics [40] are adopted
as follows:
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5.3.1. Comparison with Existing Algorithms 

In this subsection, we compare HEDA with three algorithms: (1) HEDA_noLS, a variant of 
HEDA in which the PIN-based local search operator is removed, and the parameter setting is the 
same as HEDA; (2) NSGAII [41], a well-known non-dominated sorting multi-objective genetic 
algorithm, which has been widely used for various multi-objective optimization problems; and (3) 
PGA [31], a relatively new reported genetic algorithm for a special kind of intermodal transportation 
problem which is quite similar to MO_MSITNDP. It should be mentioned that all the algorithms are 
executed based on the modified model in Section 3.2. 

For the parameters setting, we set the population size 50PS   for all algorithms, and, 
meanwhile, HEDA’s learning rate 0.06LR , the crossover and mutation probability of NSGAII and 
PGA are set to 0.8 and 0.2, respectively. It should be noted that we have embedded the PIN-based 
local search operator in to the NSGAII and PGA to ensure the fairness of comparisons. 

We first make an observation on the approximate Pareto fronts with regard to the first instance 
of 10 5 , 20 5 , 30 7 , 40 9  and 50 13 , espectively. Furthermore, the obtained results of 
HEDA, HEDA_noLS, NSGAII and PGA can be seen in Figure 9. 

It is can be obviously seen in Figure 9 that the solutions in Pareto set obtained by HEDA are 
better (both in terms of the quality and quantity of solutions) than the ones from the three other 
algorithms in all cases of variable problem sizes, which implies HEDA share a high superiority in 
solving MO_MSITNDP. Furthermore, the statistic results of these four algorithms are listed in Tables 
1–4. 
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HEDA in which the PIN-based local search operator is removed, and the parameter setting is the 
same as HEDA; (2) NSGAII [41], a well-known non-dominated sorting multi-objective genetic 
algorithm, which has been widely used for various multi-objective optimization problems; and (3) 
PGA [31], a relatively new reported genetic algorithm for a special kind of intermodal transportation 
problem which is quite similar to MO_MSITNDP. It should be mentioned that all the algorithms are 
executed based on the modified model in Section 3.2. 

For the parameters setting, we set the population size 50PS   for all algorithms, and, 
meanwhile, HEDA’s learning rate 0.06LR , the crossover and mutation probability of NSGAII and 
PGA are set to 0.8 and 0.2, respectively. It should be noted that we have embedded the PIN-based 
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We first make an observation on the approximate Pareto fronts with regard to the first instance 
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better (both in terms of the quality and quantity of solutions) than the ones from the three other 
algorithms in all cases of variable problem sizes, which implies HEDA share a high superiority in 
solving MO_MSITNDP. Furthermore, the statistic results of these four algorithms are listed in Tables 
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algorithm, which has been widely used for various multi-objective optimization problems; and (3) 
PGA [31], a relatively new reported genetic algorithm for a special kind of intermodal transportation 
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problem which is quite similar to MO_MSITNDP. It should be mentioned that all the algorithms are 
executed based on the modified model in Section 3.2. 
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algorithms in all cases of variable problem sizes, which implies HEDA share a high superiority in 
solving MO_MSITNDP. Furthermore, the statistic results of these four algorithms are listed in Tables 
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solving MO_MSITNDP. Furthermore, the statistic results of these four algorithms are listed in Tables 
1–4. 

[40], then
DIR can be defined in Equation (22). Obviously, a smaller

Sustainability 2017, 9, 1133  14 of 24 

5.2. Performance Metrics 

To systematically verify the performance of HEDA, three performance metrics [40] are adopted 
as follows: 

(1) Overall non-dominated solutions number (ONSN) 

Denote 1 2= , ..., L        is the union of non-dominated solutions with regard to
1,..., ,...,Algorithm l L , and then ( )lONSN   is the number of non-dominated solutions in l  

which are not dominated by solutions in    as shown in Equation (20). The larger the value of 
( )lONSN   is, the better performance of Algorithm l. 

( ) | \ { | : } |l l lONSN     x y y x    . (20) 

(2) Ratio of non-dominated solutions (RNDS) 

Denote the ratio of solutions which are not dominated by solutions in   , shown as 
following Equation (21). The higher the value of ( )lRNDS   is, the better performance of Algorithm 
l. 

( ) | \ { | : } | / | |l l l lRN D S     x y y x     . (21) 

(3) Average distance (DIR) 

Denote ( )id yx  is the shortest normalized distance from solution y in    to l  [40], 

then DIR can be defined in Equation (22). Obviously, a smaller ( )lDIR   means a better 
convergence performance to   , as well as a better distribution of l . 

( ) ( )/ | |l lDIR d yx   , y   . (22) 

5.3. Comparisons Results 

5.3.1. Comparison with Existing Algorithms 

In this subsection, we compare HEDA with three algorithms: (1) HEDA_noLS, a variant of 
HEDA in which the PIN-based local search operator is removed, and the parameter setting is the 
same as HEDA; (2) NSGAII [41], a well-known non-dominated sorting multi-objective genetic 
algorithm, which has been widely used for various multi-objective optimization problems; and (3) 
PGA [31], a relatively new reported genetic algorithm for a special kind of intermodal transportation 
problem which is quite similar to MO_MSITNDP. It should be mentioned that all the algorithms are 
executed based on the modified model in Section 3.2. 

For the parameters setting, we set the population size 50PS   for all algorithms, and, 
meanwhile, HEDA’s learning rate 0.06LR , the crossover and mutation probability of NSGAII and 
PGA are set to 0.8 and 0.2, respectively. It should be noted that we have embedded the PIN-based 
local search operator in to the NSGAII and PGA to ensure the fairness of comparisons. 

We first make an observation on the approximate Pareto fronts with regard to the first instance 
of 10 5 , 20 5 , 30 7 , 40 9  and 50 13 , espectively. Furthermore, the obtained results of 
HEDA, HEDA_noLS, NSGAII and PGA can be seen in Figure 9. 

It is can be obviously seen in Figure 9 that the solutions in Pareto set obtained by HEDA are 
better (both in terms of the quality and quantity of solutions) than the ones from the three other 
algorithms in all cases of variable problem sizes, which implies HEDA share a high superiority in 
solving MO_MSITNDP. Furthermore, the statistic results of these four algorithms are listed in Tables 
1–4. 

means a better convergence

performance to

Sustainability 2017, 9, 1133  14 of 24 

5.2. Performance Metrics 

To systematically verify the performance of HEDA, three performance metrics [40] are adopted 
as follows: 

(1) Overall non-dominated solutions number (ONSN) 

Denote 1 2= , ..., L        is the union of non-dominated solutions with regard to
1,..., ,...,Algorithm l L , and then ( )lONSN   is the number of non-dominated solutions in l  

which are not dominated by solutions in    as shown in Equation (20). The larger the value of 
( )lONSN   is, the better performance of Algorithm l. 

( ) | \ { | : } |l l lONSN     x y y x    . (20) 

(2) Ratio of non-dominated solutions (RNDS) 

Denote the ratio of solutions which are not dominated by solutions in   , shown as 
following Equation (21). The higher the value of ( )lRNDS   is, the better performance of Algorithm 
l. 

( ) | \ { | : } | / | |l l l lRN D S     x y y x     . (21) 

(3) Average distance (DIR) 

Denote ( )id yx  is the shortest normalized distance from solution y in    to l  [40], 

then DIR can be defined in Equation (22). Obviously, a smaller ( )lDIR   means a better 
convergence performance to   , as well as a better distribution of l . 

( ) ( )/ | |l lDIR d yx   , y   . (22) 

5.3. Comparisons Results 

5.3.1. Comparison with Existing Algorithms 

In this subsection, we compare HEDA with three algorithms: (1) HEDA_noLS, a variant of 
HEDA in which the PIN-based local search operator is removed, and the parameter setting is the 
same as HEDA; (2) NSGAII [41], a well-known non-dominated sorting multi-objective genetic 
algorithm, which has been widely used for various multi-objective optimization problems; and (3) 
PGA [31], a relatively new reported genetic algorithm for a special kind of intermodal transportation 
problem which is quite similar to MO_MSITNDP. It should be mentioned that all the algorithms are 
executed based on the modified model in Section 3.2. 

For the parameters setting, we set the population size 50PS   for all algorithms, and, 
meanwhile, HEDA’s learning rate 0.06LR , the crossover and mutation probability of NSGAII and 
PGA are set to 0.8 and 0.2, respectively. It should be noted that we have embedded the PIN-based 
local search operator in to the NSGAII and PGA to ensure the fairness of comparisons. 

We first make an observation on the approximate Pareto fronts with regard to the first instance 
of 10 5 , 20 5 , 30 7 , 40 9  and 50 13 , espectively. Furthermore, the obtained results of 
HEDA, HEDA_noLS, NSGAII and PGA can be seen in Figure 9. 

It is can be obviously seen in Figure 9 that the solutions in Pareto set obtained by HEDA are 
better (both in terms of the quality and quantity of solutions) than the ones from the three other 
algorithms in all cases of variable problem sizes, which implies HEDA share a high superiority in 
solving MO_MSITNDP. Furthermore, the statistic results of these four algorithms are listed in Tables 
1–4. 

, as well as a better distribution of

Sustainability 2017, 9, 1133  14 of 24 

5.2. Performance Metrics 

To systematically verify the performance of HEDA, three performance metrics [40] are adopted 
as follows: 

(1) Overall non-dominated solutions number (ONSN) 

Denote 1 2= , ..., L        is the union of non-dominated solutions with regard to
1,..., ,...,Algorithm l L , and then ( )lONSN   is the number of non-dominated solutions in l  

which are not dominated by solutions in    as shown in Equation (20). The larger the value of 
( )lONSN   is, the better performance of Algorithm l. 

( ) | \ { | : } |l l lONSN     x y y x    . (20) 

(2) Ratio of non-dominated solutions (RNDS) 

Denote the ratio of solutions which are not dominated by solutions in   , shown as 
following Equation (21). The higher the value of ( )lRNDS   is, the better performance of Algorithm 
l. 

( ) | \ { | : } | / | |l l l lRN D S     x y y x     . (21) 

(3) Average distance (DIR) 

Denote ( )id yx  is the shortest normalized distance from solution y in    to l  [40], 

then DIR can be defined in Equation (22). Obviously, a smaller ( )lDIR   means a better 
convergence performance to   , as well as a better distribution of l . 

( ) ( )/ | |l lDIR d yx   , y   . (22) 

5.3. Comparisons Results 

5.3.1. Comparison with Existing Algorithms 

In this subsection, we compare HEDA with three algorithms: (1) HEDA_noLS, a variant of 
HEDA in which the PIN-based local search operator is removed, and the parameter setting is the 
same as HEDA; (2) NSGAII [41], a well-known non-dominated sorting multi-objective genetic 
algorithm, which has been widely used for various multi-objective optimization problems; and (3) 
PGA [31], a relatively new reported genetic algorithm for a special kind of intermodal transportation 
problem which is quite similar to MO_MSITNDP. It should be mentioned that all the algorithms are 
executed based on the modified model in Section 3.2. 

For the parameters setting, we set the population size 50PS   for all algorithms, and, 
meanwhile, HEDA’s learning rate 0.06LR , the crossover and mutation probability of NSGAII and 
PGA are set to 0.8 and 0.2, respectively. It should be noted that we have embedded the PIN-based 
local search operator in to the NSGAII and PGA to ensure the fairness of comparisons. 

We first make an observation on the approximate Pareto fronts with regard to the first instance 
of 10 5 , 20 5 , 30 7 , 40 9  and 50 13 , espectively. Furthermore, the obtained results of 
HEDA, HEDA_noLS, NSGAII and PGA can be seen in Figure 9. 

It is can be obviously seen in Figure 9 that the solutions in Pareto set obtained by HEDA are 
better (both in terms of the quality and quantity of solutions) than the ones from the three other 
algorithms in all cases of variable problem sizes, which implies HEDA share a high superiority in 
solving MO_MSITNDP. Furthermore, the statistic results of these four algorithms are listed in Tables 
1–4. 

.

Sustainability 2017, 9, 1133  14 of 24 

5.2. Performance Metrics 

To systematically verify the performance of HEDA, three performance metrics [40] are adopted 
as follows: 

(1) Overall non-dominated solutions number (ONSN) 

Denote 1 2= , ..., L        is the union of non-dominated solutions with regard to
1,..., ,...,Algorithm l L , and then ( )lONSN   is the number of non-dominated solutions in l  

which are not dominated by solutions in    as shown in Equation (20). The larger the value of 
( )lONSN   is, the better performance of Algorithm l. 

( ) | \ { | : } |l l lONSN     x y y x    . (20) 

(2) Ratio of non-dominated solutions (RNDS) 

Denote the ratio of solutions which are not dominated by solutions in   , shown as 
following Equation (21). The higher the value of ( )lRNDS   is, the better performance of Algorithm 
l. 

( ) | \ { | : } | / | |l l l lRN D S     x y y x     . (21) 

(3) Average distance (DIR) 

Denote ( )id yx  is the shortest normalized distance from solution y in    to l  [40], 

then DIR can be defined in Equation (22). Obviously, a smaller ( )lDIR   means a better 
convergence performance to   , as well as a better distribution of l . 

( ) ( )/ | |l lDIR d yx   , y   . (22) 

5.3. Comparisons Results 

5.3.1. Comparison with Existing Algorithms 

In this subsection, we compare HEDA with three algorithms: (1) HEDA_noLS, a variant of 
HEDA in which the PIN-based local search operator is removed, and the parameter setting is the 
same as HEDA; (2) NSGAII [41], a well-known non-dominated sorting multi-objective genetic 
algorithm, which has been widely used for various multi-objective optimization problems; and (3) 
PGA [31], a relatively new reported genetic algorithm for a special kind of intermodal transportation 
problem which is quite similar to MO_MSITNDP. It should be mentioned that all the algorithms are 
executed based on the modified model in Section 3.2. 

For the parameters setting, we set the population size 50PS   for all algorithms, and, 
meanwhile, HEDA’s learning rate 0.06LR , the crossover and mutation probability of NSGAII and 
PGA are set to 0.8 and 0.2, respectively. It should be noted that we have embedded the PIN-based 
local search operator in to the NSGAII and PGA to ensure the fairness of comparisons. 

We first make an observation on the approximate Pareto fronts with regard to the first instance 
of 10 5 , 20 5 , 30 7 , 40 9  and 50 13 , espectively. Furthermore, the obtained results of 
HEDA, HEDA_noLS, NSGAII and PGA can be seen in Figure 9. 

It is can be obviously seen in Figure 9 that the solutions in Pareto set obtained by HEDA are 
better (both in terms of the quality and quantity of solutions) than the ones from the three other 
algorithms in all cases of variable problem sizes, which implies HEDA share a high superiority in 
solving MO_MSITNDP. Furthermore, the statistic results of these four algorithms are listed in Tables 
1–4. 

(22)

5.3. Comparisons Results

5.3.1. Comparison with Existing Algorithms

In this subsection, we compare HEDA with three algorithms: (1) HEDA_noLS, a variant of HEDA
in which the PIN-based local search operator is removed, and the parameter setting is the same as
HEDA; (2) NSGAII [41], a well-known non-dominated sorting multi-objective genetic algorithm, which
has been widely used for various multi-objective optimization problems; and (3) PGA [31], a relatively
new reported genetic algorithm for a special kind of intermodal transportation problem which is quite
similar to MO_MSITNDP. It should be mentioned that all the algorithms are executed based on the
modified model in Section 3.2.

For the parameters setting, we set the population size PS = 50 for all algorithms, and, meanwhile,
HEDA’s learning rate LR = 0.06, the crossover and mutation probability of NSGAII and PGA are set
to 0.8 and 0.2, respectively. It should be noted that we have embedded the PIN-based local search
operator in to the NSGAII and PGA to ensure the fairness of comparisons.

We first make an observation on the approximate Pareto fronts with regard to the first instance
of 10× 5, 20× 5, 30× 7, 40× 9 and 50× 13, espectively. Furthermore, the obtained results of HEDA,
HEDA_noLS, NSGAII and PGA can be seen in Figure 9.

It is can be obviously seen in Figure 9 that the solutions in Pareto set obtained by HEDA are
better (both in terms of the quality and quantity of solutions) than the ones from the three other
algorithms in all cases of variable problem sizes, which implies HEDA share a high superiority
in solving MO_MSITNDP. Furthermore, the statistic results of these four algorithms are listed in
Tables 1–4.

We can see in Tables 1–3 that the performance of HEDA is obviously better than other three
compared algorithm associated with ONSN, RNDS and DIR metrics. It is clear that HEDA’s
performance is more superior than its variant HEDA_noLS, which demonstrate effectiveness of our
proposed PIN-based local search. For most instances, HEDA can find more non-dominated solutions
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than the other algorithms, and its solutions possess a shorter distance to the union of non-dominated
solutions. Thus, not only does HEDA ensure an outstanding convergence to the optimal Pareto font,
but it also keeps a reasonable distribution and diversity on its approximated Pareto font. The feasible
ratio of HEDA reaches to 100%, as well as other algorithms, which demonstrated the reliability of our
proposed HEDA. Accordingly, the proposed HEDA can be seen as an effective solution for addressing
MO_MSITNDP.

In terms of the runtime, Figure 10 shows that HEDA has lower runtimes than NSGAII and PGA,
which indicates that the running speed of HEDA is faster than NSGAII and PGA. The runtimes of
HEDA are a little bit higher than HEDA_noLS, implying that the PIN-based local search of HEDA
causes relative lower time consumption. In addition, the feasibility rates for all algorithms are 100%.
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Table 1. Comparisons of HEDA, NSGAII, PGA and HEDA-noLS (ONSN).

Instance

HEDA vs. NSGAII HEDA vs. PGA HEDA vs. HEDA_noLS

NSGAII HEDA PGA HEDA HEDA_noLS HEDA

MAX AVG SD MAX AVG SD MAX AVG SD MAX AVG SD MAX AVG SD MAX AVG SD

5× 3 44 20.24 14.45 5 3.71 0.63 3 1.57 0.79 5 3.81 0.59 4 2.52 1.26 4 2.81 0.96
10× 3 53 6.29 13.99 8 5.48 1.65 2 0.10 0.43 6 4.57 1.22 8 2.76 2.04 8 3.81 2.38
10× 4 52 3.76 12.22 10 5.81 1.87 0 0.00 0.00 12 6.52 2.34 9 2.43 2.57 9 5.67 2.40
10× 5 36 6.81 12.55 9 4.86 2.05 1 0.14 0.35 9 4.62 2.08 6 2.00 1.90 6 3.43 1.47
20× 4 0 0.00 0.00 9 3.81 1.94 0 0.00 0.00 9 4.24 1.82 4 0.71 1.16 7 4.00 1.57
20× 5 0 0.00 0.00 8 3.67 1.98 0 0.00 0.00 9 3.86 1.61 2 0.52 0.73 7 3.95 1.43
20× 6 0 0.00 0.00 8 4.38 1.76 0 0.00 0.00 8 3.76 1.69 6 1.19 1.82 8 3.71 1.91
20× 7 0 0.00 0.00 10 4.48 1.99 0 0.00 0.00 8 3.48 1.94 3 0.29 0.70 7 3.76 1.74
30× 6 0 0.00 0.00 5 2.52 1.18 0 0.00 0.00 7 2.48 1.40 6 0.86 1.83 7 2.48 1.65
30× 7 0 0.00 0.00 7 2.38 1.40 0 0.00 0.00 5 2.48 1.33 3 0.67 0.99 4 2.00 1.07
30× 8 0 0.00 0.00 4 1.95 1.09 0 0.00 0.00 5 2.33 1.28 3 0.29 0.76 8 2.29 1.69
30× 9 0 0.00 0.00 4 2.00 1.07 0 0.00 0.00 6 2.10 1.38 3 0.29 0.76 3 1.67 0.64
40× 9 0 0.00 0.00 12 5.33 3.48 0 0.00 0.00 11 4.00 2.98 2 0.10 0.43 10 3.52 3.19

40× 11 0 0.00 0.00 6 2.33 1.32 0 0.00 0.00 6 3.14 1.39 1 0.10 0.29 5 1.86 1.04
50× 13 0 0.00 0.00 9 2.00 1.69 0 0.00 0.00 6 2.05 1.13 0 0.00 0.00 10 2.48 2.15
Average 12.33 2.47 3.55 7.60 3.65 1.67 0.40 0.12 0.10 7.47 3.56 1.65 4.00 0.98 1.15 6.87 3.16 1.69
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Table 2. Comparisons of HEDA, NSGAII, PGA and HEDA-noLS (RNDS).

Instance

HEDA vs. NSGAII HEDA vs. PGA HEDA vs. HEDA_noLS

NSGAII HEDA PGA HEDA HEDA_noLS HEDA

MAX AVG SD MAX AVG SD MAX AVG SD MAX AVG SD MAX AVG SD MAX AVG SD

5× 3 0.44 0.21 0.15 1.00 1.00 0.00 0.67 0.33 0.18 1.00 1.00 0.00 1.00 0.68 0.35 1.00 0.78 0.24
10× 3 0.53 0.07 0.14 1.00 1.00 0.00 0.25 0.01 0.05 1.00 1.00 0.00 1.00 0.55 0.38 1.00 0.69 0.34
10× 4 0.54 0.04 0.13 1.00 0.99 0.02 0.00 0.00 0.00 1.00 1.00 0.00 1.00 0.37 0.33 1.00 0.85 0.30
10× 5 0.36 0.07 0.13 1.00 1.00 0.00 0.25 0.04 0.09 1.00 1.00 0.00 1.00 0.43 0.38 1.00 0.99 0.05
20× 4 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.75 0.17 0.26 1.00 1.00 0.00
20× 5 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.50 0.13 0.19 1.00 0.99 0.03
20× 6 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 1.00 0.20 0.30 1.00 1.00 0.00
20× 7 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.50 0.06 0.13 1.00 1.00 0.00
30× 6 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.86 0.13 0.27 1.00 1.00 0.00
30× 7 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 1.00 0.17 0.26 1.00 1.00 0.00
30× 8 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.75 0.07 0.19 1.00 1.00 0.00
30× 9 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 1.00 0.12 0.30 1.00 1.00 0.00
40× 9 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 1.00 0.05 0.21 1.00 1.00 0.00

40× 11 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 1.00 0.07 0.23 1.00 1.00 0.00
50× 13 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00
Average 0.12 0.03 0.04 1.00 1.00 0.00 0.08 0.03 0.02 1.00 1.00 0.00 0.82 0.21 0.25 1.00 0.95 0.06
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Table 3. Table 3. Comparisons of HEDA, NSGAII, PGA and HEDA-noLS (DIR).

Instance

HEDA vs. NSGAII HEDA vs. PGA HEDA vs. HEDA_noLS

NSGAII HEDA PGA HEDA HEDA_noLS HEDA

MIN AVG SD MIN AVG SD MIN AVG SD MIN AVG SD MIN AVG SD MIN AVG SD

5× 3 36.64 123.36 67.77 0.00 1107.72 1012.93 61.66 116.48 74.67 0.00 60.73 51.70 0.00 15.66 19.03 0.00 25.87 53.26
10× 3 181.89 544.88 265.34 0.00 2286.86 5945.60 158.87 793.87 400.31 0.00 55.16 246.67 0.00 183.72 191.64 0.00 128.18 163.28
10× 4 269.57 1225.25 758.57 0.00 1550.08 6811.30 647.41 1960.32 800.04 0.00 0.00 0.00 0.00 390.81 331.60 0.00 93.72 138.05
10× 5 1598.90 3824.40 1870.46 0.00 9359.46 17,387.86 2038.44 4826.59 2376.99 0.00 203.33 504.80 32.09 829.86 593.75 0.00 652.71 968.25
20× 4 1054.05 2843.73 1558.43 0.00 0.00 0.00 1954.42 4134.30 1889.59 0.00 0.00 0.00 157.67 1649.53 1260.86 0.00 233.46 401.39
20× 5 1216.20 4652.32 3060.08 0.00 0.00 0.00 2946.40 6184.59 2407.24 0.00 0.00 0.00 1096.54 2973.23 1518.30 0.00 404.02 581.21
20× 6 1650.11 5755.40 2848.66 0.00 0.00 0.00 1967.32 7092.64 3234.82 0.00 0.00 0.00 217.86 2257.73 1475.94 0.00 691.68 1160.49
20× 7 1343.27 8610.60 3947.62 0.00 0.00 0.00 2449.42 10,036.65 6093.77 0.00 0.00 0.00 833.73 4881.32 2931.44 0.00 371.87 954.23
30× 6 2254.08 6060.90 3079.91 0.00 0.00 0.00 2639.69 8937.82 5210.97 0.00 0.00 0.00 1347.68 4364.83 2613.23 0.00 1512.26 3231.31
30× 7 1785.60 6760.44 4068.56 0.00 0.00 0.00 4635.60 11,795.78 6546.49 0.00 0.00 0.00 1730.08 4839.59 3264.24 0.00 1572.35 2319.77
30× 8 3116.28 8257.92 4925.34 0.00 0.00 0.00 5636.08 15,186.47 8625.25 0.00 0.00 0.00 2451.58 8163.42 6419.59 0.00 1162.14 3194.25
30× 9 3917.91 9219.88 5022.42 0.00 0.00 0.00 6149.95 15,340.45 10,717.45 0.00 0.00 0.00 2664.78 5933.61 2339.85 0.00 1003.98 2603.61
40× 9 5795.40 19,982.45 10,818.12 0.00 0.00 0.00 9074.13 34,600.99 21,887.46 0.00 0.00 0.00 4809.12 15,213.67 10,688.43 0.00 525.18 2348.70
40× 11 2128.72 7800.28 4562.72 0.00 0.00 0.00 6379.80 20,857.98 9415.57 0.00 0.00 0.00 3564.77 7778.40 5030.00 0.00 439.48 1358.51
50× 13 4697.53 10,692.39 6753.19 0.00 0.00 0.00 10,426.97 22,517.95 12,695.50 0.00 0.00 0.00 5898.19 16,269.53 11,700.77 0.00 0.00 0.00
Average 2069.74 6423.61 3573.81 0.00 953.61 2077.18 3811.08 10,958.86 6158.41 0.00 21.28 53.54 1653.61 5049.66 3358.58 0.00 587.79 1298.42
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5.3.2. Comparison with Optimization Solver

In this subsection, the developed HEDA is compared with optimization solver. Owing to the
linear characteristic of the mathematical model, we choose CPLEX 12.5, which is a popular solver
used in optimization area. The multiple objectives are transformed into a single objective problem
by using the epsilon constraint method [42] to satisfy the solving conditions of CPLEX. It should be
noted that we do not purse the optimal solutions regarding the branch-and-cut phase addressed by
CPLEX to obtain more feasible solutions to construct the approximate Pareto font. That is, once the
feasible solution is found, CPLEX will stop and turn to solve the next problem in terms of another
upper bound. Upper limit of time for CPLEX is 600 s. The results of ONSN, RNDS, DIR and Time are
shown in Table 4.

In Table 4, we can find that, for the small scale instances, HEDA has lower runtimes and the quality
of the solutions is also at an acceptable level. For the middle problem size, HEDA has advantages in
runtimes and can provide better solutions than CPLEX. Furthermore, CPLEX is unable to solve the
large scale instances, such as instance 40× 11 and 50× 13, whereas HEDA can obtain solutions easily,
which indicates HEDA is more capable with respect to all instances.

Table 4. Comparisons of HEDA and CPLEX under a single run.

Instance
CPLEX HEDA

ONSN RNDS DIR Time ONSN RNDS DIR Time

5× 3 47 * 1.00 0.00 <0.1 7 0.47 107.47 <0.1
10× 3 55 * 1.00 0.00 1.23 10 0.58 645.23 <0.1
10× 4 61 * 1.00 0.00 2.37 13 0.89 961.30 <0.1
10× 5 38 * 1.00 0.00 5.24 8 0.91 809.26 <0.1
20× 4 8 0.88 879.01 8.78 10 0.98 2.54 1.38
20× 5 11 0.87 669.25 25.33 11 1.00 0.00 2.56
20× 6 9 0.74 420.21 38.36 10 1.00 0.00 5.25
20× 7 7 0.89 321.52 1 h limit 9 1.00 0.00 6.24
30× 6 4 0.77 264.67 2 h limit 7 1.00 0.00 10.62
30× 7 7 0.74 74.45 2 h limit 6 1.00 0.00 11.23
30× 8 3 0.52 254.91 2 h limit 5 1.00 0.00 12.08
30× 9 4 0.69 141.12 2 h limit 6 1.00 0.00 12.21

50× 13 5 0.56 957.76 4 h limit 11 1.00 0.00 13.45
40× 11 - - - - 7 1.00 0.00 17.77
50× 13 - - - - 10 1.00 0.00 19.25

* Optimal solutions.
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5.4. Case Study

In this section, we conduct a case study based on the ethylene propylene rubber production
from Jilin Petrochemical Company (JPC), China. JPC is the only enterprise that has the production
equipment of ethylene propylene rubber in China. The major raw materials for the ethylene propylene
rubber are ethylene, propylene and third monomer. The ethylene needed is mainly self-produced,
while the other materials rely on outsourcing and importing. In the JPC’s sourcing plan, propylene
will be purchased from Australia, while B fork borneol third monomer, double loop pentadiene third
monomer and B diene third monomer are purchased from Japan, Philippines and America, respectively.
In this background, an intermodal transportation company is hired by JPC to transport these freights
from the sourcing places. Considering the geographical and economic distribution, 10 cities are chosen
as intermediate nodes in the intermodal network (see Figure 11). The intermodal transportation
network is divided into six stages and the nodes in each stage are shown in Table 5. The quantity of
freights from each sourcing places are in Table 6. The relevant data about the variable transportation
cost, carbon emission cost and average time for each transportation mode are in Table 7, in which
the distances between the nodes by the three modes are collected from http://www.jctrans.com,
www.12306.cn, and www.jdcsww.com in terms of the waterway, railway and road. Furthermore, the
carbon emission relevant calculations for the three transportation modes are according to Duan and
Heragu (2015) [1].
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Table 7. Parameters of transportation cost and speed for each mode.

Mode Waterway Railway Road

Transportation cost ($/TEU-km) 0.2 (Ship) 0.18 (Barge) 0.5 2
Carbon emission cost ($/TEU-km) 0.018 (Ship) 0.015 (Barge) 0.03 0.05

Average speed (km/h) 40 (Ship) 30 (Barge) 70 70

According to the data above, we use HEDA to solve this case study and the non-dominated
solutions are shown in Table 8 and Figure 12. Especially, to analyze the carbon emissions in our
designed intermodal network, the carbon emission cost (CEC) is given.

Table 8. The Pareto set obtained by HEDA.

Solution Tokyo America Australia Manilas TTC/$ MFT/h CEC/$ Feasibility (Yes/No)

1 1-4-2-1-1-1-2-2-2 1-1-3-2-1-1-1-1-3 1-1-2-2-1-2-3-2-2 1-1-2-2-1-2-2-1-2 110,799 601 2330 Yes
2 1-1-2-2-1-2-2-2-2 1-1-2-2-1-1-3-2-3 1-1-2-2-1-1-2-2-2 1-1-2-2-1-2-2-2-2 99,097 614 2041 Yes
3 1-1-2-1-1-2-2-2-2 1-1-2-2-1-2-3-1-3 1-1-2-2-1-2-2-1-2 1-1-2-1-1-2-2-1-2 92,188 617 1854 Yes
4 1-4-2-2-1-2-2-1-2 1-1-2-2-1-1-2-2-2 1-1-2-1-1-2-3-2-2 1-1-2-2-1-2-2-1-2 92,141 662 1850 Yes
5 1-1-2-2-1-2-3-2-2 1-1-2-2-1-1-3-1-3 1-1-2-1-1-2-2-1-2 1-1-2-2-1-2-2-1-2 103,661 610 2106 Yes
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In Table 8, there are five non-dominated solutions provided by the HEDA for the intermodal
transportation company to make transportation decision. By careful analysis, it can be found that
the solutions have a good trade-off among cost, time and carbon emissions. For example, total cost
and carbon emission cost of Solution 4 is 92,141 and 1850, respectively, which are a little higher than
Solution 3 (92,188 and 617). However, the transportation time of Solution 3 is much less than Solution 4.
It illustrates that time and carbon emissions can be greatly reduced without large sacrifice of cost.

Obviously, we can find that Solution 1 has a shortest maximum flow time of 601 while Solution 4
can provide a lowest total transportation cost with 92,141. Therefore, Solution 1 is proper if a fast
delivery is needed, whereas Solution 4 should be adopted with respect to total cost focus. In addition,
the rate of road use is very low; it has been replaced by waterway and railway, which have lighter
carbon emission, implying that the carbon emission could be reduced in this network. Moreover, the
stage division for an intermodal network that is mainly based on the physical characteristics of the
available transportation infrastructures is a key preparation for the model construction. Through the
gained solutions, it is obvious that some nodes are at a low frequency to be selected while some ones
are invariably being passed. For example, the second node and third node are never selected in stage
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1 for all solutions, which implies that we can consider removing the two nodes in stage division to
decrease the computing complexity.

5.5. Management Insights

The approach and findings of this study will provide some practical insights for the logistics
industry to make a tactical decision. An increasing number of transportation companies operate
as freight integrators to provide one-stop service for customers. To enhance the competitiveness,
they are supposed to optimize the transportation planning within the existing infrastructure and the
expectations of customers. In this paper, the intermodal company can optimize the total cost and
maximum flow time to satisfy diversified markets. In addition, carbon emissions are considered to
achieve the environment sustainability and response to low-carbon policy and regulation. The model
and proposed algorithm will enable the freight integrator to make a trade-off among the total cost, time
and carbon emissions while providing highly complicated solutions to improve the competitiveness.

Furthermore, the crossing logistics is involved in the model as the handling capacity in each
node. Such constraints can make our model close to reality and ensure the feasibility of solutions.
Besides, it can balance the transportation flow among the nodes, which is beneficial to mitigate the
traffic congestion and air pollution in busy node and reduce the idle resource in other nodes when the
total cost or time change less.

As mentioned above, a main objective of intermodal transportation is to reduce the road
transportation rate. In general, unless the fastest delivery is preferred, waterway and railway will cover
the entire long-distance transportation and reduce the rate in the last-mile trucking transportation in
intermodal transportation network. Therefore, intermodal transportation would be further advocated
if the hard carbon emission regulations are set and government should focus on improving intermodal
infrastructure construction, especially the port construction where waterway is available and high
speed railway construction when waterways do not exist.

6. Conclusions

In this paper, the intermodal transportation problem was modeled as a MO_MITNDP problem
concerning both the total cost and the time criteria. What mostly distinguished our model is the
stage dividing according to the real intermodal infrastructure construction such as business type,
geography characteristic and service radiant scope. We stand on the freight integrator’s perspective to
enhance the competitiveness and honor loyal customers by offering complicated decisions according
to the personalized requirements. Specifically, the handling capacity in each node is programmed
as a constraint, which will disperse transportation pressure by reducing the probability of freight
assembling. To solve this hard constraint, the multi-objective-based constraints handling approach
is adopted. Then, a hybrid estimation of distribution algorithm was designed to solve the problem.
Numerical comparison results showed the effectiveness and robustness of the proposed algorithm
for MO_MITNDP. Meanwhile, the case study from the petrochemical industry helped the intermodal
company provide a highly door-to-door service in the trade-off among transportation cost, emission
cost and the maximum flow time. The simulation results confirmed that we can save time and carbon
emission without much sacrifice of transportation cost by the optimization of intermodal transportation
network. Furthermore, this work is the first to consider the estimation of distribution algorithm
when solving an intermodal transportation problem. In future work, it is interesting to propose
other evolutionary algorithms to solve such problems and research on the low-carbon transportation
network design to achieve the economic effectiveness and the environmental effectiveness.
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