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Abstract: Hydrogen is a promising energy carrier in the clean energy systems currently being
developed. However, its effectiveness in mitigating greenhouse gas (GHG) emissions requires
conducting a lifecycle analysis of the process by which hydrogen is produced and supplied. This
study focuses on the hydrogen for the transport sector, in particular renewable hydrogen that is
produced from wind- or solar PV-powered electrolysis. A life cycle inventory analysis is conducted to
evaluate the Well-to-Tank (WtT) GHG emissions from various renewable hydrogen supply chains. The
stages of the supply chains include hydrogen being produced overseas, converted into a transportable
hydrogen carrier (liquid hydrogen or methylcyclohexane), imported to Japan by sea, distributed to
hydrogen filling stations, restored from the hydrogen carrier to hydrogen and filled into fuel cell
vehicles. For comparison, an analysis is also carried out with hydrogen produced by steam reforming
of natural gas. Foreground data related to the hydrogen supply chains are collected by literature
surveys and the Japanese life cycle inventory database is used as the background data. The analysis
results indicate that some of renewable hydrogen supply chains using liquid hydrogen exhibited
significantly lower WtT GHG emissions than those of a supply chain of hydrogen produced by
reforming of natural gas. A significant piece of the work is to consider the impacts of variations in
the energy and material inputs by performing a probabilistic uncertainty analysis. This suggests that
the production of renewable hydrogen, its liquefaction, the dehydrogenation of methylcyclohexane
and the compression of hydrogen at the filling station are the GHG-intensive stages in the target
supply chains.

Keywords: hydrogen; supply chain; hydrogen carrier; life cycle inventory analysis; GHG emissions;
probabilistic uncertainty analysis

1. Introduction

Hydrogen has been attracting attention as a clean energy source in part because of its flexibility as
an energy carrier; it can be produced from a variety of industrial processes and consumed by a variety
of end-users. For example, hydrogen can be produced from hydrocarbon feedstocks via chemical
processes (e.g., steam reforming of natural gas (NG) and coal gasification), and by using electricity to
power the electroylysis of water [1,2]. “Renewable hydrogen” is produced using renewable energy
or electricity sources and can usually be expected to decrease the greenhouse gas (GHG) emissions
associated with its use [3,4]. At the other end of the supply chain, hydrogen can be consumed by
diverse end-use applications as it can be transformed into kinetic, electric and thermal energy [3,4].
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In the transportation sector, for example, hydrogen fuel cell vehicles (FCVs) have received attention
globally as one of the next-generation clean vehicles that major motor companies are developing
and releasing in the passenger car market [5–7]. Other types of FCVs, such as forklifts [8–10] and
buses [11–13], have also been commercialized. Regarding residential energy applications, micro fuel
cell combined heat and power (FC-CHP) systems could decrease household energy use owing to
their high gross energy efficiencies (the sum of power generation efficiency and heat production
efficiency) [14]. Megawatt-class hydrogen energy systems have also been installed around the world
in data centers, hotels and many other commercial facilities to combine distributed renewable energy
resources—such as solar photovoltaics (PV) and wind turbines—and measures to ensure a stable energy
supply—such as battery storage, and water electrolyzers, storage tanks and fuel cells for hydrogen
production, storage and use, respectively [15–18]. In terms of power generation, a commercially
operated 12 MW hydrogen turbine began operating in Italy in 2009 [19,20].

Given this flexibility, hydrogen is regarded as useful for increasing energy diversity and mitigating
GHG emissions in Japan. To support future increases in its supply and demand, various technologies
related to the production, transport and storage of hydrogen are being developed in Japan [21]. Liquid
hydrogen (LH2) and methylcyclohexane (MCH) are promising hydrogen carriers that are suitable for
long-term storage and long-distance transport owing to their relative ease of handling [22]. LH2 and
MCH have therefore been considered for a private-sector-led national demonstration project focusing
on an international hydrogen supply chain that transports hydrogen produced from renewable or
excess energy to Japan [23–25].

In parallel with research and development (R&D) surrounding hydrogen technologies, designing
the future hydrogen economy requires understanding the potential socio-economic and environmental
properties of the hydrogen supply chain. A common approach to help decision makers with the
design and development of products and processes is to evaluate their environmental influences
throughout their life cycle [26]. Many studies have been published that report life cycle approaches
to the hydrogen production process. For example, life cycle inventory (LCI) analyses have been
published that calculate the life cycle GHG emissions for hydrogen produced from steam reforming
of NG [27–32], coal gasification [29,31,32], and renewably powered electrolysis of water [30–33].
Specifically, Kato [34] took an economic approach and estimated the final cost in Japan of hydrogen
produced in South Australia, Norway and the Middle East. Meanwhile, other studies have conducted
life cycle sustainability assessments to simultaneously evaluate the economic, social and environmental
impacts [35–37].

A number of LCI studies have also been published that compare the environmental benefits of
using hydrogen instead of conventional energy sources. Examples of such comparative studies in the
automotive sector using Well-to-Wheel (WtW) and Well-to-Tank (WtT) frameworks to estimate GHG
emissions have been carried out for Japan, the US and Europe [38–42]. Regarding the use of hydrogen
in local energy systems, Usui and Hondo [43] compared the life cycle CO2 emissions from electricity
storage systems for distributed wind power, including hydrogen storage using LH2 and MCH that
was then used in FC-CHP. Mori et al. [44] compared the life cycle environmental emissions from a
renewable hydrogen-powered uninterruptible power system (UPS) and a UPS powered by an internal
combustion engine. However, it should be noted that most of these LCI studies were conducted based
on specific assumptions and the mere use or the combinations of the results in previous studies does
not make sense due to the differences of methodologies, system boundaries and databases used in each
analysis. These Japanese studies were also conducted under the energy supply and demand structure
during the first decade of the 21st century. After the Great East Japan earthquake occurred in 2011, our
energy supply structure has drastically changed so that the LCI results should be different if conducted
under the current energy supply. As far as the authors recognize, the WtW study conducted by Mizuho
Information & Research Institute [45] was the only study that assessed the life cycle GHG profiles of
various hydrogen supply chain under the current energy supply but most of the data used for the
assessment are not provided in their report. In the same manner as the EU’s CertifHy project [46], LCI
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analysis should be conducted to understand the environmental profile of the potential international
hydrogen supply chain and extract the technical issues related to hydrogen carrier to make the supply
chain low-carbon.

Using LCI analysis as a decision-making tool requires considering the range of possible
consequences of a given technological pathway [47]. Once the pathway is identified, remaining
uncertainty in the LCI is usually attributed to the use of inaccurate or unrepresentative data [48,49].
One method of mitigating these uncertainties is to conduct sensitivity analyses. The ISO 14044
guidelines suggest that sensitivity analyses should include a wide range of factors to determine
the influence of variation in assumptions, methods and data [50]. An alternative option, uncertainty
analysis, employs probabilistic simulations based on the Monte Carlo method to evaluate the combined
influence of multiple uncertain factors on the results. Here, probability distributions are assumed
for the system’s input parameters. Repeated calculations with different input values then yield a
probability frequency distribution of total GHG emissions from the whole system [49]. The application
of uncertainty analysis using Monte Carlo simulation and LCI has been demonstrated for WtW
emissions [41].

As awareness of unintended and unwanted side-effects has increased, it has become common
practice during the early stages of new technology development to carry out ex ante assessments of
potential consequences that the widespread implementation of the new technologies may create [51,52].
Most components in the hydrogen supply chain are immature and still developing, which creates
uncertainties regarding their real-world performance and could affect the supply chain’s total GHG
emissions. These uncertainties have not be fully considered in previous Japanese WtW studies [38–40]
and addressing this knowledge gap is a key focus of this study.

Foreground inventory data related to the hydrogen supply chains are collected by literature
surveys, and the Japanese life cycle inventory database is used as the background data of the analysis.
A probabilistic uncertainty analysis of the LCI results is then conducted and the results used to
highlight GHG hotspots in the supply chain to promote a discussion of the technical opportunities
available for reducing GHG emissions across the different supply chains.

2. Methods and Assumptions

2.1. Overview

Figure 1 shows the processes that are within the study’s system boundary. The renewable
hydrogen supply chain comprises domestic and overseas stages. The overseas stages are: the
generation of renewable power; the production of renewable hydrogen by water electrolysis; the
production and storage of the hydrogen carrier (LH2 or MCH); and the ocean transport of the hydrogen
carrier to Japan. The domestic stages comprise: the storage of the hydrogen carrier and its distribution
to hydrogen filling stations by tank truck; the release of hydrogen from the energy carrier (restoration)
followed by its compression; and finally the filling of FCVs with hydrogen. A reference supply chain
of hydrogen produced domestically from the steam reforming of natural gas (NG) was also analyzed.
This supply chain comprises: the overseas extraction and liquefaction of NG; the ocean transport of
liquefied natural gas (LNG) to Japan; the production of hydrogen by steam reforming of NG which is
obtained by LNG regasification; the compression and distribution of hydrogen as compressed gaseous
hydrogen (CGH2) to hydrogen filling stations by tank truck; and finally the compression and filling of
FCVs stages.

According to Kato [34], Australia and Norway both have the potential to supply large amounts
of low-cost hydrogen using wind power. In Australia, solar PV is also a potential power source for
hydrogen production and the feasibilities of exporting solar PV-generated hydrogen from Australia to
Japan have been investigated [53,54]. For these reasons, Australia and Norway were chosen as the
renewable hydrogen producing countries in this study. The one-way transport distance to Japan was
set as 10,000 km from Australia and 20,000 km from Norway.
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2.2. GHG Emissions Calculation Using IDEA 

GHG emissions were defined as the sum of the 100-year CO2-equivalent global warming 
potentials of emitted CO2, CH4, N2O, HFCs, PHCs and SF6 [56]. 

The IDEA inventory database was developed by National Institute of Advanced Industrial 
Science and Technology [55]. Figure 2 illustrates IDEA’s structure, which uses a unit process to relate 
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Figure 1. Process flow charts showing stages within the life cycle inventory (LCI) system boundary.

Table 1 shows the case settings configured for hydrogen from Australia. It was typically assumed
that the electricity used in overseas processes other than hydrogen production was supplied using the
country’s standard electricity grid (referred to as “base case” hereafter). Electricity from the Australian
grid has a high GHG emissions intensity owing to the grid’s strong dependency on coal-fired power
generation. Thus, the use of low-carbon electricity, as investigated in the “low-carbon case” where
all electricity inputs were from the same low-carbon source, was investigated for its potential to
significantly decrease GHG emissions from Australian renewable hydrogen supply chain.

Table 1. The base and low-carbon cases.

Case Description

Base Case
Electricity for hydrogen production via water electrolysis was supplied with renewable
electricity, while the electricity used in the other Australian processes was supplied by
Australian grid electricity.

Low-Carbon Case Electricity used in all the Australian processes was supplied with the same renewable
electricity as water electrolysis.

Inventory data were collected from previous WtW and LCI studies on hydrogen supply chains.
Where more than two process options were found (owing to differences in equipment specifications),
the mean and standard deviation were also calculated. The Japanese Inventory Database for
Environmental Analysis (IDEA) ver. 2.0 [55] was used as the background data.

2.2. GHG Emissions Calculation Using IDEA

GHG emissions were defined as the sum of the 100-year CO2-equivalent global warming potentials
of emitted CO2, CH4, N2O, HFCs, PHCs and SF6 [56].

The IDEA inventory database was developed by National Institute of Advanced Industrial Science
and Technology [55]. Figure 2 illustrates IDEA’s structure, which uses a unit process to relate input
flows (raw materials, energies, and resources) to output flows (products, wastes, emissions to air, water
and soil) [57].



Sustainability 2017, 9, 1101 5 of 26
Sustainability 2017, 9, 1101  5 of 24 

 
Figure 2. Data structure of Inventory Database for Environmental Analysis (IDEA) [57]. 

The GHG emissions of a product were calculated using IDEA as follows. First, a matrix (the 
IDEA input coefficient table) was configured by tabulating the input flows. Each element of the table 
(ܽ௜௝) represented the amount of product ݅ required to produce one unit of product ݆. Letting ݔ௜ and ௜݂ be the amount of production and final demand of product ݅, respectively, the supply–demand 
balance for product ݅ could be expressed using Equation (1): ࢞࡭ ൅ ࢌ ൌ  (1) ࢞

where ࡭ ൌ ൭ܽଵଵ ⋯ ܽଵ௡⋮ ⋱ ⋮ܽ௡ଵ ⋯ ܽ௡௡൱ ; ࢞	 ൌ ൭ݔଵ⋮ݔ௡൱ ; 	and	ࢌ ൌ ൭ ଵ݂⋮݂௡൱.  

Then, the amount of ݅ produced (ݔ௜) was obtained using a matrix operation. Here, the inverse 
matrix was approximated by the sum of the power series, as shown in Equation (2): ࢞ ൌ ሺࡵ െ ࢌሻିଵ࡭ ൌ ሺࡵ ൅ ࡭ ൅ ଶ࡭ ൅ ଷ࡭ ൅⋯ሻ(2) ࢌ 

where ࡵ denotes the ݊ ൈ ݊ identity matrix. 
By defining ݁௜ as the GHG emissions from the unit process for product ݅, the embodied GHG 

emissions were then obtained from Equation (3): ܩܪܩ ൌ  (3) ࢞ࡱ

where ࡱ ൌ ሺ݁ଵ 	⋯	݁௡ሻ. 
IDEA ver. 2.0, released in May 2016, includes inventory data of more than 3800 unit processes. 

Because it covers all of the items in the Japan Standard Commodity Classification, the GHG emissions 
of any product produced in Japan in the year 2014 are included in IDEA. However, IDEA’s embodied 
GHG emissions data are limited to Japanese economic activities and thus require assumptions to 
approximate the emissions attributed to Australian or Norwegian economic activity. For estimating 
overseas activity using IDEA, a new matrix ࡭′ was created and used in Equation (2) instead of ࡭ ࡭′ 
was configured from the IDEA input coefficient table ࡭ by employing the following steps:  

 All of the elements of ࡭′ were set equal to those in ࡭. This assumed that the economic activity 
in Australia and Norway was the same as that in Japan. (For example, if the same product is 
produced in Japan and Australia, it requires the same inputs in both countries). 

 The ࡭′  elements for oversea transport of resources were set to zero to ensure that the 
approximated emissions of a product did not include those generated by overseas transport of 
the constituent inputs. 

 The ࡭′ elements referring to grid electricity in Japan were changed to reflect grid electricity in 
Australia or Norway. 

  

Figure 2. Data structure of Inventory Database for Environmental Analysis (IDEA) [57].

The GHG emissions of a product were calculated using IDEA as follows. First, a matrix (the IDEA
input coefficient table) was configured by tabulating the input flows. Each element of the table (aij)
represented the amount of product i required to produce one unit of product j. Letting xi and fi be the
amount of production and final demand of product i, respectively, the supply–demand balance for
product i could be expressed using Equation (1):

Ax + f = x (1)

where A =

 a11 · · · a1n
...

. . .
...

an1 · · · ann

; x =

 x1
...

xn

; and f =

 f1
...
fn

.

Then, the amount of i produced (xi) was obtained using a matrix operation. Here, the inverse
matrix was approximated by the sum of the power series, as shown in Equation (2):

x = (I−A)−1f =
(

I + A + A2 + A3 + · · ·
)

f (2)

where I denotes the n× n identity matrix.
By defining ei as the GHG emissions from the unit process for product i, the embodied GHG

emissions were then obtained from Equation (3):

GHG = Ex (3)

where E = (e1 · · · en).
IDEA ver. 2.0, released in May 2016, includes inventory data of more than 3800 unit processes.

Because it covers all of the items in the Japan Standard Commodity Classification, the GHG emissions
of any product produced in Japan in the year 2014 are included in IDEA. However, IDEA’s embodied
GHG emissions data are limited to Japanese economic activities and thus require assumptions to
approximate the emissions attributed to Australian or Norwegian economic activity. For estimating
overseas activity using IDEA, a new matrix A′ was created and used in Equation (2) instead of A A′

was configured from the IDEA input coefficient table A by employing the following steps:

• All of the elements of A′ were set equal to those in A. This assumed that the economic activity
in Australia and Norway was the same as that in Japan. (For example, if the same product is
produced in Japan and Australia, it requires the same inputs in both countries).

• The A′ elements for oversea transport of resources were set to zero to ensure that the
approximated emissions of a product did not include those generated by overseas transport
of the constituent inputs.
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• The A′ elements referring to grid electricity in Japan were changed to reflect grid electricity in
Australia or Norway.

2.3. Renewable Power Generation in Hydrogen-Producing Country

Renewable power plants (wind and solar PV in Australia, and wind in Norway) were assumed to
provide dedicated power to parts of the hydrogen supply chains. This meant that the power plants’ life
cycle GHG emissions (for example, those associated with materials production, construction, transport
and operation) were then used whenever renewable electricity was consumed.

The input data used by Imamura et al. [58,59] were used to calculate life cycle GHG emissions
using IDEA. The assumptions made by Imamura et al. [58,59] were to evaluate the Japanese renewable
power plants. In order to reflect the wind conditions and insolation in hydrogen producing countries,
the Australian and Norwegian load factors for wind and solar PV [34,60] were used in our calculation.
Table 2 shows the specifications of wind and solar PV power plants assumed in this study while Table 3
shows the calculated life cycle GHG emissions of wind and solar PV power generation. The reason for
the large difference in Australian and Norwegian wind power emissions could be attributed to the
GHG emissions intensity divergence in grid electricity of the two countries.

Table 2. Specifications of wind and solar PV power plants used in the model.

Parameter Wind Solar PV

Capacity (MW) 40 10
Load factor (%) 35 18

Auxiliary power ratio (%) 10 3
Amount of electricity generated (MWh/year) 122,640 14,532

Life time (year) 30 30

Table 3. Calculated life cycle GHG emissions for wind and solar PV power generation (g-CO2eq./kWh).

Hydrogen-Producing Country Wind Solar PV

Australia 15.3 66.4
Norway 10.8 n/a

2.4. Renewable Hydrogen Production by Water Electrolysis

Water electrolysis is a popular method of producing hydrogen which has been known for around
200 years [61]. Hydrogen was assumed to be produced using renewable power via electrolysis using
either polymer electrolyte membranes or alkaline water. The mean electricity input was calculated
as 5.19 kWh/Nm3-H2 [62–74]. The pure water requirement was set to the theoretical value of 0.804
kg/Nm3-H2.

2.5. Hydrogen Energy Carriers

2.5.1. Liquid Hydrogen (LH2)

Hydrogen liquefaction has long been the preferred method of increasing hydrogen density for
transport as the liquid has approximately one eight-hundredth of the volume of gaseous hydrogen [22].
This preference is despite hydrogen having the second lowest boiling point (−253 ◦C) after helium
and the large amount of electricity that the process requires. Figure 3 shows the renewable hydrogen
supply chain using LH2 that was modeled in this study. Assumptions for each of the supply chain
components are described below.
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hydrogen production (expressed in green font). For electricity inputs for production and storage of
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the Australian low-carbon cases, the same renewable electricity input was assumed as that used for
hydrogen production.

• LH2 production

LH2 was produced by cooling gaseous hydrogen. The mean electricity input for LH2 production
was calculated as 0.906 kWh/Nm3-H2 [65,66,75–78].

• LH2 storage at loading port

LH2 was stored in stationary insulation tanks at a loading port. It was assumed that the boil-off
of hydrogen gas during this stage was subsequently re-liquefied. The electricity input for LH2 storage
at the loading port was set to 0.055 kWh/Nm3-H2 [39].

• LH2 ocean transport by tanker

A LH2 tanker (160,000 m3 tank capacity, 16 knots sailing speed) [66] was assumed for transport of
LH2 to Japan. However, because LH2 tankers are still being developed, exact data were not available.
Thus, the emissions data were estimated using data for LNG tankers in IDEA under the assumption
that the GHG emissions of a LH2 tanker per transport volume of LH2 expressed in ton-kilometer unit
were equal to those for a LNG tanker per ton-kilometer of LNG. The emissions from laden and ballast
voyages were both included in the estimation. The mean boil-off rate of LH2 during the voyage was
calculated as 0.3%/day [65,66].

• LH2 storage at unloading port

LH2 was assumed to be transferred from the tanker to stationary tanks at an unloading port.
It was assumed that the gas resulting from hydrogen boil-off was subsequently re-liquefied. The
electricity input for LH2 storage at the unloading port was set to 0.055 kWh/Nm3-H2 [39].

• Domestic distribution of LH2 by tank truck

LH2 tank trucks (23 kL tank capacity, 3.5 km/L-diesel oil fuel economy) [45,79] were assumed
to be responsible for the domestic distribution from the LH2 storage terminal to the hydrogen filling
stations. The one-way distance was set to 50 km [66], and both the emissions by the laden and empty
journeys were included to the inventory.

• LH2 storage at hydrogen filling stations

LH2 was assumed to be transferred from tank trucks to stationary tanks at hydrogen filling stations.
The electricity input required for LH2 storage at a filling station was set to 0.055 kWh/Nm3-H2 [39].
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2.5.2. Methylcyclohexane (MCH)

MCH (CH3C6H11) is another promising hydrogen carrier. It is produced by the hydrogenation of
toluene (TOL; CH3C6H5) and releases hydrogen via catalytic dehydrogenation:

CH3C6H5 + 3H2 
 CH3C6H11 (4)

MCH was first proposed as a hydrogen storage system for use as a vehicle fuel in 1980 [80]
under what is now known as the methylcyclohexane-toluene-hydrogen (MTH) system [81,82]. After
hydrogenation of TOL at the hydrogen supply site, MCH is transported by tanker and dehydrogenated
at the demand site to yield H2 and the original TOL, which is then returned to the supply site and
reused [83]. The dehydrogenation of MCH to TOL is important to the process owing to its large
endothermic heat of reaction (205 kJ/mol-MCH = 68.3 kJ/mol-H2) [84]. A number of catalysts,
including those that are platinum [85–88], palladium [88–90] and nickel [91,92] based, have been
investigated for their ability to facilitate an efficient dehydrogenation of MCH. Figure 4 shows the
renewable hydrogen supply chain using MCH that was assumed in this study.
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Figure 4. Renewable hydrogen supply chain using MCH. Only renewable electricity was used for
hydrogen production (expressed in green font). For electricity inputs for production and storage of
MCH and TOL (red font), the base cases assumed the input was equal to grid electricity. However, for
the Australian low-carbon cases, the same renewable electricity input was assumed as that used for
hydrogen production.

• MCH production

MCH was produced by the chemical reaction between TOL and hydrogen. The reaction
yield of hydrogen addition to TOL and the hydrogen consumption rate were set to 99.8% and
97.9%, respectively [65]. The mean electricity input for MCH production was calculated as
40.68 kWh/t-MCH [65,66,93].

• MCH storage at loading port

MCH was assumed to be stored in cone roof tanks at an overseas loading port. The mean
electricity input for MCH storage at the loading port was calculated as 0.915 kWh/t-MCH [65,66].

• MCH ocean transport by tanker

A chemical tanker was assumed to be used for the ocean transport of MCH to Japan. The
associated GHG emissions were calculated using IDEA’s emissions data for a chemical tanker.

• MCH storage at unloading port

MCH was assumed to be transferred from the chemical tanker to cone roof tanks at a domestic
unloading port. The electricity input for MCH storage at the unloading port was assumed to be the
same as that required for storage at the loading port.
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• Domestic distribution of MCH/TOL by tank trucks

Tank trucks (20 kL tank capacity, 2.34 km/L-diesel oil fuel economy) [45,79] were assumed to be
used for the domestic distribution of MCH to and TOL from the hydrogen filling stations. The one-way
distance was set as 50 km [66], and both the emissions associated with the MCH- and TOL-laden trucks
were included in the inventory.

• Dehydrogenation of MCH at hydrogen filling stations

At the hydrogen filling stations, MCH was assumed to be converted to hydrogen and TOL by
the dehydrogenization reaction. The conversion rate, selectivity and hydrogen yield of the reaction
were set to 95.0%, 99.9% and 90.0%, respectively [65]. It was assumed that heat required by the
dehydrogenization was supplied by combustion of city gas. The mean electricity input for MCH
dehydrogenization was calculated as 0.310 kWh/Nm3-H2 [65,66,93].

• TOL storage at loading port

TOL was assumed to be stored in cone roof tanks at a domestic loading port. The mean electricity
input for TOL storage at the loading port was calculated as 0.915 kWh/t-TOL [65,66].

• TOL ocean transport by tanker

A chemical tanker was assumed for transport of TOL from Japan. The associated GHG emissions
were calculated using IDEA’s emissions data for a chemical tanker.

• TOL storage at unloading port

TOL was assumed to be transferred from the chemical tanker to cone roof tanks at a domestic
unloading port. The electricity input for TOL storage at the unloading port was assumed to be the
same as the input at the loading port.

• TOL replacement

Owing to unwanted side chemical reactions (including demethylation, isomerization,
cycloreversion and dimerization) that also occur during the hydrogenation and dehydrogenation
stages, a portion of the TOL must be replaced with virgin TOL to maintain the MTH cycle efficiency [94].
It was assumed that 3% of the initial TOL-loading was replaced every year.

2.6. Supply Chain for Hydrogen Produced by Natural Gas (NG) Reforming

Figure 5 shows the supply chain for hydrogen produced by NG reforming assumed in this study.
IDEA’s GHG emissions associated with the combustion of LNG were used to calculate the emissions
associated with the production of NG, its compression to produce LNG and LNG transport by tanker
to Japan. Other stages in the supply chain are described below.
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• Hydrogen production via steam reforming of NG

Gaseous hydrogen was assumed to be produced in Japan by reforming NG derived from
imported LNG. The mean NG and electricity inputs were calculated as 15.04 MJ(LHV)/Nm3-H2

and 0.211 kWh/Nm3-H2, respectively [38,39,95–97]. The process water requirement was set to
1.964 × 10−3 m3/Nm3-H2 [68,97].

• Hydrogen compression at production plant

The produced hydrogen was assumed to be compressed to 20 MPa and loaded into gas tank
trucks for distribution. The electricity input for the compression stage at the production plant was set
to 0.272 kWh/Nm3-H2 [39].

• Domestic distribution of CGH2 by tank trucks

Gas tank trucks were assumed to carry out the domestic distribution of CGH2. The mean tank
capacity and fuel economy of the trucks were calculated as 2330 Nm3-H2 and 2.75 km/L-diesel oil,
respectively [40,98]. The one-way distance was set to 50 km [66], and both the emissions associated
with laden and empty trucks were included to the inventory.

2.7. Hydrogen Compression and Filling of FCVs at Hydrogen Filling Stations

At the hydrogen filling stations, hydrogen was assumed to be compressed to a pressure of 70 MPa
before the FCVs were filled. The electricity consumption for the compression and filling activities were
set to 0.282 kWh/Nm3-H2 and 0.093 kWh/Nm3-H2, respectively [39].

2.8. Uncertainty Analysis

A range of parameters (listed in Table A1) were considered as part of the uncertainty analysis
carried out on the WtT GHG emissions resulting from the various hydrogen supply chains.
To determine the probability distribution for each parameter, the WtW analysis methodology adopted
by General Motors et al. [95] was applied. Most parameters were assumed to follow a normal
distribution curve according to the mean and standard deviation values presented in Table A1. Based
on the literature values for inventory data quality, the standard deviation of GHG emissions attributed
to renewable power generation was assumed to be 10% of the mean value [99,100].

As for MCH production, hydrogen production by NG steam reforming and hydrogen compression
at the NG steam reforming plant, electricity input might show negative if a normal distribution was
assumed for the parameters. Hence, in these processes triangle distribution functions using the mean,
minimum and maximum data in the inventory were assumed instead of a normal distribution.

Monte Carlo simulations were performed using Oracle Crystal Ball [101]. A total of 10,000
iterations was used for each simulation to ensure the analysis was reproducible [102].

3. Results and Discussion

3.1. WtT GHG Emissions for Hydrogen Carriers

3.1.1. Liquid Hydrogen (LH2)

Figure 6 shows the mean WtT GHG emissions from the renewable hydrogen supply chains using
LH2. The emissions from the NG reforming hydrogen supply chain are also shown for reference.
Except for the Australian solar PV base case, all supply chains that combined LH2 with renewable
power-produced hydrogen showed lower GHG emissions than those from reforming of NG.
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In the Australian base cases, cooling hydrogen to produce LH2 was responsible for the largest
portion of GHG emissions, accounting for 67% and 56% of the total for the wind and solar PV
supply chains, respectively. This is explained by considering the large electricity consumption of the
hydrogen liquefaction process owing to hydrogen’s very low boiling point (−253 ◦C). Possible options
for decreasing electricity consumption include improving process efficiency by implementing new
liquefiers [103,104] or combining the liquefaction with a LNG re-gasification process [105]. Alongside
decreasing the electricity requirement, the associated GHG emissions could be decreased by employing
a low-carbon power source: using wind and solar PV power in Australia rather than grid electricity
decreased the total GHG emissions by 70% and 55%, respectively.

Other GHG hotspots of the LH2 supply chain were the original hydrogen production step and
hydrogen compression at domestic filling stations. Continued R&D for technologies related to the
components in water electrolysis—such as electrodes, electrolytes and membranes—is important in
further decreasing the carbon-intensity of renewable hydrogen production [106,107]. Meanwhile,
employing domestic renewable energy sources to power the hydrogen compression process at the
filling stations could decrease GHG emissions from this stage.

Regarding the NG reforming hydrogen supply chain, hydrogen production via steam reforming
of NG was the most GHG-intensive process which account for 60% of the total GHG emissions.

3.1.2. Methylcyclohexane (MCH)

Figure 7 shows the mean WtT GHG emissions from the renewable hydrogen supply chains
that used MCH as the hydrogen carrier. The associated emissions for hydrogen produced by NG
reforming are again also shown for reference. All of the WtT GHG emissions presented lie in the range
130–170 g-CO2eq./MJ(LHV)-H2 which indicates that the GHG emissions were relatively insensitive to
both where the hydrogen was produced and the renewable power technology employed. Unlike the
large decreases observed for hydrogen supplied using LH2, the WtT GHG emissions for the low-carbon
cases for Australian wind and solar PV power were only 5% and 4%, respectively, lower than the
emissions in the base case.
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For all cases, the dehydrogenation of MCH at the hydrogen filling stations was responsible for
the largest portion—approximately half—of the total GHG emissions. Because the dehydrogenation of
MCH is considerably endothermic—and therefore energy-intensive—the energy source and process
efficiency for this step have a large influence on the supply chain’s overall life cycle emissions. Given
that it was assumed that the heat required for the dehydrogenation was obtained by the combustion
of city gas, this stage’s GHG emissions could be decreased by using waste heat from nearby plants.
For example, if all of this heat could be supplied from waste sources, the total emissions for the
Australian base cases for wind and solar PV power could be 58 and 48%, respectively, lower than
when burning city gas. Notably, Cresswell and Metcalfe demonstrated a MCH dehydrogenation
system in which the reaction heat was supplied by waste heat from a solid oxide fuel cell [108]. R&D
that focuses on improving the dehydrogenation catalysts is also important for advancing the process
efficiency [109,110]. In this manner, catalysts that facilitate the dehydration using low-quality waste
heat have been reported by Chaouki and Klvana [111] and Hodoshima et al. [112].

As with the LH2 process, the GHG emissions attributed to the initial production of renewable
hydrogen and the compression of hydrogen at filling stations were also found to have a moderate
impact on the total. Finally, the two-way long-distance ocean transport (of MTH and TOL) was
particularly notable in the Norwegian case where the combined emissions attributed to ocean transport
of MTH and TOL accounted for 20% of the total WtT GHG emissions.

3.2. WtT GHG Emissions Based on Uncertainty Analysis

Figure 8 shows the uncertainty analysis results for the WtT GHG emissions from renewable
and NG reforming hydrogen supply chains. From the comparison of all results and their variability
analyses, it is clear that the GHG emissions from renewable hydrogen using LH2 as the hydrogen
carrier are significantly lower than those from hydrogen produced by NG reforming for the Australia
low-carbon cases and the Norway case. Conversely, no significant decrease was observed for the
MCH cases. Nonetheless, with future technical developments, such as those described in the previous
section, the GHG emissions from the MCH process are expected to decrease.
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4. Conclusions

To better understand the potential role of hydrogen energy in decreasing GHG emissions in Japan,
a WtT LCI analysis was carried out for renewable hydrogen supply chains originating in Australia
and Norway. Wind- or solar PV-powered electrolysis generated hydrogen that was transported to
Japan using a hydrogen carrier (LH2 or MCH), before being distributed to domestic hydrogen filling
stations where the hydrogen was restored and pressurized for FCV applications. Data were drawn
from literature surveys and IDEA, the Japanese life cycle inventory database. A Monte Carlo-based
uncertainty analysis was performed to investigate the impact of variations in the supply chain’s energy
and material inputs. The LCI analyses showed that the initial hydrogen production, its liquefaction to
produce LH2, the dehydrogenation of MCH and the compression of hydrogen at the filling stations
were particularly GHG-intensive activities in the respective supply chains. A number of technological
options to decrease GHG emissions in these areas were discussed, as summarized in Figure 9. With a
95% confidence interval, renewable hydrogen produced in Australia (low-carbon cases) or Norway and
transported to Japan as LH2 exhibited significantly lower WtT GHG emissions than those calculated
for hydrogen produced by NG reforming. Although the technology options modeled herein suggested
the MCH pathway exhibited similar GHG emissions to those from the NG reforming production
supply chain, the uncertainty analysis results suggested that feasible technical developments could
result in significantly lower emissions from the MCH pathway.

This study mainly focused on the GHG emissions of hydrogen produced from renewable energy
resources. However, other potentially low-carbon supply chains exist, such as hydrogen produced
from gasification of lignite combined with carbon capture and storage (CCS), which shall be evaluated
in future work.

Similarly, we note that extending the LCI analysis to include economic, social and other
environmental impacts as part of multiple criteria analyses will also be increasingly important for the
deliberation of hydrogen’s potential role as an energy medium.
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AUS Australia
CGH2 compressed gaseous hydrogen
FC-CHP fuel cell combined heat and power unit
FCVs fuel cell vehicles
GHG greenhouse gas
IDEA Inventory Database for Environmental Analysis
ISO International Organization for Standardization
LCI life cycle inventory
LHV lower heating value
LH2 liquid hydrogen
LNG liquefied natural gas
MCH methylcyclohexane
MTH methylcyclohexane-toluene-hydrogen
NG natural gas
NOR Norway
PV photovoltaics
R&D research and development
TOL toluene
UPS uninterruptible power system
WtT Well-to-Tank
WtW Well-to-Wheel
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Appendix A

Table A1. The probability distribution function, mean, standard deviation (SD), minimum (min.) and
maximum (max.) values for various uncertainty parameters.

Parameter (Unit) Function Mean SD Min. Max. Reference

GHG emissions for wind power
generation in Australia

(g-CO2eq./kWh)
Normal 15.3 1.53 [34,58–60,99,100]

GHG emissions for solar PV power
generation in Australia

(g-CO2eq./kWh)
Normal 66.4 6.64 [34,58–60,99,100]

GHG emissions for wind power
generation in Norway

(g-CO2eq./kWh)
Normal 10.8 1.08 [34,58–60,99,100]

Electricity input for hydrogen
production via water electrolysis

(kWh/Nm3-H2)
Normal 5.19 0.94 [62–74]

Electricity input for liquefaction of
gaseous hydrogen to produce LH2

(kWh/Nm3-H2)
Normal 0.906 0.233 [65,66,75–78]

LH2 Boil-off rate during ocean transport
(%/day) Normal 0.3 0.1 [65,66]

Electricity input for MCH production
(kWh/t-MCH) Triangular 40.68 37.62 7.54 93.30 [65,66,93]

Electricity input for MCH storage at
loading/unloading port

(kWh/t-MCH)
Normal 0.915 0.085 [65,66]

Electricity input for MCH
dehydrogenization

(kWh/Nm3-H2)
Normal 0.310 0.047 [65,66,93]

Electricity input for TOL storage at
loading/unloading port (kWh/t-TOL) Normal 0.915 0.085 [65,66]

NG input for hydrogen production via
NG steam reforming
(MJ(LHV)/Nm3-H2)

Normal 15.04 0.24 [95,97]

Electricity input for hydrogen
production via NG steam reforming

(kWh/Nm3-H2)
Triangular 0.211 0.110 0.100 0.323 [95,97]

Electricity input for hydrogen
compression at NG steam reforming

hydrogen production plant
(kWh/Nm3-H2)

Triangular 0.272 0.135 0.119 0.440 [39]

Tank capacity of CGH2 tank trucks
(Nm3-H2) Normal 2,330 130 [40,98]

Fuel economy of CGH2 tank trucks
(km/L-diesel oil) Normal 2.75 0.25 [40,98]



Sustainability 2017, 9, 1101 16 of 26

Table A2. Electricity input for hydrogen production via water electrolysis; individual values of
inventory data from each literature are shown side by side.

Reference Electricity (kWh/Nm3-H2)

Asaoka et al. [62] 4.5 5.1 4.85
Hydrogenics [63,64] 5.4 4.9 6.7

IAE (2010) [65] 6.5 4.3 5.3
IAE (2016) [66] 4.8

Japan Petroleum Energy Center [67] 4.8 5.3 6.5 4.5
Kawasaki Heavy Industries [68] 4.8

Kobelco Eco-Solutions [69] 6.5

Mitsusima and Matsuzawa [70]
4.3 4.6 3.9 4.2 4.6 4.8 4.3
4.3 4.5 4.7 4.4 5.8 6.0 4.5
4.5 3.9 3.7 5.6 5.2

NEDO [71] 4.3 5.3 6.5
NREL [72] 6.3 6.1

Proton On-Site [73,74] 7.3 7.0 6.8 6.2
Mean 5.19

Standard deviation 0.94

Table A3. Electricity input for liquefaction of gaseous hydrogen to produce LH2; individual values of
inventory data from each literature are shown side by side.

Reference Electricity (kWh/Nm3-H2)

IAE (2010) [65] 1.059 0.958 0.900
IAE (2016) [66] 0.550 0.690
IAE et al. [75] 0.970

JRC [76] 0.900
JHFC [77] 1.259

Kawasaki Heavy Industries [78] 1.079 1.259 0.692 0.555
Mean 0.906

Standard deviation 0.233

Table A4. LH2 boil off rate of liquid hydrogen while ocean transport.

Reference Boil off Rate (%/day)

IAE (2010) [65] 0.4
IAE (2016) [66] 0.2

Mean 0.3
Standard deviation 0.1

Table A5. Electricity input for MCH production.

Reference Electricity (kWh/t-MCH)

IAE (2010) [65] 7.54
IAE (2016) [66] 93.3

Hondo et al. [93] 21.2
Mean 40.68

Standard deviation 37.62
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Table A6. Electricity input for MCH storage at loading/unloading port.

Reference Electricity (kWh/t-MCH)

IAE (2010) [65] 0.83
IAE (2016) [66] 1.00

Mean 0.915
Standard deviation 0.085

Table A7. Electricity input for MCH dehydrogenization.

Reference Electricity (kWh/Nm3-H2)

IAE (2010) [65] 0.335
IAE (2016) [66] 0.352

Hondo et al. [93] 0.244
Mean 0.310

Standard deviation 0.047

Table A8. Electricity input for TOL storage at loading/unloading port.

Reference Electricity (kWh/t-MCH)

IAE (2010) [65] 0.83
IAE (2016) [66] 1.00

Mean 0.915
Standard deviation 0.085

Table A9. NG input for hydrogen production via NG steam reforming.

Reference Natural Gas (MJ(LHV)/Nm3-H2)

General Moters et al. [95] 15.27
Ramsden et al. [97] 14.80

Mean 15.04
Standard deviation 0.24

Table A10. Electricity input for hydrogen production via NG steam reforming.

Reference Electricity (kWh/Nm3-H2)

General Moters et al. [95] 0.323
Ramsden et al. [97] 0.100

Mean 0.211
Standard deviation 0.110

Table A11. Electricity input for hydrogen compression at NG steam reforming hydrogen production
plant; individual values of inventory data from each literature are shown side by side.

Reference Electricity (kWh/Nm3-H2)

JHFC (2011) [39] 0.119 0.440
Mean 0.272

Standard deviation 0.135
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Table A12. Capacity and fuel economy of CGH2 tank trucks.

Reference Capacity (Nm3-H2) Fuel Efficiency (km/L-diesel oil)

Toyota & Mizuho [40] 2460 3.00
JPEC [98] 2200 2.50

Mean 2330 2.75
Standard deviation 130 0.25

Appendix B
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